Content Distribution

- How to distribute content without requiring centralized, heavy-duty servers?
- Examples:
 - Bittorrent
 - Peer-to-peer content distribution
 - Akamai
 - Content distribution service

Bottlenecks for Web Downloads

- 3 potential bottleneck locations:
 - The first mile
 - User’s access connection may be limited
 - The last mile
 - Link connecting server to Internet can get overloaded by too many requests
 - Peering points
 - ISPs have little motivation to provide high-capacity connectivity to their peers

- Idea: replication can address the 2nd and 3rd issues
 - Only end-user can solve the 1st one

- Content Distribution Networks
 - Systems that provide such replication
CDN Infrastructure

- **aaa.com**
- **bbb.com**
- **ccc.com**

![CDN Infrastructure Diagram]

Content Distribution vs Caching

- **Explicitly manage cache content**
 - Sell as service to web site owners for performance

- **“Push” content to caches at major Internet providers**
 - Make content appear “nearby” (low latency) no matter where the requester is located

- **Change cache content when necessary**
 - Operates as a proxy cache to refresh content
Akamai Content Distribution Network

http://www.akamai.com/html/about/facts_figures.html

- **56,000 servers in 70 countries within nearly 1000 networks**
 - 85% of the world's Internet users have a single "network hop" to an Akamai server

- **Delivers 15 - 20% of all Web traffic**
 - Web traffic at times reaching more than 2 Terabits/sec
 - Hundreds of billions of daily Internet interactions

Akamai CDN Example

[Map of Akamai CDN Example]
Akamai Content Types

- Static (HTML, images, PDF, etc.)
 - Expiration time (0 – infinity) assigned by customer
 - On-demand cache invalidation available to customer
 - Special features (authenticated access, transfer encodings, etc.)

- Dynamic
 - Assembles cacheable and non-cacheable elements of page at cache (contacts origin only for non-cacheable)

- Streaming
 - Uses redundant streams and jitter-control to ensure quality playback

Web Site Redirection to Akamai

- DNS CNAME aliases
 - e.g., images.pcworld.com
 - CNAME=images.pcworld.com.edgesuite.net

- Modified URLs (“Akamized”)
 - Prefix with domain name in Akamai
 - e.g., http://a1694.g.akamai.net/8675/images.pcworld.com..
“Akamai-zing” Web Pages

An “Akamaized” URL

Serial# maps content to a large virtual space — allows for optimal and load balanced mapping to physical servers

Fingerprint cryptographic hash of data used to ensure freshness of content

Akamai URL Example (WRAL-TV)

Image: http://a1844.g.akamai.net/7/1844/95/22/html.wral.com/images/structures/menus/nav_curve.gif
Image: http://a1844.g.akamai.net/7/1844/95/22/html.wral.com/images/structures/spacer.gif
Image: http://a1844.g.akamai.net/7/1844/95/22/html.wral.com/images/structures/misc/personalize_left.gif
Image: http://a1844.g.akamai.net/7/1844/95/22/html.wral.com/images/structures/spacer.gif
Image: http://a1844.g.akamai.net/7/1844/95/10m/images.ibsys.com/2001/0830/940459.jpg
Image: http://a1844.g.akamai.net/7/1844/95/10m/images.ibsys.com/2001/0830/940452_120x90.jpg
Image: http://a1844.g.akamai.net/7/1844/95/22/html.wral.com/images/structures/spacer.gif
Akamai -- DNS “Request Routing” (finding the “closest” cache)

http://images.pcworld.com/shared/graphics/cms/BIZDEV_hotspotFinder_50.png

Akamai DNS Processing
- Monitors all proxy servers and end-to-end conditions on paths from 1000s of network locations to servers
- DNS servers updated with new loads and maps every few seconds

Monitored conditions
- Server load and operational status
- Routing topology
- Latency and packet losses per route
- Available bandwidth per route

How Much Server Diversity Exists?

A. Su, et. al., "Drafting Behind Akamai (Travelocity-Based Detouring)", SIGCOMM 2006

Yahoo!

![Graph showing server diversity](image-url)
Server Diversity per Customer & User Location

![Graph showing server diversity per customer & user location.](image)

Redirection Dynamics

![Graph showing redirection dynamics.](image)