

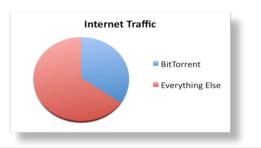
COMP 631: COMPUTER NETWORKS

Content Distribution Systems

Jasleen Kaur

Fall 2014

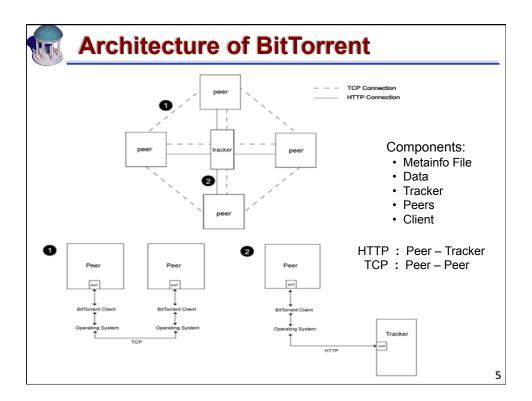
1


Content Distribution

- How to distribute content without requiring centralized, heavy-duty servers?
- Examples:
 - > Bittorrent
 - Peer-to-peer content distribution
 - > Akamai
 - Content distribution service

Bittorrent: Introduction

- Peer to Peer file transfer protocol
 - > Files are shared by many users
 - > Active participation of all users
- Transfer of large files
- Huge success in the file sharing domain
 - > 35% of internet traffic



3

Striking Characteristics

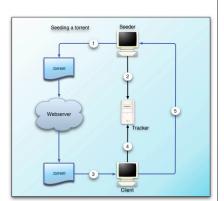
- A central server is not needed
 - > No single point of failure
 - > Allows distribution of content without straining budgets (low bandwidth, small computers)
- Not dependent on a single source
 - > Automatic replication
 - > Original source harder to trace
- More the # of users, greater will be the transfer rate
 - > Rate proportional to popularity of file
 - > Viral spreading of file throughout peers
- Data available in pieces, not as a single large file
- Tit for tat strategy
 - > Incentive for contributing resources

Metainfo File

- Contains all information about a torrent
 - > File with a .torrent extension
- □ It has the following keys
 - > Info, tracker-info, creation date, comment, created by
 - > Keys are encoded before they are sent
- □ Hash of all the pieces are present in info field of metainfo file
- □ Files are uploaded in public sites by seeds
 - > Users download this file via HTTP and can participate in the torrent transfer

Data

- Data can be a single file or multiple files contained in a directory
- Data is split into many pieces of equal size
 - > Common piece sizes are 256 KB, 512 KB and 1 MB
 - > Each piece is further divided into many blocks
- A piece will have a hash, needed for data integrity check


7

Tracker Manages users Peer 1 Peer 3 Peer 4 participating in a torrent 4 3 2 1 3 2 Helps peers find each other » Peers request tracker i have pieces for other peers having i have pieces the required pieces » Tracker responds with a list of peers that have tracker the requested piece A tracker can manage does anyone have piece 1? many torrents • It is a HTTP service that works on port 6969 8

Working of BitTorrent

- Seeder generates a torrent file and uploads torrent to a web server.
- 2. The seeder notifies the tracker that it is sharing the file described in the torrent file.
- 3. A leecher downloads the torrent file from the web server.
- The leecher connects to the tracker specified in the torrent file.
- 5. The leecher connects to its peers to retrieve pieces of the files.

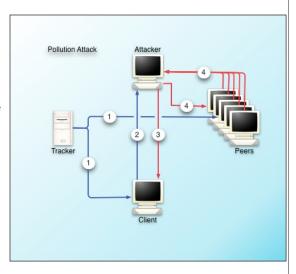
9

Peers

- Peers speak TCP
 - > Ports 6881 6889 are used by peers
- Following key strategies are used by peers while sharing files
 - > Which piece: Rarest First
 - Ensures that peers have all pieces that their peers want (increased exchange opportunity)
 - Low likelihood that a currently uploading peer will later not have anything of interest to others
 - Implies only new pieces are downloaded from the original seed (no flash crowds)
 - > Which piece: Random First Piece
 - Rarest may come from a slow peer (need a piece quickly)
 - > To whom: Peer reciprocation
 - Upload to peers which upload to you (achieve pareto efficiency)
 - > To whom: Choking and Optimistic Unchoking
 - Allows to discover and tune-out peers that can offer better download rates
 - > From whom: Endgame Mode
 - Ask all peers for last sub-pieces (prevent a slow peer from delaying your finish)

Client

- Executable program running on user's machine
- Coordinates with OS to perform read write operations
- A .torrent file must be opened by the client
- Peers with same client perform better


11

Attacks on BitTorrent

Pollution Attack

- The peers receive the peer list from the tracker.
- 2. One peer contacts the attacker for a chunk of the file.
- 3. The attacker sends back a false chunk.
- 4. Attacker requests all chunks from swarm and wastes their upload bandwidth.

Attacks on BitTorrent

DDOS Attack

- The attacker downloads a large number of torrent files from a web server.
- 2. Attacker spoofs IP address and port with that of victim and notifies the tracker
- 3. Tracker directs peers towards victim
- 4. Victim will be flooded with requests from other peers

1/1

Attacks on BitTorrent

- Bandwidth Shaping
 - > This is done by user's ISP
 - Unencrypted BitTorrent packets are easily identified and filtered.
 - > Sophisticated filtering software can detect BitTorrent like behavior.
 - Comcast has recently admitted to filtering BitTorrent traffic.

Current Solutions

Pollution Attack

- Blacklisting
 - Achieved using software such as Peer Guardian or moBlock.
 - > Blocks connections from blacklisted IPs which are downloaded from an online database.

16

Current Solutions

DDOS Attack

- Spoofing needs to be avoided in the first place
 - > This can be done by using filters
- Make the tracker validate a peer whether it has the torrent or not

Current Solutions

Bandwidth Shaping

- Encryption
 - Most BitTorrent clients can encrypt the packets they send
 - Simple filters which simply look at the contents of the packet can easily be traversed
- Tunneling
 - > Using VPN software to connect to an unfiltered network.
 - Such tunnels which are free from filters provide easy path to BitTorrent packets

18

Conclusion

- BitTorrent is a popular P2P technology deployed across the Internet
 - > 27-55% of Internet traffic (measured at different locations)
- The protocol has found a niche as a preferred method for the decentralized distribution of large files.
- □ Pros:
 - Lower cost to content provider (used even by organizations that want to distribute their own or licensed material)
 - > Higher redundancy (and availability)
 - > Greater resistance to "flash crowds"
- Cons:
 - > Downloads can take time to rise to full speed (it takes time for a node to become an effective uploaded)
 - Non-contiguous download not suitable for "streaming" or "progressive downloads"
 - > Does not offer use anonymity (exposes users with insecure systems)
 - > Causes home routers to lock up (frequently contacts 300-500 servers per second, filling up NAT tables)