
1COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

COMP 190-088: Systems Performance Analysis

Measurement Techniques

Jasleen Kaur
Department of Computer Science

The University of North Carolina at Chapel Hill

Spring 2005

2COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Events and Metrics

Event-count metrics
Simple counts of number of times an event occurs
eg, number of page faults, number of disk I/Os

Secondary-event metrics
Record the value of secondary parameters when events occur
eg, average number of messages queued in a send buffer

Triggering events: message-enque and message-deque
Measure: queue size, total number of queue operations

Measurement Strategies:
Event-driven measurements
Sampling

3COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Event-driven Measurements

Record information whenever pre-selected events occur
Eg, modify page-fault handling routine to count number of page faults

Tracing:
Record a subset of system state that uniquely identifies the event
Requires large amount of storage

☺:
Overhead of recording information incurred only when events occur

:
Time between measurements is unpredictable

Appropriate for low-frequency eventsAppropriate for low-frequency events

4COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Sampling

Records subset of system state at fixed time intervals

Produces only a statistical summary of overall system behavior

☺:
Overhead independent of number of times an event occurs

Tradeoff between sampling frequency and desired resolution

:
Not every event occurrence gets recorded
Each run likely to produce different results

Samples taken asynchronously to program execution

5COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Fundamental Measurement Techniques: Issues

Interval Timers

Program Profiling

Tracing

6COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Interval Timers

Count the number of clock pulses that occur between
two predefined events

Uses:
Measure the execution time of a code section
Provide the time basis for sampling tools

Te = Tc*(x2-x1)
Te : measured time
Tc : clock period

Can be implemented in hardware or software

7COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Hardware and Software Timers

Count the number of pulses it
receives at its clock input

Programs read memory location
mapped to the counter by system
manufacturer

Timer is typically reset to 0 when
system is powered up

Clock Counter

Tc

To the
processor
memory
bus

n
bits

Clock Prescalar
(divide-by-m) To the

processor’s
interrupt
input

T’c Tc

Program-readable counter not directly
implemented by a clock

Hardware clock used to generate an
interrupt at regular intervals

Clock source divided by m through a
pre-scaling counter to derive interrupt
Counter incremented by interrupt-
service routine

Some systems allow application to
reset to 0

Hardware
Timers

Software
Timers

8COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Timer Roll-over
Longest measurable interval: (2n – 1) * Tc

If count exceeds this value, (x2-x1) is incorrect measure
Use 2n + (x2-x1) instead

A few bits can help a lot!A few bits can help a lot!

Counter width, n
Tc

16 24 32 48 64
10 ns 655 us 168 ms 42.9 s 32.6 days 58.5 centuries

100 ns 6.55 ms 1.68 s 7.16 min 326 days 585 centuries

1 us 65.5 ms 16.8 s 1.19 h 9.15 years 5,850 centuries

10 us 655 ms 2.8 min 11.9 h 89.3 years 58,500 centuries

100 us 6.55 s 28 min 4.97 days 893 years 585,000 centuries

1 ms 1.09 min 4.66 h 49.7 days 89.3 centuries 5,850,000 centuries

9COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Timer Overhead

Timer overhead: Tovhd
Event time = Te = T3
Measured time = T2 + T3 + T1 = Te + Tovhd
If Tovhd << Te, it can be ignored, else should be measured and subtracted

:
Variations in Tovhd can be comparable to those in Te
Te/Tovhd > 100

t_start = read_timer()
<event being timed>
t_end = read_timer()
elapsed_time = (t_end – t_start)*t_cycle

In
iti

ta
te

re
ad

_t
im

er
()

Ti
m

e
is

ac
tu

al
ly

 re
ad

T1

E
ve

nt
 b

ei
ng

m
ea

su
re

d
be

gi
ns

T2

E
ve

nt
 e

nd
s;

In
iti

at
e

re
ad

_t
im

er
()

T3

Ti
m

e
is

ac
tu

al
ly

 re
ad

T4

10COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Quantization Errors
Resolution: smallest change that can be detected and displayed by an
interval timer

Typically, equal to a single clock tick, Tc

Introduces a random quantization error into all measurements
Unpredictable and random

Actual event time is within n*Tc < Te < (n+1)*Tc
If Te is smaller than Tc, impossible to directly measure Te

Tradeoff between resolution and roll-over frequency

7 80

Timer reports: Tm = 7*Tc

7 80

Timer reports: Tm = 8*Tc

11COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Statistical Measures of Short Intervals

Measurement is a Bernoulli experiment
Outcome is 1*Tc with probability p
Outcome is 0*Tc with probability 1-p

Repeating experiment n times yield a binomial distribution
As long as the n measurements are independent

If number of “1” outcomes is m, then m/n ~ Te/Tc
Te = m*Tc/n

Tc

Te Te

Tc

Tm = 1*Tc Tm = 0*Tc

12COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Fundamental Measurement Techniques: Issues

Interval Timers

Program Profiling

Tracing

13COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Program Profiling

Profile:
Measurement of the time spent by system in certain states

Useful in identifying bottlenecks
In program code
In accessing system resources

Examples of profiling techniques
PC Sampling
Basic-block Counting

14COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

PC Sampling

Executing program is sampled at fixed points in time

Accuracy of statistical inference can be improved by:
Collecting more samples

Sampling for longer durations
Increasing the sampling rate

Ensuring interrupts occur asynchronously with sampled events
Ensures independence of random samples

External periodic signal interrupts program at fixed intervals
State information recorded by interrupt-servicing routine

Check return-address stack to find address of instruction
Use compiler’s symbol-table information to map instruction
address to a subroutine identifier
Increment counter for that subroutine

15COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Basic-block Counting
Basic block:

Sequence of instructions with no branches into or out of the sequence
If first instruction is executed, all of the rest are as well

Program can be profiled by inserting additional instructions at the
beginning of every basic block

Profiling resolution is in terms of basic-blocks (not subroutines)

☺:
Yields an exact execution frequency histogram
Repeatable

:
Can incur significant run-time overhead

Access array of counters for current block’s counter
Basic blocks typically have 3-20 instructions: 100% overhead!

Additional memory required to store counter array
Both of the above may alter program behavior

16COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Fundamental Measurement Techniques: Issues

Interval Timers

Program Profiling

Tracing

17COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Event Tracing

Profiling ignores the time-ordering of events
Use program trace instead

Trace:
A dynamic list of events generated by the executing program

Instructions executed
Memory addresses accessed
Disk blocks referenced

Can be analyzed to characterize overall program behavior

Typically, used as input to drive a simulator

18COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Trace Generation
Source-code modification

Add tracing statements to the source code
☺: can reduce trace volume by tracing only desired events

: time-consuming, error-prone

sum_x = 0.0
trace(1);

trace(2);

trace(3);

trace(4);

sum_x

for (i=1; I <=n; i++)

{
sum_x += x[i];

}
mean = sum_x / n;

Software Exceptions
Processor mode that forces a software exception just
before each instruction execution

T-bit in DEC’s VAX, Motorola 68000
: slowed down programs by up to 1000 times

Emulation
Emulation of a system on a completely different system

Eg, Java Virtual Machine
Modify emulator to output trace of instructions

: emulation is slower than direct execution

Compiler modification
Compiler adds extra instructions at entry point of each
basic clock

19COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Trace Compression

Tracing overheads:

Remedies for reducing amount of data:
Online trace consumption

Lack of repeatability

Data compression
Additional time needed to compress and decompress

Trace sampling
Not clear what is the right sampling technique, frequency, …

Abstract execution

Execution time slow down
Tremendous volume of data produced in a short time (~GB/min)

Large disk space needed
Disk I/O interferes with program execution

20COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Trace compression that takes advantage of program semantics

Abstract Execution

1. if (i < 5)
2. then a = a + i;
3. else b = b+1;
4. i = i + 1;

Two-step tracing process:
Trace-generation:

Program analysis to identify a subset of trace that can reproduce the
full trace

Trace-consumption:
Execution of trace-generation routines to retrieve full trace

☺:
Reduces trace size by 10 to 100 times
Slows down program being traced by 2-10 times

Comparable to other tracing techniques

1. i > 5

2. a = a+i 3. b = b+1

4. i = i+1

21COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Measuring System Load Using an Idle Loop

Estimate:
Number of processes running on the system

Use:
A program that counts up from zero

Idea:
Run for a fixed amount of time on unloaded system

Let value of count be n

Run on loaded system
If one other process, count should be n/2
If m other processes, count should be n/(m+1)

22COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Perturbations Due to Measurements

Measurements impact system performance
Code can alter the spatial and temporal patterns of memory access

Cache may be flushed more often
Trace instructions could increase cache-hit rate
Cache performance impacted in an unpredictable manner

Increase in code size can result in larger overall context-switches
Can significantly alter program’s paging behavior

Impact of perturbations on conclusions should be analyzedImpact of perturbations on conclusions should be analyzed

Trends:
Higher is the granularity of measurement, more is the perturbation

Perturbations are non-linear and non-additive
Doubling the amount of instrumentation need not double the impact on
performance

23COMP 190-088: Systems Performance Analysis http://www.cs.unc.edu/~jasleen/Courses/Spring05

Course Outline

Selection of metrics
Performance Evaluation Methodologies
Workload selection
Measurements tools
Analysis and visualization of measured data
System Modeling
Simulations
Case studies
Distributed monitoring infrastructures
PA in the Research and Industrial communities

