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Analysis of Measured Data

Summarizing the Average
Summarizing the Variability
Comparing Systems Using Sample Data
Simple Linear Regression Models
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Linear Regression Models

Need to find relation between different measured quantities

Regression Models:
Allow prediction of a random variable as a function of other variables

Response variable
Predictor variables

Assume that predictor variables are quantitative

Linear Regression Models:
Response variable is modeled as a linear function of predictors

Limit focus to one predictor variable
Least-square fitting of straight lines to data
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What’s a Good Regression Model?

Basic Idea:
Model line should be closer to more observations

Measure the vertical distance between observations and the line
Modeling error in predicting response for a given predictor value

Positive and negative errors should cancel out

Use the least-square fitting lineUse the least-square fitting line

Too many lines satisfy that!
Magnitude of errors should be small
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Least-square Fitting Line

Linear model:  xbby 10ˆ +=
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Given n observation points: {(x1, y1), …, (xn, yn)}  
Error = 

Best linear model is given by the (b0, b1) that minimize:  

Given the constraint that the mean error is zero: 
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Find the line that minimizes the sum of squares of the errors
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Estimation of Model Parameters

If mean error = 0: 010 =−− xbby
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Sum of Squared Errors (SSE):

Differentiating with respect to b1 and equating to 0 yields:
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Purpose of any model is to predict the response with minimum variability 
in predicted values

Total Sum of Squares (SST) = 

= variance of observed y

Allocation of Variation in Response Variable
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Two sources of variability in response variable:
Variability in yi as a function of xi  (SSR); explained by regression 
Variability not explained by regression due to modeling errors (SSE) 

Coefficient of Determination  =   R2 = SSR/SST
Measures the goodness of regression
Square of correlation-coefficient of (x,y)

One source of variability explained by regression model
What if we use the mean response as the predicted value for all x?

Error variance without regression =
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:  1
– Can be computed from the sample mean

SST     :  (n-1)
– Can be computed only after mean has been computed

SSR     :  1
– Computed from SST and SSE
– Degrees of freedom add up just like sum of squares do

:  n
– Obtained from n independent observations

Standard Deviation of Errors
Variance of errors =  se

2 = SSE/n-2
(n-2) degrees of freedom, since errors are computed after 
calculating two regression parameters from the data
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Degrees of freedom for other sum of squares:
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Confidence Intervals for Regression Parameters

Coefficients b0 and b1 are estimates from a single sample
Using these, only probabilistic statements can be made about the
true parameters B0 and B1 of the population
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m100(1-α)% confidence intervals for b0 & b1:

Mean values of b0 and b1
As computed earlier

Standard deviations:
: sample mean of x 

se : standard deviation of errors
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Confidence Intervals for Predictions

Regression enables prediction of response for any value of 
predictor using: pp xbby 10ˆ +=
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Above formula gives only the mean value of the response, based 
on the sample

Standard deviation of predicted mean of a large number of 
observations:

Confidence interval can be computed using a t-variate with (n-2) 
degrees of freedom
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Regression Assumptions

Derivation of regression parameters uses several assumptions:

True relationship between response y, and predictor x, is linear

Predictor variable is non-stochastic and is measured without error

Model errors are statistically independent

Errors are normally distributed with zero mean and constant 
standard deviation

Need to verify assumptions before conclusions of regression can 
be used

Some assumptions can be verified visuallySome assumptions can be verified visually
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Verifying Linear Relationship

Inspect the scatter plot of y versus x
Reject assumption if non-linear relationship seen in the plot
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Independence of errors and predicted response
Look for trends in scatter plot of ei versus ŷi

Verifying Independence of Errors

Dependence can be proved, but independence can not!Dependence can be proved, but independence can not!

Independence of errors across successive 
experiments

Look for trends in plot of ei versus 
experiment number
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Trend indicates influence of factors that 
varied across experiments

eg, incorrect initialization
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Verifying Normal Distribution of Errors

Inspect the quantile-quantile plot of errors vs. normal distribution
If plot is linear, assumption is satisfied
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Verifying Constant Standard Deviation of Errors

Inspect the scatter plot of errors versus response
If spread in one part looks different from others, assumption is
not valid
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Course Outline

Selection of metrics
Performance Evaluation Methodologies
Workload selection
Measurements tools
Analysis and visualization of measured data
System Modeling
Simulations
Case studies
Distributed monitoring infrastructures
PA in the Research and Industrial communities


