Network Transport Protocols
Course Overview

Jasleen Kaur

Spring 2012

The Importance of Transport Protocols

- Transport protocols carry nearly all of Internet traffic
 - They make the job of writing distributed Internet applications fairly simple
 - Socket interface, data stream abstraction, reliability, flow-control, congestion-control, ...
 - The types we will study in this course, carry more than 90% of Internet traffic!
 - Web traffic
 - Streaming video
 - Large software downloads
 - P2P transfers

- Their dominance implies:
 - They fundamentally govern performance of Internet applications
 - They are excellent candidates for attacks
Growing Number of Protocols in Use

- Growing diversity in the types of protocols deployed and used
 - NewReno
 - CUBIC (default in Linux)
 - Compound (default in Windows Vista)
 - DCTCP (used in Microsoft Azure)
 - ??? in Google data centers!
 - Larger initial congestion-windows for transfers to clients

- Many can be described as experimental at best
 - How do they perform for different application/usage scenarios?
 - How do they interact with each other in the shared Internet?
 - How vulnerable are they?

Performance Evaluation of Protocols

- Several subtleties in how protocol mechanisms impact an application’s performance
 - Studying a closed-loop control system
 - When millions are using instances of it
 - Where the instances interact with each other

- Most protocols are designed first and studied later
 - How to even study it for such large-scale usage?
 - Evaluation methodologies?
 - What’s a good protocol (what should it be doing)?
 - Performance metrics?
 - Vulnerabilities?
Topics/Logistics

- Topics:
 - Initially, each of a few prominent transport protocols
 - Then, analysis and evaluations of individual protocols throughout the semester

- Focus: performance-related issues
 - Protocol mechanisms
 - Metrics and evaluation methodologies
 - Efficiency
 - Fairness
 - Stability/equilibrium
 - Security vulnerabilities

- If you’d like specific topics covered, let me know asap

Course Structure

- Initial set of lectures (only a few, by me):
 - Will cover background material and high-level overview of transport protocol designs

- Review of relevant publications (rest of the semester)
 - Paper presentations (by you)
 - Critical reviews (by you)

- Semester-long projects
 - Open topic (investigating, designing something new)
 - Experimental study, formal analysis, design and evaluation of new mechanism
 - Preferably on one of the focus topics for this course
 - Unless motivated by strong interest in other topics
 - Groups of 2 allowed (and encouraged)
Paper Presentations

- ~3 papers presented by each student over the semester
 - Your turn comes every 5-6 weeks
- Initial list up on the course web-page
 - Will keep adding to it over the next couple of days
 - If you're keen on a given paper, let me know asap!
- The first set of papers (transport protocols) will be covered quite soon
 - Make your selections and send me email
 - Papers assigned on a first-come-first-served basis
- Subsequent papers
 - Will try to cover just one set of papers per week

Paper Presentation Formats

- Presenter responsible for thoroughly reading paper (and related papers) in detail, and presenting in class
 - Pretty thorough presentation (unlike other courses)
 - Including discussion of background
 - Related work
 - Main insights
 - Strengths, weaknesses
 - Comparison to other papers read, open issues, ...
 - Discussion points
 - Plan for 1.5-2 hours, leaving enough time for discussion
 - First draft of slides should be sent to me at least 1 week before your presentation
 - Start selecting papers and signing up for slots asap
 - Start reading papers asap
Critical Reviews

- Everyone else required to submit a critical review of the paper to be discussed
 - Can skip at most 3 papers in the semester
 - Bonus for not skipping any

- Format:
 - Summary of the paper
 - Do NOT cut and paste from abstract/intro
 - Main insights used in the paper (no more than 3)
 - Main strengths of the paper
 - Main weaknesses of the paper
 - Open issues left unaddressed in the paper
 - Again, don’t cut-and-paste what the paper itself mentions
 - How does the paper fit in with respect to other papers / your project / etc?

Projects

- Must work on an open problem (find / model / study something not known)

- Types of projects:
 - Empirical evaluations of protocols (lab-based, ns-2 based)
 - Mechanism redesign (and evaluation)
 - Vulnerability analysis
 - Formal analysis

- Candidate list of projects up on the course web-page
 - Talk to me if you’re very interested in a topic not listed

- Groups of 2 encouraged
Project Expectations

- Must work on an open problem (find/model/study something not known)
 - Ideally: you will do novel work and publish it
 - Pessimistically: you will only do novel work

- Past (seminar) course-projects based publications
 - [NP2-2003], [IMC-2003], [Best'-2003], [PAM-2004], [IMC-2004], [JSAC-2006]
 - Nearly 250 citations to date across these papers
 - [IMC-2003]
 - 127 citations to date
 - Measurement study
 - [IMC-2004], [JSAC-2006]
 - Enhanced to a journal submission

Project Deliverables

- Deliverables:
 - Weekly progress report
 - Yes, one report EVERY Friday
 - Even if it says, “I couldn’t work on the project this week, but here is how I plan to make up for that next week…”
 - Remember, students expected to spend at least 10-12 hours outside classroom on each course
 - Project presentations
 - Initial project proposal (end January)
 - Mid-project progress/issues (possibly 2 of these)
 - Final project presentations
 - Final project report

- Project proposals (well-defined) are due in about 2.5 weeks, so please start thinking about this TODAY
Project Proposals

- Project proposals (well-defined) are due in about 2.5 weeks, so please start thinking about this TODAY
 - Project objective,
 - Proposed methodology,
 - What you expect to accomplish over the semester,
 - A weekly milestones timeline
 - Can be refined once you get started

Course Grading

- Paper Presentations: 20%
- Critical Reviews: 20%
- Projects:
 - Progress: 50%
 - Presentation + report: 10%
- Class Participation:
 - Will be used to potentially bump up (or down) half a grade
- No exams, no homeworks
- All percentage points above are flexible by 5-10%
QUESTIONS?

Course web-page: ntp.web.unc.edu

My email: jasleen@cs.unc.edu