MULTIPLEXING

Space, Frequency, Time, Code

Multiplexing:

- Goal: multiple use of a shared medium

Multiplexing in 4 dimensions:

- Space (s), Frequency (f), Time (t), Code (c)

Task:

- Assign space, time, frequency, code to each communication channel
- Minimize interference
 - Using “guard spaces”
- Maximize medium utilization
Space Division Multiplex

- A separate sender for each communication channel
 - With wide enough distance between senders
 - Guard spaces
- Used by FM radio stations
 - Many stations around the world use same frequency without interference
- What if several radio stations want to broadcast in same city?

Frequency Division Multiplex

- Subdivide the frequency dimension into several non-overlapping frequency bands
 - Senders can use their assigned band continuously
- Used for radio stations within same region
- Pros:
 - No dynamic coordination
- Cons:
 - Waste of bandwidth if usage is non-uniform
 - Limits # of senders
 - Inflexible assignment
Time Division Multiplex

- A sender gets the whole bandwidth for a certain amount of time

Advantages
- Only one carrier in the medium at any time
- Throughput high even for many users

Disadvantages
- Precise synchronization necessary

Frequency and Time Multiplex

- Combination:
 - A sender can use a frequency band for a certain amount of time
 - Used by GSM

Pros:
- (weak) protection against tapping
- Protection against frequency-selective interference

Cons:
- Precise coordination required
Code Division Multiplex

- Each channel has a unique code
 - All channels use same spectrum at same time
 - “guard spaces” realized by using orthogonal code
- **Pros:**
 - Good protection against interference and tapping
 - Bandwidth efficient
- **Cons:**
 - Relatively complex receiver
 - Precise synchronization required
 - Precise power control required
 - All signals should reach receiver with nearly equal strength

DIGITAL MODULATION

Amplitude, Frequency, Phase
Modulation

- **Digital modulation:**
 - Digital data is translated into an analog (baseband) signal
- **Analog modulation:**
 - Shifts center frequency up to that of radio carrier

Why analog modulation?
- Smaller carrier wavelength for smaller antennas
- To enable FDM
- To exploit/avoid frequency-dependent medium characteristics

3 basic schemes: AM (amplitude), FM (frequency), PM (phase)
Digital Modulation

- Modulation of digital signals known as Shift Keying
- Issues:
 - Spectral efficiency:
 - How efficiently is the frequency spectrum utilized
 - Power efficiency:
 - How much power is needed to transfer bits
 - Very important for portable devices
 - Robustness to multi-path propagation, noise, interference

Digital Modulation Methods

- Amplitude Shift Keying
 - Binary values are represented by different amplitudes
 - Low bandwidth requirements
 - Very susceptible to interference
 - Used only in directed infra-red beams
- Frequency Shift Keying
 - Needs larger bandwidth
 - Less susceptible to errors
- Phase Shift Keying
 - Uses shifts in the signal phase
 - 180°, if change in data
 - Synchronization required (freq, phase)
 - Most resistant to interference
 - Complex receiver/transmitter
Advanced Frequency Shift Keying

- Minimum Shift Keying (MSK): avoids abrupt phase changes
 - Bits durations doubled and divided into even, odd bits
 - Depending on the bit values (even, odd) the higher or lower frequency, original or inverted is chosen
 - Higher frequency is twice the lower frequency

![Diagram of MSK signal](image)

Advanced Phase Shift Keying

- Binary PSK: phase shift of 180°
 - Very simple, but low efficiency
- Quadrature PSK: phase shift of 45°
 - Codes two bits into one phase shift
 - Relative to phase of a reference signal
 - Requires frequent synchronization
 - Relative to phase of previous two bits
 - More efficient and less complex
 - Achieves high bit-rates for same bandwidth
- Can be extended to:
 - More angles
 - Combine with ASK
 - Leads to more receiver complexity
Multi-carrier modulation

- Splits high bit-rate stream into many with lower bit-rates
 - Each is sent using an independent carrier frequency
- Pros:
 - Independent frequencies do not interfere with each other
 - Frequency-selective fading doesn’t influence whole signal
 - Guard spaces used between symbol (groups)
 - Helps handle multi-path propagation, ISI mitigation
 - Computationally efficient based on FFT
- DAB uses 192-1536 sub-carriers