
1COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

COMP 190-088: Systems Performance Analysis

Implementing Simulations

Jasleen Kaur
Department of Computer Science

The University of North Carolina at Chapel Hill

Spring 2005

2COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Simulation Basics

Terminology

Types of simulations
Emulation
Monte-Carlo simulations
Trace-driven simulations
Discrete-event simulations

Implementing a simulator

3COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Discrete-event Simulations

A simulation using a discrete-model of a system
May be continuous-time or discrete-time

Commonly used in computer system analyses
System state usually described by number of jobs at various devices

Typical components of a discrete-event simulator:
Event scheduler
Simulation clock and a time-advancing mechanisms
System state variables
Event routines
Input and initialization routines
Trace routines
Report generator
Dynamic memory management
Main program

4COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Event Scheduler

Maintains a linked list of events waiting to happen

Allows events to be manipulated in several ways:

Has a significant impact on simulator’s computational efficiencyHas a significant impact on simulator’s computational efficiency

Schedule event X at time T
Hold event X for a time interval ∆t
Cancel a previously scheduled event X
Hold event X indefinitely (until scheduled by another event)
Schedule an indefinitely held event

One of the most frequently executed components of the simulator
Executed before every event
May be called several times during an event to schedule other events

5COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Simulation Clock and Time Advancing

Each simulation has a global variable representing simulated time
Advanced by the scheduler

Simulation time can be advanced in two ways:
Unit time approach:

Increment time in small units
After every increment, check to see if any events that can occur

Event-driven approach:
Increment time automatically to time of the next (earliest)
occurring event
Generally used in computer simulations

6COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Event Routines
Event routines:

Each event is simulated by its routine
Updates system state variables and schedules other events
eg, a CPU scheduler has routines to handle:

Job arrivals
Job scheduling
Job departures

State variables:
Global variables that describe system state

eg, number of jobs in the qeue
Distinct from local variables

eg, “CPU time needed for each job” stored in the data structure
representing each job

7COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Dynamic Memory Management

Number of entities in a simulation changes continuously
New entities are created; old are destroyed

Requires periodic garbage collection

Many simulation languages provide this automatically

8COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Other Routines

Input routines:
Get the model parameters from the user
Manner in which parameter is to be varied can be specified

eg, mean CPU demand varies from 1 to 9 ms, in steps of 2 ms
Each set of input values defines one iteration
Each iteration may have to be repeated several times with
different seeds

Initialization routines:
Initialize system state variables, random-number generation streams
Should have distinct initialization routines for:

Beginning of a simulation
Beginning of an iteration
Beginning of a repetition

9COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Output Routines

Trace routines:
Print out intermediate values of variables as simulation proceeds
Help debug the simulation program
Advisable to provide as a run-time turn-off/turn-on feature

Report generator:
Output routines executed at the end of the simulation
Calculate final results and print in a specified format

10COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Main Program

Brings all routines together

Typical sequence:
Calls input routines
Initializes the simulation
Executes various iterations
Executes output routines

11COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Simulation Basics

Terminology

Types of simulations
Emulation
Monte-Carlo simulations
Trace-driven simulations
Discrete-event simulations

Implementing a simulator
Data structures for maintaining event-sets

12COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Event Sets
In discrete-event simulations, need to ensure that events occur in
the proper order and at the proper time

Typically done by keeping an ordered linked list of future events

Choice of data structure depends on frequency of insertion/removals,
and on the average number of events in the set

Choice of data structure depends on frequency of insertion/removals,
and on the average number of events in the set

Each event-notice contains:
Time at which event should occur
A pointer to the code that must be executed at that time

Two operations performed frequently on this set:
Insert new events in the set
Find the next (earliest) event and remove it from the set

Data structure used affects time required for these operations

13COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Ordered Doubly-linked List

Removal is straightforward

Insertion requires a search to find the right place for a new event
Common to start searching backwards from last entry
Can also start searching from middle

Used in simulation languages such as (original) SIMULA

14COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Indexed Linear List

The set of future events is divided into several subsets
Each subset spans a fixed interval, ∆t, of time

Maintained as a sub-list

An array of indices is maintained: i-th entry points to i-th sublist
Contains events scheduled for the interval: [(i-1)∆t, i∆t]

Given a new event to be inserted:
The required sublist is determined trivially
The sublist is searched backwards to find position of the new event

Variations:
Based on argument that event-hold times not uniformly distributed

1. Make all lists of same length; use search to find proper index entry
2. Only keep first list sorted; others are kept unsorted

15COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Tree Structures

Usually a binary tree is used

Special case: heap
Each node has up to two children
Event time for each node is smaller than that of its children
Root always has earliest time

Advantages of heaps:
Tree can be stored in an array (as against a linked list)

Root at position 1
Heap traversal is simple

Node i has children at 2i and 2i+1
Parent of node i is at position: ⎣i/2⎦

16COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Which Data Structure to Choose?

Choice depends on distribution of:
Event hold times
The number of events
Support available in the programming language

A study reports that:
Simple linked list most efficient if number of events is small (< 20)
Index linear lists best if number of events between 20 and 120
Heaps most efficient for larger sets

17COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Selecting a Simulation Language

General purpose languages:
Get used mostly due to familiarity of developer with these
Some have libraries available to aid simulation-development

Simulation languages:
Help develop the simulator quickly
But require learning curve

Simulation packages:
Reduce development time by the most
But flexibility is limited by what is foreseen by the developers
Several available:

ns-2 highly popular for networking
Sim-OS available for operating systems

18COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Simulations: Outline

Simulation Basics
Terminology
Types of simulations
Implementing a simulator

Analysis of Simulation Results
Model Verification
Model Validation
Transient Analysis
Terminating Simulations
Stopping Criteria

Random Number Generation

