COMP 190-088: Systems Performance Analysis

Implementing Simulations

Jasleen Kaur

Department of Computer Science
The University of North Carolina at Chapel Hill

Spring 2005

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/

ing05

Simulation Basics

¢ Terminology

¢ Types of simulations
> Emulation
> Monte-Carlo simulations
> Trace-driven simulations
> Discrete-event simulations

¢ Implementing a simulator

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/

ing05

Discrete-event Simulations

+ A simulation using a discrete-model of a system
» May be continuous-time or discrete-time

+ Commonly used in computer system analyses
> System state usually described by number of jobs at various devices

¢ Typical components of a discrete-event simulator:
> Event scheduler
» Simulation clock and a time-advancing mechanisms
» System state variables

Event routines

Input and initialization routines

Trace routines

Report generator

Dynamic memory management

Main program

vV VV V VYV

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

Event Scheduler

* Maintains a linked list of events waiting to happen

+ Allows events to be manipulated in several ways:
» Schedule event X at time T
» Hold event X for a time interval At
» Cancel a previously scheduled event X
» Hold event X indefinitely (until scheduled by another event)
» Schedule an indefinitely held event

+ One of the most frequently executed components of the simulator
> Executed before every event
» May be called several times during an event to schedule other events

Has a significant impact on simulator’s computational efficiency

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

Simulation Clock and Time Advancing

+ Each simulation has a global variable representing simulated time
» Advanced by the scheduler

¢ Simulation time can be advanced in two ways:
» Unit time approach:
« Increment time in small units
« After every increment, check to see if any events that can occur

» Event-driven approach:

< Increment time automatically to time of the next (earliest)
occurring event

+ Generally used in computer simulations

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

Event Routines

+ Event routines:
> Each event is simulated by its routine
» Updates system state variables and schedules other events
> eg, a CPU scheduler has routines to handle:
% Job arrivals
% Job scheduling
< Job departures

+ State variables:
» Global variables that describe system state
% eg, number of jobs in the qeue
> Distinct from local variables

% eg, "CPU time needed for each job" stored in the data structure
representing each job

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

Dynamic Memory Management

+ Number of entities in a simulation changes continuously
> New entities are created; old are destroyed

* Requires periodic garbage collection

¢ Many simulation languages provide this automatically

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

Other Routines

¢ Input routines:
> Get the model parameters from the user
» Manner in which parameter is to be varied can be specified
+ eg, mean CPU demand varies from 1 to 9 ms, in steps of 2 ms
« Each set of input values defines one iteration

« Each iteration may have to be repeated several times with
different seeds

+ Initialization routines:
> Initialize system state variables, random-number generation streams
» Should have distinct initialization routines for:
<« Beginning of a simulation
+ Beginning of an iteration
<« Beginning of a repetition

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

Output Routines

+ Trace routines:
> Print out intermediate values of variables as simulation proceeds
» Help debug the simulation program
» Advisable to provide as a run-time turn-off/turn-on feature

+ Report generator:
» Output routines executed at the end of the simulation
> Calculate final results and print in a specified format

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

Main Program

+ Brings all routines together

+ Typical sequence:
> Calls input routines
> Initializes the simulation
» Executes various iterations
> Executes output routines

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

10

Simulation Basics

*

*

COoMP

¢ Terminology

Types of simulations

» Emulation

» Monte-Carlo simulations

» Trace-driven simulations
> Discrete-event simulations

Implementing a simulator
> Data structures for maintaining event-sets

190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05 1

Event Sets

*

In discrete-event simulations, need to ensure that events occur in
the proper order and at the proper time

> Typically done by keeping an ordered linked list of future events

Each event-notice contains:
> Time at which event should occur
» A pointer to the code that must be executed at that time

Two operations performed frequently on this set:
» Insert new events in the set
> Find the next (earliest) event and remove it from the set

Data structure used affects time required for these operations

Choice of data structure depends on frequency of insertion/removals,
and on the average number of events in the set

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05 12

Ordered Doubly-linked List

+ Removal is straightforward

¢ TInsertion requires a search to find the right place for a new event
» Common to start searching backwards from last entry
» Can also start searching from middle

¢ Used in simulation languages such as (original) STIMULA

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

13

Indexed Linear List

¢+ The set of future events is divided into several subsets
» Each subset spans a fixed interval, At, of time
< Maintained as a sub-list

¢ Anarray of indices is maintained: i-th entry points to i-th sublist
> Contains events scheduled for the interval: [(i-1)Aft, iAt]

¢ Given a new event fo be inserted:

» The required sublist is determined trivially

» The sublist is searched backwards to find position of the new event
¢ Variations:

> Based on argument that event-hold times not uniformly distributed

1. Make all lists of same length; use search to find proper index entry
2. Only keep first list sorted; others are kept unsorted

COMP 190-088: Systems Performance Analysis http://www.c:

unc.edu/~jasleen/ ing05 14

Tree Structures

+ Usually a binary tree is used

+ Special case: heap
» Each node has up to two children

> Event time for each node is smaller than that of its children
> Root always has earliest time

¢ Advantages of heaps:
> Tree can be stored in an array (as against a linked list)
+ Root at position 1
» Heap traversal is simple
+ Node i has children at 2i and 2i+1
+ Parent of node i is at position: Li/2]

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

15

Which Data Structure to Choose?

+ Choice depends on distribution of:
> Event hold times
» The number of events

» Support available in the programming language

* A study reports that:

> Simple linked list most efficient if number of events is small (< 20)
> Index linear lists best if number of events between 20 and 120
» Heaps most efficient for larger sets

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

16

Selecting a Simulation Language

* General purpose languages:
» Get used mostly due to familiarity of developer with these
> Some have libraries available to aid simulation-development

+ Simulation languages:
» Help develop the simulator quickly
» But require learning curve

+ Simulation packages:
> Reduce development fime by the most
> But flexibility is limited by what is foreseen by the developers
> Several available:
+ ns-2 highly popular for networking
+ Sim-OS available for operating systems

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

17

Simulations: Outline

¢ Simulation Basics
» Terminology
> Types of simulations
» Implementing a simulator

¢ Analysis of Simulation Results
» Model Verification
» Model Validation
» Transient Analysis
> Terminating Simulations
> Stopping Criteria

¢ Random Number Generation

COMP 190-088: Systems Performance Analysis http:/Awww.cs.unc.edu/~jasleen/ ing05

18

