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Abstract—This paper presents a detailed analysis of traces of DNS and
associated TCP traffic collected on the Internet links of the MIT Laboratory
for Computer Science and the Korea Advanced Institute of Science and
Technology (KAIST). The first part of the analysis details how clients at
these institutions interact with the wide-area domain name system, focusing
on client-perceived performance and the prevalence of failures and errors.
The second part evaluates the effectiveness of DNS caching.

In the most recent MIT trace, 23% of lookups receive no answer; these
lookups account for more than half of all traced DNS packets since query
packets are retransmitted overly persistently. About 13% of all lookups re-
sult in an answer that indicates an error condition. Many of these errors ap-
pear to be caused by missing inverse (IP-to-name) mappings or NS records
that point to non-existent or inappropriate hosts. 27% of the queries sent
to the root name servers result in such errors.

The paper also presents the results of trace-driven simulations that ex-
plore the effect of varying TTLs and varying degrees of cache sharing on
DNS cache hit rates. Due to the heavy-tailed nature of name accesses, re-
ducing the TTLs of address (A) records to as low as a few hundred seconds
has little adverse effect on hit rates, and little benefit is obtained from shar-
ing a forwarding DNS cache among more than 10 or 20 clients. These re-
sults suggest that client latency is not as dependent on aggressive caching as
is commonly believed, and that the widespread use of dynamic, low-TTL A-
record bindings should not greatly increase DNS related wide-area network
traffic.
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I. INTRODUCTION

The Domain Name System (DNS) is a globally distributed
database that maps names to network locations, thus providing
information critical to the operation of most Internet applica-
tions and services. As a global service, DNS must be highly
scalable and offer good performance under high load. In partic-
ular, the system must operate efficiently to provide low latency
responses to users while minimizing the use of wide-area net-
work resources.

It is widely believed that two factors contribute to the scala-
bility of DNS: hierarchical design around administratively del-
egated name spaces, and the aggressive use of caching. Both
factors seek to reduce the load on the root servers at the top
of the name space hierarchy, while successful caching hopes to
limit client-perceived delays and wide-area network bandwidth
usage. How effective are these factors? In this paper, we care-
fully analyze three network traces to study this question.

Prior to the year 2000, the only large-scale published study of
DNS performance was by Danzig et al. in 1992 [1]. Danzig’s
study found that a large number of implementation errors caused
DNS to consume about twenty times more wide-area network
bandwidth than necessary. However, since then, DNS imple-
mentations and DNS usage pattern have changeds. For example,
the World Wide Web now causes the bulk of traffic. Content dis-
tribution networks (CDNs) and popular Web sites now use DNS
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as a level of indirection to balance load across servers, provide
fault tolerance, or route client requests to servers topologically
close to the clients. Because cached DNS records limit the effi-
cacy of such techniques, many of these multiple-server systems
use TTL values as small as a few seconds or minutes. Another
example is in mobile networking, where dynamic DNS together
with low-TTL bindings can provide the basis for host mobility
support in the Internet [2]. These uses of DNS all conflict with
caching.

One concrete way to estimate the effectiveness of DNS
caching is to observe the amount of DNS traffic in the wide-
area Internet. Danzig et al. report that 14% of all wide-area
packets were DNS packets in 1990, compared to 8% in 1992. In
1995, the corresponding number from a study of the NSFNET
by Frazer was 5% [3]; a 1997 study of the MCI backbone by
Thompson et al. reported that 3% of wide-area packets were
DNS related [4]. This downward trend might suggest that DNS
caching is working well.

However, these results should be put in perspective by con-
sidering them relative to network traffic as a whole. Thomp-
son’s study also showed that DNS accounts for 18% of all flows
(where a flow is defined as a uni-directional traffic stream with
unique source and destination IP addresses, port numbers and IP
protocol fields). If one assumes that applications typically pre-
cede each TCP connection with a call to the local DNS resolver
library, this suggests a DNS cache miss rate of a little less than
25%. However, by 1997, most TCP traffic consisted of Web
traffic, which tends to produce groups of about four connections
to the same server [5]; if one assumes one DNS lookup for ev-
ery four TCP connections, the “session-level” DNS cache miss
rate appears to be closer to 100%. While an accurate evaluation
requires more precise consideration of the number of TCP con-
nections per session and the number of DNS packets per lookup,
this quick calculation suggests that DNS caching is not very ef-
fective at suppressing wide-area traffic.

These considerations make a thorough analysis of the effec-
tiveness of DNS caching is especially important. Thus, this pa-
per has two goals. First, it seeks to understand the performance
and behavior of DNS from the point of view of clients and, sec-
ond, it evaluates the effectiveness of caching.

A. Summary of Results

In exploring DNS performance and scalability, we focus on
the following questions:

1. What performance, in terms of latency and failures, do
DNS clients perceive?

2. How does varying the TTL and degree of cache sharing
impact caching effectiveness?

These questions are answered using a novel method of ana-
lyzing traces of TCP traffic along with the related DNS traffic.
To facilitate this, we captured all DNS packets and TCP SYN,
FIN, and RST packets at two different locations on the Inter-



net. The first is at the link that connects MIT’s Laboratory for
Computer Science (LCS) and Artificial Intelligence Laboratory
(AI) to the rest of the Internet. The second is at a link that con-
nects the Korea Advanced Institute of Science and Technology
(KAIST) to the rest of the Internet. We analyze two different
MIT data sets, collected in January and December 2000, and
one KAIST data set collected in May 2001.

One surprising result is that over a third of all lookups are not
successfully answered. 23% of all client lookups in the most re-
cent MIT trace fail to elicit any answer. In the same trace, 13%
of lookups result in an answer that indicates an error. Most of
these errors indicate that the desired name does not exist. While
no single cause seems to predominate, inverse lookups (translat-
ing IP addresses to names) often cause errors, as do NS records
that point to non-existent servers.

DNS servers also appear to retransmit overly aggressively.
The query packets for these unanswered lookups, including re-
transmissions, account for more than half of all DNS query
packets in the trace. Loops in name server resolution are par-
ticularly bad, causing an average of 10 query packets sent to the
wide area for each (unanswered) lookup. In contrast, the av-
erage answered lookup sends about 1.3 query packets. Loops
account for 3% of all unanswered lookups.

We have also been able to observe changes in DNS usage
patterns and performance. For example, the percentage of TCP
connections made to names with low TTL values increased from
12% to 25% between January and December 2000, probably due
to the increased deployment of DNS-based server selection for
popular sites. Also, while median name resolution latency was
less than 100 ms, the latency of the worst 10% grew substan-
tially between January and December 2000.

The other portion of our study concerns caching effective-
ness. The relationship between numbers of TCP connections
and numbers of DNS lookups in the MIT traces suggests that
the hit rate of DNS caches inside MIT is between 80% and 86%.
Since this estimate includes the effects of web browsers open-
ing multiple TCP connections to the same server, DNS A-record
caching does not seem particularly effective; the observed cache
hit rate could easily decrease should fewer parallel TCP connec-
tions be used, for example. Moreover, we find that the distri-
bution of names is Zipf-like, which immediately limits even the
theoretical effectiveness of caching.

The captured TCP traffic helps us perform trace-driven sim-
ulations to investigate two important factors that affect caching
effectiveness: (i) the TTL values on name bindings, and (ii) the
degree of aggregation due to shared client caching. Our simula-
tions show that A records with 10-minute TTLs yield almost the
same hit rates as substantially longer TTLs. Furthermore, we
find that a cache shared by as few as ten clients has essentially
the same hit rate as a cache shared by the full traced popula-
tion of over 1000 clients. This is consistent with the Zipf-like
distribution of names.

These results suggest that DNS works as well as it does de-
spite ineffective A-record caching, and that the current trend
towards more dynamic use of DNS (and lower TTLs) is not
likely to be harmful. On the other hand, we find that NS-record
caching is critical to DNS scalability by reducing load on the
root and gTLD servers.

The rest of this paper presents our findings and substantiates
these conclusions. Section II presents an overview of DNS and
surveys previous work in analyzing its performance. Section III
describes our traffic collection methodology and some salient
features of our data. Section IV analyzes the client-perceived
performance of DNS, while Section V analyzes the effectiveness
of caching using trace-driven simulation. We conclude with a
discussion of our findings in Section VI.

II. BACKGROUND

In this section, we present an overview of DNS and survey
related work.

A. DNS Overview

The design of the Internet DNS is specified in [6], [7], [8]. We
summarize the important terminology and basic concepts here.

The basic function of DNS is to provide a distributed
database that maps between human-readable host names
(such as chive.lcs.mit.edu) and IP addresses (such as
18.31.0.35). It also provides other important information
about the domain or host, including reverse maps from IP ad-
dresses to host names and mail-routing information. Clients
(or resolvers) routinely query name servers for values in the
database.

The DNS name space is hierarchically organized so that sub-
domains can be locally administered. The root of the hierarchy
is centrally administered and served from a collection of thirteen
(in mid-2001) root servers. Sub-domains are delegated to other
servers that are authoritative for their portion of the name space.
This process may be repeated recursively.

At the beginning of our study, most of the root servers also
served the top-level domains, such as .com. At the end, the
top-level domains were largely served by a separate set of about
a dozen dedicated “generic top-level domain” (gTLD) servers.

Mappings in the DNS name space are called resource records.
Two common types of resource records are address records (A
records) and name server records (NS records). An A record
specifies a name’s IP address; an NS record specifies the name of
a DNS server that is authoritative for a name. Thus, NS records
are used to handle delegation paths.

Since achieving good performance is an important goal of
DNS, it makes extensive use of caching to reduce server load
and client latency. It is believed that caches work well because
DNS data changes slowly and a small amount of staleness is
tolerable. On this premise, many servers are not authoritative
for most data they serve, but merely cache responses and serve
as local proxies for resolvers. Such proxy servers may conduct
further queries on behalf of a resolver to complete a query re-
cursively. Clients that make recursive queries are known as stub
resolvers in the DNS specification. On the other hand, a query
that requests only what the server knows authoritatively or out
of cache is called an iterative query.

Figure 1 illustrates these two resolution mechanisms. The
client application uses a stub resolver and queries a local nearby
server for a name (say www.mit.edu). If this server knows
absolutely nothing else, it will follow the steps in the figure to
arrive at the addresses for www.mit.edu. Requests will begin
at a well-known root of the DNS hierarchy. If the queried server
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Fig. 1. Example of a DNS lookup sequence.

has delegated responsibility for a particular name, it returns a re-
ferral response, which is composed of name server records. The
records are the set of servers that have been delegated responsi-
bility for the name in question. The local server will choose one
of these servers and repeat its question. This process typically
proceeds until a server returns an answer.

Caches in DNS are typically not size-limited since the objects
being cached are small, consisting usually of no more than a
hundred bytes per entry. Each resource record is expired accord-
ing to the time set by the originator of the name. These expira-
tion times are called Time To Live (TTL) values. Expired records
must be fetched afresh from the authoritative origin server on
query. The administrator of a domain can control how long the
domain’s records are cached, and thus how long changes will be
delayed, by adjusting TTLs. Rapidly changing data will have a
short TTL, trading off latency and server load for fresh data.

To avoid confusion, the remainder of this paper uses the terms
“lookup,” “query,” “response,” and “answer” in specific ways. A
lookup refers to the entire process of translating a domain name
for a client application. A query refers to a DNS request packet
sent to a DNS server. A response refers to a packet sent by a
DNS server in reply to a query packet. An answer is a response
from a DNS server that terminates the lookup, by returning ei-
ther the requested name-to-record mapping or an error indica-
tion. Valid responses that are not answers must be referrals.

This means, for example, that a lookup may involve multiple
query and response packets. The queries of a lookup typically
ask for the same data, but from different DNS servers; all re-
sponses but the last one (the answer) are typically referrals. This
distinction can be seen in Figure 1; the packets in steps 1–4 are
all part of the same lookup (driven by the request from the ap-
plication); however, each step represents a separate query and
response.

B. Related Work

In 1992, Danzig et al. presented measurements of DNS traf-
fic at a root name server [1]. Their main conclusion was that the
majority of DNS traffic is caused by bugs and misconfiguration.
They considered the effectiveness of DNS name caching and re-
transmission timeout calculation, and showed how algorithms to
increase resilience led to disastrous behavior when servers failed
or when certain implementation faults were triggered. Imple-
mentation issues were subsequently documented by Kumar et
al., who note that many of these problems have been fixed in

more recent DNS servers [9]. Danzig et al. also found that one
third of wide-area DNS traffic that traversed the NSFnet was
destined to one of the (at the time) seven root name servers.

In contrast to Danzig et al.’s work, our work focuses on an-
alyzing client-side performance characteristics. In the process,
we calculate the fraction of lookups that caused wide-area DNS
packets to be sent, and the fraction that caused a root or gTLD
server to be contacted.

In studies of wide-area traffic in general, DNS is often in-
cluded in the traffic breakdown [3], [4]. As noted in Section I,
the high ratio of DNS to TCP flows in these studies motivated
our investigation of DNS performance.

It is likely that DNS behavior is closely linked to Web traffic
patterns, since most wide-area traffic is Web-related and Web
connections are usually preceded by DNS lookups. One re-
sult of Web traffic studies is that the popularity distribution of
Web pages is heavy-tailed [10], [11], [12]. In particular, Breslau
et al. conclude that the Zipf-like distribution of Web requests
causes low Web cache hit rates [10]. We find that the popularity
distribution of DNS names is also heavy-tailed, probably as a
result of the same underlying user behavior. It is not immedi-
ately clear that DNS caches should suffer in the same way that
Web caches do. For example, DNS caches do not typically in-
cur cache misses because they run out of capacity. DNS cache
misses are instead driven by the relationship between TTLs se-
lected by the origin and the interarrival time between requests
for each name at the cache. DNS cache entries are also more
likely to be reused because each component of a hierarchical
name is cached separately and also because many Web docu-
ments are present under a single DNS name. Despite these dif-
ferences, we find that DNS caches are similar to Web caches in
their overall effectiveness.

A recent study by Shaikh et al. shows the impact of DNS-
based server selection on DNS [13]. This study finds that ex-
tremely small TTL values (on the order of seconds) are detri-
mental to latency, and that clients are often not close in the net-
work topology to the name servers they use, potentially leading
to sub-optimal server selection. In contrast, we believe that the
number of referrals for a lookup is a more important determiner
for latency.

Wills and Shang studied NLANR proxy logs and found that
DNS lookup time contributed more than one second to approxi-
mately 20% of retrievals for the Web objects on the home page
of larger servers. They also found that 20% of DNS requests
are not cached locally [14]; this correlates nicely with esti-
mates given in Section I and corroborates our belief that DNS
caching is not very effective at suppressing wide-area traffic.
Cohen and Kaplan propose proactive caching schemes to allevi-
ate the latency overheads by synchronously requesting expired
DNS records [15]; their analysis is also derived from NLANR
proxy log workload. Unfortunately, proxy logs do not capture
the actual DNS traffic; thus any analysis must rely on on mea-
surements taken after the data is collected. This will not accu-
rately reflect the network conditions at the time of the request,
and the DNS records collected may also be newer. Our data
allows us to directly measure the progress of the DNS lookup
as it occurred. Additionally, our data captures all DNS lookups
and their related TCP connections, not just those associated with



HTTP requests.

Huitema and Weerahandi measured DNS latency through the
gethostbyname() interface over a period of 15 months,
starting from April 1999. For their study, 29% of DNS lookups
took longer than 2 seconds to get an answer [16]. In compari-
sion, our study shows that between 10% and 24% lookups give
this much latency. These numbers differ because our latency
numbers do not include latency experienced between the client
application and the local name server which is included in their
data. Naturally, DNS latency is also affected by the connectivity
and the performance of the network at the point of measurement.

Brownlee et al. collected DNS traffic at F.root-
servers.net, and showed that over 14% of the observed
query load was due to bogus queries; their paper provides an
analysis of the load and a taxonomy of the causes of errors [17].
Errors include repeated queries generated from same source
host, queries for non-existent top level domain names, and mal-
formed A queries. Some of these are observed in our traces and
are listed in section IV-C. In particular, we found that between
15% and 27% of the lookups sent to root name servers resulted
in negative responses.

Another study by the same authors show passive measure-
ments of the performance of root and gTLD servers as seen
from their campus network using NeTraMet meters [18]. The
paper presents response time, request rate and request loss rate
of the root and gTLD servers seen at the traced network. Their
response times indicate the latency between a single query and
response, as compared to our latencies which cover the entire
lookup process. Their methodology is also targetted to mea-
sure overall performance. In contrast, our analyses consider the
entire DNS packet header and payload to reveal a more compre-
hensive view of DNS behavior.

III. THE DATA

Our study is based on three separate traces. The first two were
collected in January and December 2000 respectively, at the link
that connects the MIT LCS and AI labs to the rest of the Inter-
net. At the time of the study, there were 24 internal subnetworks
sharing the router, used by over 500 users and over 1200 hosts.
The third trace was collected in May 2001 at one of two links
connecting KAIST to the rest of the Internet. At the time of data
collection there were over 1000 users and 5000 hosts connected
to the KAIST campus network. The trace includes only inter-
national TCP traffic; KAIST sends domestic traffic on a path
that was not traced. However, the trace does include all exter-
nal DNS traffic, domestic and international: the primary name
server of the campus, ns.kaist.ac.kr, was configured to
forward all DNS queries to ns.kreonet.re.kr along a
route that allowed them to be traced. Figure 2 shows the config-
urations of the two networks.

The first trace, mit-jan00, was collected from 2:00 A.M.
on 3 January 2000 to 2:00 A.M. on 10 January 2000; the second,
mit-dec00, was collected from 6:00 P.M. on 4 December
to 6:00 P.M. on 11 December 2000. The third set, kaist-
may01, was collected at KAIST from 5:00 A.M. on 18 May to
5:00 A.M. on 24 May 2001. All times are EST.
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Fig. 2. Schematic topology of the traced networks.

A. Collection Methodology

We filtered the traffic observed at the collection points to pro-
duce a data set useful for our purposes. As many previous stud-
ies have shown, TCP traffic (and in particular, HTTP traffic)
comprises the bulk of wide-area traffic [4]. TCP applications
usually depend on the DNS to provide the rendezvous mecha-
nism between the client and the server. Thus, TCP flows can be
viewed as the major driving workload for DNS lookups.

In our study, we collected both the DNS traffic and its driving
workload. Specifically, we collected:

1. Outgoing DNS queries and incoming responses, and
2. Outgoing TCP connection start (SYN) and end (FIN and
RST) packets for connections originating inside the traced
networks.

In the mit-jan00 trace, only the first 128 bytes of each packet
were collected because we were unsure of the space require-
ments. However, because we found that some DNS responses
were longer than this, we captured entire Ethernet packets in the
other traces.

The trace collection points do not capture all client DNS ac-
tivity. Queries answered by caches inside the traced networks
do not appear in the traces. Thus many of our DNS measure-
ments reflect only those lookups that required wide-area queries
to be sent. Since we correlate these with the driving workload
of TCP connections, we can still draw conclusions about overall
performance and caching effectiveness.

In addition to filtering for useful information, we also elimi-
nated information to preserve user (client) privacy. In the MIT



traces, any user who wished to be excluded from the collec-
tion process was allowed to do so, based on an IP address they
provided; only three hosts opted out, and were excluded from
all our traces. We also did not capture packets corresponding
to reverse DNS lookups (PTR queries) for a small number of
names within MIT, once again to preserve privacy. In addition,
all packets were rewritten to anonymize the source IP addresses
of hosts inside the traced network. This was done in a pseudo-
random fashion—each source IP address was mapped using a
keyed MD5 cryptographic hash function [19] to an essentially
unique, anonymized one.

Our collection software was derived from Minshall’s
tcpdpriv utility [20]. tcpdpriv anonymizes libpcap-
format traces (generated by tcpdump’s packet capture library).
It can collect traces directly or post-process them after collection
using a tool such as tcpdump [21]. We extended tcpdpriv
to support the anonymization scheme described above for DNS
traffic.

B. Analysis Methodology

We analyzed the traces to extract various statistics about
lookups including the number of referrals involved in a typi-
cal lookup and the distribution of lookup latency. To calculate
the latency in resolving a lookup, we maintain a sliding window
of the lookups seen in the last sixty seconds; an entry is added
for each query packet from an internal host with a DNS query
ID different from any lookup in the window. When an incom-
ing response packet is seen, the corresponding lookup is found
in the window. If the response packet is an answer (as defined
in Section II-A), the time difference between the original query
packet and the response is the lookup latency. The actual end-
user DNS request latency, however, is slightly longer than this,
since we see packets in mid-flight. If the response is not an an-
swer, we increment the number of referrals of the corresponding
lookup by one, and wait until the final answer arrives. To keep
track of the name servers contacted during a lookup, we main-
tain a list of all the IP addresses of name servers involved in the
resolution of the lookup.

This method correctly captures the list of servers contacted
for iterative lookups, but not for recursive lookups. Most
lookups in the MIT traces are iterative; we eliminated the small
number of hosts which sent recursive lookups to name servers
outside the traced network. The KAIST traces contain mostly
recursive lookups sent to a forwarding server just outside the
trace point; hence, while we can estimate lower bounds on name
resolution latency, we cannot derive statistics on the number of
referrals or the fraction of accesses to a top-level server.

C. Data Summary

Table I summarizes the basic characteristics of our data sets.
We categorize lookups based on the DNS code in the response
they elicit, as shown in rows 3-6 of Table I. A lookup that gets
a response with non-zero response code is classified as a neg-
ative answer, as defined in the DNS specification [7], [22]. A
zero answer is authoritative and indicates no error, but has no
ANSWER, AUTHORITY, or ADDITIONAL records [9]. A zero
answer can arise, for example, when an MX lookup is done for
a name that has no MX record, but does have other records. A

TABLE II

PERCENTAGE OF DNS LOOKUPS FOR THE POPULAR QUERY TYPES.

mit-jan00 mit-dec00 kaist
A 60.4% 61.5% 61.0%
PTR 24.6% 27.2% 31.0%
MX 6.8% 5.2% 2.7%
ANY 6.4% 4.6% 4.1%

lookup is answered with success if it terminates with a response
that has a NOERROR code and one or more ANSWER records.
All other lookups are are considered unanswered.

DNS queries can be made for a number of reasons: to resolve
host names to IP addresses, to find reverse-mappings between
IP addresses and host names, to find the hosts that handle mail
for a domain, and more. There are twenty query types defined in
the DNS specification [7]. Table II lists the four most frequently
requested query types in each of our traces. About 60% of all
lookups were for A records binding host names to addresses and
between 24% and 31% were for the reverse PTR bindings from
addresses to host names.

Although most answered A lookups are followed by a TCP
connection to the host IP address specified in the returned re-
source record, there are some notable exceptions. These fall
into two main categories: first, there are DNS A lookups which
are not driven by TCP connections and second, there are TCP
connections which are not preceded by DNS lookups. We ex-
cluded both of these classes of queries from our analysis and
simulations.

Roughly 50% of the DNS lookups at MIT are not associ-
ated with any TCP connection. Approximately, 15% of these
A lookups are for name servers, suggesting perhaps that there is
a disparity between the TTL values people use for A records as
opposed to NS records. Also, roughly 10% of all lookups are
the result of an incoming TCP connection: some systems will
do a PTR lookup for an IP address and then verify that the name
is correct by doing an A lookup for the result of the PTR. Fi-
nally, a small percentage of these lookups are related to reverse
black-lists such as rbl.maps.vix.com. This is a service
designed to allow mail servers to refuse mail from known spam-
mers. We suspect that the remaining 20% of these correspond
to UDP flows but unfortunately, our data does not include any
record of UDP flows.

Approximately 20% of TCP connections fall into the sec-
ond class. Here, the dominant cause is the establishment of
ftp-data connections: the LCS network hosts several pop-
ular FTP servers which results in a fairly large number of out-
going data connections. Other causes include hard-coded and
hand-entered addresses from automated services run within LCS
such as validator.w3.org. Finally, mail servers typically
lookup MX instead of A records.

One of the major motivations for our work was the ratio of
DNS lookups to TCP connections in the wide-area Internet, as
described in Section I. The data in Table I (rows 9 and 15) al-
low us to estimate this ratio for the traced traffic, as the ratio of
the number of TCP connections to the number of successfully
answered lookups for A records associated with TCP connec-



TABLE I

BASIC TRACE STATISTICS. THE PERCENTAGES ARE WITH RESPECT TO TOTAL NUMBER OF LOOKUPS IN EACH TRACE.

mit-jan00 mit-dec00 kaist-may01
1 Date and place 00/01/03-10, MIT 00/12/04-11, MIT 01/05/18-24, KAIST
2 Total lookups 2,530,430 4,160,954 4,339,473
3 Unanswered 595,290 (23.5%) 946,308 (22.7%) 873,514 (20.1%)
4 Answered with success 1,627,772 (64.3%) 2,648,025 (63.6%) 1,579,852 (36.4%)
5 Negative answer 281,855 (11.1%) 545,887 (13.1%) 1,834,942 (42.2%)
6 Zero answer 25,513 (1.0%) 20,734 (0.5%) 51,165 (1.2%)
7 Total iterative lookups 2,486,104 4,107,439 396,038
8 Answered 1,893,882 3,166,353 239,874
9 A lookups with follow-up TCP connections 496,802 941,081 817,937
10 Total query packets 6,039,582 10,617,796 5,326,527
11 Distinct second level domains 58,638 84,490 78,322
12 Distinct fully-qualified names 263,984 302,032 219,144
13 Distinct internal query sources 221 265 405
14 Distinct external name servers 48,537 61,776 8,114
15 TCP connections 3,619,173 4,623,761 6,337,269
16 #TCP : #valid A answers 7.28 4.91 7.75
17 Distinct TCP clients 978 1,216 8,605
18 Distinct TCP destinations 47,427 140,293 32,716

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

C
D

F

Latency (ms)

mit-jan00
mit-dec00

kaist-may01

Fig. 3. Cumulative distribution of DNS lookup latency.

tions. These numbers are shown for each trace in row 16, sug-
gesting a DNS cache hit ratio (for A-records) between 80% and
87% for all three traces. As explained in Section I, this hit rate
is not particularly high, since it includes the caching done by
Web browsers when they open multiple connections to the same
server.

IV. CLIENT-PERCEIVED PERFORMANCE

This section analyzes several aspects of client-perceived DNS
performance. We start by discussing the distribution of time it
took clients to obtain answers. We then discuss the behavior
of the DNS retransmission protocol and the situations in which
client lookups receive no answer. We also study the frequency
and causes of answers that are error indications and the preva-
lence of negative caching. Finally, we look at interactions be-
tween clients and root/gTLD servers.

A. Latency

Figure 3 shows the cumulative DNS lookup latency distribu-
tion for our data sets. The median is 85 ms for mit-jan00
and 97 ms for mit-dec00. Overall, long latency requests
became more common—the latency of the 90th-percentile in-
creased from about 447 ms in mit-jan00 to about 1176 ms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

C
D

F

Latency (ms)

0  referral
1 referral

2 referrals
overall

Fig. 4. Latency distribution vs. number of referrals for the mit-dec00 trace.

in mit-dec00. In the kaist-may01 data, about 35% of
lookups receive responses in less than 10 ms and the median is
42 ms. The KAIST trace has more low-latency lookups than
the MIT traces because the requested resource record is some-
times cached at ns.kreonet.re.kr, which is close to the
primary name server for the campus (see Figure 2(b)). How-
ever, the worst 50% of the KAIST distribution is significantly
worse than that of MIT. Many of these data points correspond
to lookups of names outside Korea, corresponding naturally to
increased flight times for packets.

However, latency is also likely to be adversely affected by the
number of referrals. Recall that a referral occurs when a server
does not know the answer to a query, but does know (i.e., thinks
it knows) where the answer can be found. In that case, it sends
a response containing one or more NS records, and the agent
performing the lookup must send a query to one of the indicated
servers. Table III shows the distribution of referrals per lookup.
About 80% of lookups are resolved without any referral, which
means they get an answer directly from the server first contacted,
while only a tiny fraction (0.03%–0.04% for MIT) of lookups
involve four or more referrals.

Figure 4 shows the latency distribution for different numbers
of referrals for the mit-dec00 data set. For lookups with one



TABLE III

PERCENTAGE OF LOOKUPS INVOLVING VARIOUS NUMBERS OF REFERRALS.

THE NUMBER OF LOOKUPS USED IN THIS ANALYSIS FOR EACH TRACE IS

SHOWN IN ROW 8 OF TABLE I. THE AVERAGE NUMBER OF QUERIES TO

OBTAIN AN ANSWER, NOT COUNTING RETRANSMISSIONS, WAS 1.27, 1.2,

AND 1.2, RESPECTIVELY.

mit-jan00 mit-dec00 kaist-may01
0 74.62% 81.17% 86.09%
1 24.07% 17.86% 10.43%
2 1.16% 0.87% 2.10%
3 0.11% 0.07% 0.38%���

0.04% 0.03% 1.00%

referral, 60% of lookups are resolved in less than 100 ms and
only 7.3% of lookups take more than 1 second. However, for
lookups involving two or more referrals, more than 95% take
more than 100 ms, and 50% take more than 1 second.
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Fig. 5. Distribution of latencies for lookups that do and do not involve querying
root servers.

To illustrate the latency benefits of cached NS records, we
classify each traced lookup as either a hit or a miss based on the
first server contacted. We assume a miss if the first query packet
is sent to one of the root or gTLD servers and elicits a referral.
Otherwise, we assume that there is a hit for an NS record in a
local DNS cache. About 70% of lookups in the MIT traces are
hits in this sense. Figure 5 shows the latency distribution for
each case. It shows that caching NS records substantially re-
duces the DNS lookup latency even though it may involve some
referrals to complete the lookup. Cached NS records are espe-
cially beneficial because they greatly reduce the load on the root
servers.

B. Retransmissions

This section considers lookups that result in no answer, and
lookups that require retransmissions in order to elicit an answer.
This is interesting because the total number of query packets is
much larger than the total number of lookups; the previous sec-
tion (and Table III) show that the average number of query pack-
ets for a successfully answered query is 1.27 (mit-jan00), 1.2
(mit-jan00), and 1.2 (kaist-may01). However, the aver-
age number of DNS query packets in the wide-area per DNS

TABLE IV

UNANSWERED LOOKUPS CLASSIFIED BY TYPE.

mit-jan00 mit-dec00
Zero referrals 139,405 (5.5%) 388,276 (9.3%)
Non-zero referrals 332,609 (13.1%) 429,345 (10.3%)
Loops 123,276 (4.9%) 128,687 (3.1%)

lookup is substantially larger than this.
We can calculate this ratio, � , as follows. Let the total num-

ber of lookups in a trace be � , of which � are iteratively per-
formed. This distinction is useful because our traces will not
show retransmissions going out to the wide area for some of the
����� recursive lookups. Let the number of query packets cor-
responding to retransmissions of recursive lookups be � . Let	

be the total number of query packets seen in the trace. Then,
 �����
��������� 	 ��� or ������� 
 	 ������������� . The values
of � , � , and

	
for the traces are shown in rows 2, 7, and 10 of

Table I.
The value of � is relatively invariant across our traces: 2.40

for mit-jan00 ( ����� � �"!$#&% ), 2.57 for mit-dec00 ( �'�
� %��(�)!�% ), and 2.36 for kaist-may01 ( �*� �$�+%�� �+,$- ). Notice
that in each case � is substantially larger than the average num-
ber of query packets for a successfully answered lookup. This is
because retransmissions account for a significant fraction of all
DNS packets seen in the wide-area Internet.

A querying name server retransmits a query if it does not get a
response from the destination name server within a timeout pe-
riod. This mechanism provides some robustness to UDP packet
loss or server failures. Furthermore, each retransmission is of-
ten targeted at a different name server, e.g., a secondary for the
domain. Despite retransmissions and server redundancy, about
24% of lookups in the MIT traces and 20% of in the KAIST
traces received neither a successful answer nor an error indica-
tion as shown in the third row of Table I.

We break the unanswered lookups into three categories, as
shown in Table IV. Lookups that elicited zero referrals corre-
spond to those that did not receive even one referral in response.
Lookups that elicited one or more referrals but did not lead
to an eventual answer are classified as non-zero referrals. Fi-
nally, lookups that led to loops between name servers where the
querier is referred to a set of two or more name servers forming
a querying loop because of misconfigured information are clas-
sified as loops. We distinguish the zero referrals and non-zero
referrals categories because the former allows us to isolate and
understand the performance of the DNS retransmission mecha-
nism. We do not report this data for kaist-may01 since most
lookups in that trace were recursively resolved by a forwarder
outside the trace point.

The packet load caused by unanswered queries is substan-
tial for two reasons: first, the rather persistent retransmission
strategy adopted by many querying name servers, and second,
referral loops between name servers.

On average, each lookup that elicited zero referrals gener-
ated about five times (in the mit-dec00 trace) as many wide-
area query packets before the querying name server gave up,
as shown in Figure 6. This figure also shows the number of
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retransmissions for queries that were eventually answered (the
curves at the top of the graph)—over 99.9% of the answered
lookups incurred at most two retransmissions, and over 90% in-
volved no retransmissions. What is especially disturbing is that
the fraction of such wasted query packets increased substantially
between January and December 2000; the percentage of zero
referral lookups increased from 5.5% to 9.3% and the percent-
age of these causing more than 5 retransmissions increased from
10% to 13%.

Given that the queries corresponding to these lookups do not
elicit a response, and that most queries that do get a response
get one within a small number (two or three) of retransmissions,
we conclude that many DNS name servers are too persistent in
their retry strategies. Our results show that it is better for them
to give up sooner, after two or three retransmissions, and rely on
client software to decide what to do. Interestingly, between 12%
(mit-jan00) and 19% (mit-dec00) of unanswered lookups
did not see any retransmissions. This suggests either that the re-
solver was not set to retransmit or was configured with a timeout
longer than the 60 second window we used in our analysis.

Figure 7 shows the CDFs of the number of query packets gen-
erated for the non-zero referrals and loops categories of unan-
swered lookups. As expected, the non-zero referrals (which do
not have loops) did not generate as many packets as the loops,
which generated on average about ten query packets. Although
unanswered lookups caused by loops correspond to only about
4.9% and 3.1% of all lookups, they cause a large number of
query packets to be generated.

This analysis shows that a large fraction of the traced DNS
packets are caused by lookups that end up receiving no answer.
For example, mit-dec00 included 3,214,646 lookups that re-
ceived an answer; the previous section showed that the aver-
age such lookup sends 1.2 query packets. This accounts for
3,857,575 query packets. However, Table I shows that the trace
contains 10,617,796 query packets. This means that over 63%
of the traced DNS query packets were generated by lookups
that obtained no answer! The corresponding number for mit-
jan00 is 59%. Obviously, some of these were required to over-
come packet losses on Internet paths. Typical average loss rates
are between 5% and 10% [5], [23]; the number of redundant
DNS query packets observed in our traces is substantially higher
than this.
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C. Negative Responses

As shown in Table I, between 10% and 42% of lookups result
in a negative answer. Most of these errors are either NXDOMAIN
or SERVFAIL. NXDOMAIN signifies that the requested name
does not exist. SERVFAIL usually indicates that a server is
supposed to be authoritative for a domain, but does not have a
valid copy of the database for the domain; it may also indicate
that the server has run out of memory.

The largest cause of these error responses are inverse (in-
addr.arpa) lookups for IP addresses with no inverse map-
pings. For mit-jan00, in-addr.arpa accounted for
33,272 out of 47,205 distinct invalid names, and 79,734 of
the 194,963 total NXDOMAIN responses. Similarly, for mit-
dec00, in-addr.arpa accounted for 67,568 out of 85,353
distinct invalid names, and 250,867 of the 464,761 total NX-
DOMAIN responses. Other significant causes for NXDOMAIN
responses include particular invalid names such as loopback,
and NS and MX records that point to names that do not exist.
However, no single name or even type of name seems to domi-
nate these NXDOMAIN lookups.
SERVFAILs accounted for 84,906 of the answers in mit-

jan00 (out of 4,762 distinct names) and 61,498 of the answers
in mit-dec00 (out of 5,102 distinct names). 3,282 of the
names and 24,170 of the lookups were inverse lookups in mit-
jan00, while 3,651 of the names and 41,465 of the lookups
were inverse lookups in mit-dec00. Most of the lookups
were accounted for by a relatively small number of names, each
looked up a large number of times; presumably the NS records
for these names were misconfigured.

D. Negative Caching

In this section, we touch on the issue of negative caching,
which was formalized in 1998 [22]. The large number of NXDO-
MAIN duplicate responses suggests that negative caching may
not be working as well as it could be. In order to study this phe-
nomenon better, we analyzed the error responses to understand
their causes. A summary of this analysis is shown in Table V.

We do not know the actual cause for most of the negative re-
sponses. Many appear to be typos of correct names. The most
clear cause of a NXDOMAIN response is a reverse lookup for an
address that does not have a reverse mapping. There are several



Cause mit-jan00 mit-dec00
Non-existent name 82,459 (42%) 150,066 (32%)
No reverse map for PTR 79,725 (41%) 249,236 (54%)
No RBL (or similar) entry 11,552 (6%) 36,955 (7%)
Loopback 7,368 (4%) 11,310 (2%)
Other one-word names 4,785 (3%) 9,718 (2%)
Invalid characters in query 1,549 (1%) 5,590 (1%)

TABLE V

BREAKDOWN OF NEGATIVE RESPONSES BY CAUSE AS PERCENTAGE OF

ALL NEGATIVE RESPONSES.

TABLE VI

THE TOTAL NUMBER OF LOOKUPS THAT CONTACTED ROOT AND GTLD

SERVERS, AND THE TOTAL NUMBER OF NEGATIVE ANSWERS RECEIVED.

THE PERCENTAGES ARE OF THE TOTAL NUMBER OF LOOKUPS IN THE

TRACE.

mit-jan00 mit-dec00
Root Lookups 406,321 (16%) 270,413 (6.4%)
Root Negative Answers 59,862 (2.3%) 73,697 (1.7%)
gTLD Lookups 41,854 (1.6%) 353,295 (8.4%)
gTLD Negative Answers 2,676 (0.1%) 16,341 (0.3%)

other small but noticeable causes of negative answers. Reverse
black-list lookups, described in Section III, make up the next
largest class of queries causing negative responses. A number
of misconfigured servers forward queries for the name loop-
back, instead of handling it locally. It might be a reasonable
heuristic for servers never to forward this and other queries for
names with a single component (i.e. unqualified names) when
resolving queries for the Internet class.

However, we found that the distribution of names causing a
negative response follows a heavy tailed distribution as well.
Thus, the hit rate of negative caching is also limited.

E. Interactions with Root Servers

Table VI shows the percentage of lookups forwarded to root
and gTLD servers and the percentage of lookups that resulted
in a negative answer. We observe that 15% to 18% of lookups
contacted root or gTLD servers and the percentage slightly de-
creased between January and December 2000. This was prob-
ably caused by an increase in the popularity of popular names
(see Section V and Figure 9), which decreased DNS cache miss
rates. The table also shows that load on root servers has been
shifted to gTLD servers over time. By the end of 2000, the
gTLD servers were serving more than half of all top-level do-
main queries.

Between 15% and 27% of the lookups sent to root name
servers resulted in negative responses. Most of these appear
to be mis-typed names (e.g. prodiy.net), bare host names
(e.g. loopback or loghost), or other mistakes (e.g. in-
dex.htm). It is likely that many of these are automatically
generated by incorrectly implemented or configured resolvers;
for example, the most common error loopback is unlikely to

be entered by a user. As suggested above, name servers could
reduce root load by refusing to forward queries for unqualified
host names. Note that the number of these lookups resulting
in negative answers remains roughly the same during 2000, but
because of the shift to gTLDs, the relative percentage of these
lookups has increased.

V. EFFECTIVENESS OF CACHING

The previous sections analyzed the collected traces to char-
acterize the actual client-perceived performance of DNS. This
section explores DNS performance under a range of controlled
conditions, using trace-driven simulations. The simulations fo-
cus on the following questions in the context of A-records:

1. How useful is it to share DNS caches among many client
machines? The answer to this question depends on the ex-
tent to which different clients look up the same names.

2. What is the likely impact of choice of TTL on caching ef-
fectiveness? The answer to this question depends on local-
ity of references in time.

We start by analyzing our traces to quantify two important
statistics: (i) the distribution of name popularity, and (ii) the
distribution of TTL values in the trace data. These determine
observed cache hit rates.

A. Name Popularity and TTL Distribution

To deduce how the popularity of names varies in our client
traces, we plot access counts as a function of the popularity
rank of a name, first considering only “fully qualified domain
names.” This graph, on a log-log scale, is shown in Figure 8(a).
To understand the behavior of the tail of this distribution, and
motivated by previous studies that showed that Web object pop-
ularity follows a Zipf-like distribution [10], we represent the ac-
cess count as a function �)��� � , where � is termed the popularity
index. If this is a valid form of the tail, then a straight line fit
would closely fit the tail, with the negative of its slope giving us
� . This straight line is also shown in the figure, with ��� �	� , � .

We also consider whether this tail behavior changes when
names are aggregated according to their domains. Fig-
ure 8(b) shows the corresponding graph for second-level do-
main names, obtained by taking up to two labels separated by
dots of the name; for example, foo.bar.mydomain.com
and foo2.bar2.mydomain.comwould both be aggregated
together into the second-level domain mydomain.com. The �
for this is greater than one, indicating that the tail falls off a little
faster than in the fully qualified case, although it is still a power-
law. The slopes calculated using a least-square fit for each trace
are shown in Table VII.1

Figure 9 illustrates the extent to which lookups are accounted
for by popular names. The � -axis indicates a fraction of the
most popular distinct names; the 
 -axis indicates the cumula-
tive fraction of answered lookups accounted for by the corre-
sponding � most popular names. For example, the most popular
10% of names account for more than 68% of total answers for
each of the three traces. However, it also has a long tail, and a
large proportion of names that are accessed precisely once. For

�
We calculated the least-square straight line fit for all points ignoring the first

hundred most popular names to more accurately see the tail behavior.
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Fig. 8. Domain name popularity in the mit-dec00 trace.

TABLE VII

POPULARITY INDEX � FOR THE TAIL OF THE DOMAIN NAME

DISTRIBUTION.

mit-
jan00

mit-
dec00

kaist-
may01

Fully-qualified 0.88 0.91 0.94
Second-level 1.09 1.11 1.18
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Fig. 9. Cumulative fraction of requests accounted for by DNS name, most pop-
ular first. The popular names appear to have become even more popular in
December 2000 compared to January 2000, although they are not necessar-
ily the same names.

instance, out of 302,032 distinct names involved in successful
A lookups in mit-dec00, there were 138,405 unique names
accessed only once, which suggests that a significant number of
top-level domain queries will occur regardless of the caching
scheme.

Figure 10 shows the cumulative distribution of TTL values
for A and NS records. NS records tend to have much longer TTL
values than A records. This helps explain why only about 20% of
DNS responses (including both referrals and answers in Table I)
come from a root or gTLD server. If NS records had lower TTL
values, essentially all of the DNS lookup traffic observed in our
trace would have gone to a root or gTLD server, which would
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Fig. 11. TTL distribution weighted by access counts for mit-jan00, mit-
dec00 and kaist-may01 traces.

have increased the load on them by a factor of about five. Good
NS-record caching is therefore critical to DNS scalability.

Figure 10 shows how TTL values are distributed, but does
not consider how frequently each name is accessed. If it turns
out (as is plausible) that the more popular names have shorter
TTL values, then the corresponding effect on caching would be
even more pronounced. Figure 11 shows the TTL distribution of
names, weighted by the fraction of TCP connections that were
made to each name. From this, we draw two key conclusions.
First, it is indeed the case that shorter-TTL names are more fre-



quently accessed, which is consistent with the observation that
DNS-based load-balancing (the typical reason for low TTL val-
ues) makes sense only for popular sites. Second, the fraction of
accesses to relatively short (sub-15 minute) TTL values has dou-
bled (from 12% to 25%) in 2000 from our site, probably because
of the increased deployment of DNS-based server selection and
content distribution techniques during 2000.

B. Trace-driven Simulation Algorithm

To determine the relative benefits of per-client and shared
DNS caching of A-records, we conducted a trace driven simu-
lation of cache behavior under different aggregation conditions.
First, we pre-processed the DNS answers in the trace to form
two databases. The “name database” maps every IP address ap-
pearing in an A answer to the domain name in the correspond-
ing lookup. The “TTL database” maps each domain name to
the highest TTL appearing in an A record for that name. (This
should select authoritative responses, avoiding lower TTLs from
cached responses.) After building these databases, the following
steps were used for each simulation run.

1. Randomly divide the TCP clients appearing in the trace
into groups of size � . Give each group its own simulated
shared DNS cache, as if the group shared a single forward-
ing DNS server. The simulated cache is indexed by domain
name, and contains the (remaining) TTL for that cached
name.

2. For each new TCP connection in the trace, determine
which client is involved by looking at the “inside” IP ad-
dress; let that client’s group be � . Use the outside IP ad-
dress to index into the name database to find the domain
name � that the client would have looked up before making
the TCP connection.

3. If � exists in � ’s cache, and the cached TTL has not ex-
pired, record a “hit.” Otherwise, record a “miss.”

4. On a miss, make an entry in � ’s cache for � , and copy the
TTL from the TTL database into the � ’s cache entry.

At the end of each simulation run, the hit rate is the number
of hits divided by the total number of queries.

This simulation algorithm is driven by the IP addresses ob-
served in the traced TCP connections, rather than domain
names, because DNS queries that hit in local caches do not ap-
pear in the traces. This approach suffers from the weakness
that multiple domain names may map to the same IP address,
as sometimes occurs at Web hosting sites. This may cause the
simulations to overestimate the DNS hit rate. The simulation
also assumes that each client belongs to a single caching group,
which may not be true if a client uses multiple local forwarding
DNS servers. However, because DNS clients typically query
servers in a strictly sequential order, this may be a reasonable
assumption to make.

C. Effect of Sharing on Hit Rate

Figure 12 shows the hit rates obtained from the simulation,
for a range of different caching group sizes. Each data point is
the average of four independent simulation runs. With a group
size of 1 client (no sharing), the average per-connection cache
hit rate is 71% for mit-dec00. At the opposite extreme, if all
1,216 traced clients share a single cache, the average hit rate is
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Fig. 12. Effect of the number of clients sharing a cache on cache hit rate.

89% for mit-jan00. However, most of the benefits of sharing
are obtained with as few as 10 or 20 clients per cache.

The fact that domain name popularity has a Zipf-like distri-
bution explains these results. A small number of names are very
popular, and even small degrees of cache sharing can take ad-
vantage of this. However, the remaining names are large in
number but are each of interest to only a tiny fraction of clients.
Thus very large numbers of clients are required before it is likely
that two of them would wish to look up the same unpopular
name within its TTL interval. Most cacheable references to
these names are likely to be sequential references from the same
client, which are easily captured with per-client caches or even
the per-application caches often found in Web browsers.

D. Impact of TTL on Hit Rate

The TTL values in DNS records affect cache rates by lim-
iting the opportunities for reusing cache entries. If a name’s
TTL is shorter than the typical inter-reference interval for that
name, caching will not work for that name. Once a name’s TTL
is significantly longer than the inter-reference interval, multiple
references are likely to hit in the cache before the TTL expires.
The relevant interval depends on the name’s popularity: popular
names will likely be cached effectively even with short TTL val-
ues, while unpopular names may not benefit from caching even
with very long TTL values. In turn, a name’s popularity among
a group of clients that share a cache is to some extent determined
by the number of clients in the group.

To gauge the effect of TTL on DNS cache hit rate, we per-
form simulations using a small modification to the algorithm
described in Section V-B. Instead of using TTL values taken
from the actual DNS responses in the traces, these simulations
set all TTL values to specific values. Figure 13 shows the re-
sults, with one graph for each of the three traces. Each graph
shows the hit rate as a function of TTL. Since the results depend
on the number of clients that share a cache, each graph includes
separate curves for per-client caches, groups of 25 clients per
cache, and one cache shared among all clients. We use a group
of size 25 because Section V-C showed that for the actual TTL
distribution observed in our traces, a group size of 25 achieves
essentially the same hit-rate as the entire client population ag-
gregated together.

As expected, increasing TTL values yield increasing hit rates.
However, the effect on the hit rate is noticeable only for TTL val-
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Fig. 13. Impact of TTL on hit rate.

ues less than about 1000 seconds. Most of the benefit of caching
is achieved with TTL values of only a small number of minutes.
This is because most cache hits are produced by single clients
looking up the same server multiple times in quick succession,
a pattern probably produced by Web browsers loading multi-
ple objects from the same page or users viewing multiple pages
from the same Web site.

Figure 14 may help understand this better. It shows a time
sequence of connection (DNS lookup) arrivals to a given desti-
nation, where ��� is the inter-arrival time between arrival

�
and� ��� . Let � 
�� � denote the number of queries for the given desti-

nation in the interval

 � � ���

, excluding the event at time 0. Define

X1 X3X2 X4

MM H H H

S2 S3 T0 S1 S4 t

N(T) = 3

Fig. 14. Time line diagram of DNS queries to a given destination. It also depicts
a partial realization of �
	���
 , ��� , and ���

��� � ��� ����� � � � � ����������� , with
�! � �

. The TTL is " .
At time

� � �
, there is a DNS cache miss. Subsequently,

three DNS lookups occur, at times
� � , � � , ��# , before the TTL

expires at time
� �$" . These three queries are cache hits. The

subsequent, fourth query at time
�&%

occurs after
� �'" and is

a cache miss. Thus in Figure 14, � 
 " � � � and the number
of DNS cache hits per miss is 3. In general, � 
 " � models the
number of DNS cache hits per cache miss.

This example also suggests that the DNS hit rate for a given
destination is a function of the inter-arrival statistics to that des-
tination. We are currently developing an analytic model based
on renewal processes that can predict hit rates for various arrival
processes [24]. For the traces studied in this paper, we consid-
ered a few different analytic inter-arrival distributions and found
that a Pareto with point mass at

� � �
was a good fit in all cases.

The general form of this fit is ( 
 � � �*) � 
 � �+) � 
 � � ,��-/. , �
� � ,

where � is the inter-arrival time and ) is the weight of the point
mass. Figure 15 shows the fit; in all cases �10 � , indicating a
heavy-tailed distribution with infinite mean.

The infinite mean result suggests that increasing the TTL of
a DNS record would have limited additional benefit; essentially
all hits in the cache in most cases arrive in close succession,
probably typically generated when browsers initiate multiple
connections to an address [24].

These results suggest that giving low TTL values to A records
will not significantly harm hit rates. Thus, for example, the in-
creasingly common practice of using low TTL values in DNS-
based server selection probably does not affect hit rates much.

Thus caching of A records appears to have limited impact
on reducing load on remote servers. In terms of overall sys-
tem scalability, eliminating all A-record caching would increase
wide-area DNS traffic by at most a factor of four, but almost
none of that would involve a root or gTLD server. Eliminating
all but per-client caching would little more than double DNS
traffic. While neither of these cases would be desirable, this
evidence favors recent shifts towards more dynamic (and less
cacheable) uses of DNS, such as mobile host location tracking
and sophisticated DNS-based server selection. The function of
caching to reduce client-latency can almost be handled entirely
by per-client or per-application caching.

The discussion above applies to A-records, specifically for A-
records for names that do not correspond to name servers for
domains. It is not a good idea to make the TTL values low on
NS-records, or for A-records for name servers. On the contrary,
doing so would increase the load on the root and gTLD servers
by about a factor of five and significantly harm DNS scalability.

VI. CONCLUSION

This paper has presented a detailed analysis of traces of DNS
and associated TCP traffic collected on the Internet links of the
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Fig. 15. Cumulative distributions for TCP connection inter-arrivals.

MIT Laboratory for Computer Science and the Korea Advanced
Institute of Science and Technology. We analyzed the client-
perceived performance of DNS, including the latency to re-
ceive answers, the performance of the DNS protocol, the preva-
lence of failures and errors, and the interactions with root/gTLD
servers. We conducted trace-driven simulations to study the ef-
fectiveness of DNS caching as a function of TTL and degree of
cache sharing.

A significant fraction of lookups never receive an answer.
Further, DNS server implementations continue to be overly per-
sistent in the face of failures. While most successful answers are
received in at most 2–3 retransmissions, failures today cause a
much larger number of retransmissions and thus packets that tra-
verse the wide-area. For instance, in the most recent MIT trace,
23% of lookups receive no answer; these lookups account for
more than half of all traced DNS packets in the wide-area since
they are retransmitted quite persistently. In addition, about 13%
of all lookups result in a negative response. Many of these re-
sponses appear to be caused by missing inverse (IP-to-name)
mappings or NS records that point to non-existent or inappropri-
ate hosts. We also found that over a quarter of the queries sent
to the root name servers result in such failures.

Our trace-driven simulations yield two findings. First, reduc-
ing the TTLs of address (A) records to as low as a few hundred
seconds has little adverse effect on hit rates. Second, little ben-
efit is obtained from sharing a forwarding DNS cache among
more than 10 or 20 clients. This is consistent with the heavy-
tailed nature of access to names. This suggests that the perfor-
mance of DNS is not as dependent on aggressive caching as is
commonly believed, and that the widespread use of dynamic,
low-TTL A-record bindings should not degrade DNS perfor-
mance. The reasons for the scalability of DNS are due less
to the hierarchical design of its name space or good A-record
caching (as seems to be widely believed); rather, the cacheabil-
ity of NS-records efficiently partition the name space and avoid
overloading any single name server in the Internet.
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