“Wireless” vs. “Mobile”

- Two aspects of mobility:
 - User mobility:
 - Users can communicate “anytime, anywhere, with anyone”
 - Device portability:
 - Devices can connect anytime, anywhere to the “network”

- Wireless vs. mobile
 - Stationary computer
 - Notebook on a hotel Ethernet
 - Wireless LANs in historic buildings
 - Smart phone

Our focus: wireless (including non-mobile)
THE IMPORTANCE OF WIRELESS NETWORKS

Why Should We Care?

Explosion of User Base

Global ICT Developments

Note: *Estimates.
Source: ITU World Telecommunication/ICT Indicators database.

~ 7 billion current mobile phone service subscriptions ➔ more than 96% of world population!
Benefits of Wireless

- Unrestricted mobility
 - Unplugged from power outlet
- Significantly lower cost
 - No cable, low labor cost, low maintenance
- Ease
 - Minimum infrastructure - scatter and play
- Ubiquity
 - Available everywhere like water/air - holy grail

90% of world’s populated areas (in 2011) covered by a mobile cellular network!

Example Application Environments

- Personal communication
- Replacement of fixed networks
 - Access to remote areas
 - Sensors in difficult terrains (weather, earth activities)
 - Flexibility for trade shows
 - LANs in historic buildings
Location-based Services: Opportunities

- **Location aware services**
 - Resource-discovery, e.g., printer, fax, phone, server etc.

- **Follow-me services**
 - Call-forwarding, mobile desktop

- **Information services**
 - “push”: e.g., current special offers in the supermarket
 - “pull”: e.g., where is the Black Forrest Cheese Cake?

- **Privacy services**
 - Who should gain knowledge about the location?
 - What information should environment gain about you?

Example Application Environments

- **Vehicular Traffic:**
 - Personal communication using GSM/UMTS
 - News, road condition, weather, music via DAB/DVB-T
 - Position via GPS
 - Local ad-hoc network with vehicles close-by
 - To prevent accidents, guidance system, redundancy
 - Transport networks (busses, trains)

- **Emergencies**
 - Early transmission of patient data to the hospital
 - Current status, first diagnosis
 - Quick replacement of a fixed infrastructure in case of earthquakes, hurricanes, fire etc.
 - Crisis, war, ...
 - Only wireless ad-hoc networks survive
Example Application Environments

- **Traveling salesmen**
 - Access to central (consistent) customer database
 - Mobile office
 - Location-aware services (call-forwarding, hotel printer)

- **Entertainment, education, ...**
 - Outdoor Internet access
 - Intelligent travel guide with up-to-date location-dependent information
 - Ad-hoc networks for multi user games

Explosion of Mobile Devices

- **Pager**
 - receive only
 - tiny displays
 - simple text messages

- **PDA**
 - graphical displays
 - character recognition
 - simplified WWW

- **Smartphone**
 - tiny keyboard
 - simple versions of standard applications

- **Laptop/Notebook**
 - fully functional
 - standard applications

Sensors, embedded controllers

Mobile phones
- voice, data
- simple graphical displays

No clear separation between device types possible (e.g. smart phones, embedded PCs, ...)

© Jasleen Kaur, 2015
Explosion of Technologies

- Wide-area communications (cellular, satellite-based):
 - GSM, AMPS, UMTS, cdma2000, DAB, DVB-T
- Wireless LANs:
 - 802.11x series
 - Small-to-medium range, higher bit-rates
- Short-range:
 - Bluetooth
 - Low bit-rates

ITU efforts for standardization/convergence

Mobile communications greatly influenced by merging of telecommunications and computer networks

The Future

Courtesy: Romit Roy Choudhary, Duke University
WHAT’S DIFFERENT ABOUT WIRELESS SYSTEMS?
What Issues are Unique to These?

Mobile Devices: Unique Issues

- Power consumption
 - Low quality displays, small disks due to limited battery
 - Limited compute power: CPU power consumption \(\sim CV^2f \)
 - \(C \): internal capacity, reduced by integration
 - \(V \): supply voltage, can be reduced to a certain limit
 - \(f \): clock frequency, can be reduced temporarily

- Limited memory
 - Limited usage of mass memories with moving parts
 - Flash-memory as alternative

- Limited user interfaces
 - Compromise between size of fingers and portability
 - Integration of voice recognition, abstract symbols

- Loss of data
 - E.g., errors, theft
Wireless Networks: Unique Issues

- Providing seamless support for mobility
 - Without disrupting users or applications

- Signal propagation:
 - Signal attenuation (as signal propagates)
 - How long should the “wireless link” be?
 - Higher loss-rates due to interference
 - Emissions of engines, lightning
 - How to ensure reliability of “wireless link”?

- Frequency-usage:
 - Restrictive regulations of frequencies
 - Useful frequencies are almost all occupied
 - Spatial reuse (facilitated by signal attenuation)
 - How to reuse frequency spectrum?

Wireless Networks: Unique Issues

- Constraints on performance:
 - Low transmission rates (Mbps)
 - Higher delays, higher jitter
 - Connection setup time: GSM (seconds), others (ms)

- Exploiting/dealing with diversity / dynamism:
 - Antenna selection, Time diversity, Frequency selection

- Energy conservation:
 - Wireless devices often battery-powered

- Security-related issues:
 - Lower security, simpler active attacking
 - Radio interface accessible for everyone
 - Base station can be simulated (attracting mobile calls)
 - Broadcast medium easier to snoop or tamper with
 - How to provide integrity and privacy?
WHAT IS THIS COURSE ABOUT?
Syllabus and Structure

Impact of Wireless on the Layer Model

<table>
<thead>
<tr>
<th>Layer</th>
<th>Application</th>
<th>Transport</th>
<th>Network</th>
<th>Data link</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>service</td>
<td>congestion</td>
<td>addressing, routing</td>
<td>authentication</td>
<td>modulation</td>
</tr>
<tr>
<td></td>
<td>location</td>
<td>flow control</td>
<td>device location</td>
<td>media access/control</td>
<td>interference</td>
</tr>
<tr>
<td></td>
<td>new/adaptive</td>
<td>quality of service</td>
<td>hand-over</td>
<td>multiplexing</td>
<td>attenuation</td>
</tr>
<tr>
<td></td>
<td>applications</td>
<td></td>
<td>authentication</td>
<td>encryption</td>
<td>frequency</td>
</tr>
<tr>
<td></td>
<td>multimedia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Course Syllabus

- Background:
 - Physical Layer (modulation, interference, attenuation)
 - MAC Protocols (coordinated access, random access)
 - Mobile IP
 - Ad-hoc Routing Protocols
 - TCP in Wireless

- Recent proposals:
 - Enhance physical performance, make MAC more efficient, provide seamless mobility, ...

Focus: protocol mechanisms for optimal performance

Course Structure

- Interspersed set of lectures (by me):
 - Will cover all background material

- Review of recent publications
 - Paper presentations (by you)
 - Critical reviews (by you)

- Semester-long projects (groups of 2 welcome)
 - Topics: investigating, designing something
 - Experimental study
 - Formal analysis
 - Design and evaluation of new mechanism/application
 - Preferably on one of the focus topics for this course
 - Unless motivated by strong interest in other topics
Example Project Types

- Project topics: investigating or designing something
 - Experimental study
 - Characterization of traffic generated by a popular app
 - Simulator-based comparison of two protocols
 - Measurement of a WiFi deployment
 - Wireless trace analysis
 - Formal analysis
 - Expanding on the analysis of a paper you’ve read
 - Design and evaluation of new mechanism/application
 - How best to use all sensors on a smartphone to best manage (communication in) a dream app
 - How best to use network, cloud, compute to support a dream app
 - Bandwidth estimation on wireless “links”
 - Localization using signal strengths

Course Grading

- Paper Presentations: 25%
- Critical Reviews: 20%
- Projects:
 - Progress: 30%
 - Presentation + report: 10%
- Final Exam (oral): 15%
- Class Participation:
 - Will be used to potentially bump up (or down) half a grade
- All percentage points above are flexible by 5-10%
References For Background Material

- Several reputable texts for background material:
 - Jochen Schiller, “Mobile Communications”.
 - William Stallings, “Wireless Communications & Networks”.
 - Theodore S. Rappaport, “Wireless Communications”.
 - Pahlavan & Krishnamurthy, “Principles of Wireless Networks”.

- Unfortunately, none is sufficient by itself for this course
- Nearly half the course will cover recent research papers

QUESTIONS?

http://wireless.web.unc.edu

jasleen@cs.unc.edu