Insertion Sort: General Code Template

- An insertion sort code that works for every class
 - The `Comparable` interface imposes a total ordering on objects of a class
 - Any class that implements it must define a `compareTo` method
 - `x.compareTo(y)` returns a value less than, equal, or greater than 0

```java
public static <T extends Comparable<? super T>> void insertionSort(T[] a) {
    public static <T> void insertionSort(T[] a) {
        for (int p = 1; p < a.length; p++) {
            int tmp = a[p];
            int j = p;
            for (; ((j > 0) && tmp.compareTo(a[j - 1]) < 0); j--)
                for (; (j > 0) && tmp < a[j - 1]); j--
                    a[j] = a[j - 1];
            a[j] = tmp;
        }
    }
}
```

In-class Problem

- **Posted on Piazza**
- How many positions are moved if insertion sort is used to completely sort the following data?
 - 3, 1, 4, 1, 5, 9, 2, 6, 5
- Is insertion sort a *stable* sorting algorithm?
- What’s the run-time for insertion sort?
 - Two nested for loops – O(N²)
Recursive Formulation

- **Recursive code for insertion sort:**
 - Recursively sort first $N - 1$ elements
 - Then insert N^{th} element into sorted array

- **Run-time, $T(N)$: time to sort an array of size N**
 - $T(1) = c_1$
 - $T(N) \leq T(N-1) + c_2 N + c_3$

- **Solve recursive relation:**
 \[
 T(N) \leq T(N-1) + c_2 N + c_3 \\
 \leq (T(N-2) + c_4(N-1) + c_5) + c_2 N + c_3 \\
 \ldots \\
 \leq (c_2 N + c_4(N-1) + \ldots + c_3) \\
 \leq \max_i (c_i)^* \frac{N(N-1)}{2} \\
 = O(N^2)
 \]

Insertion Sort: Properties

- **Running time?**
 - Worst case is $O(N^2)$ – reversed input
 - Best case is $O(N)$ – for almost sorted data
 - What if all elements are equal?
 - Average case is $\Omega(N^2)$
 - True for any sorting algorithm that exchanges only adjacent elements

- **Space?**
 - Is an in-place sorting algorithm – $O(1)$ extra space

- **Sorting algorithm of choice when:**
 - Data is nearly sorted
 - Data is small (due to low overhead)
 - When input has shrunk in divide-and-conquer algorithms
A Lower Bound for Sorting

- **Average case run-time for insertion sort is** $\Omega(N^2)$
 - True for any sorting algorithm that exchanges only *adjacent* elements

- **Why?**
 - Inversion: any pair \((i, j)\), \(i < j\), such that \(a[i] > a[j]\)
 - Average number of inversions in an array: \(N(N-1)/4\)
 - Any list and its reverse have a total of \(N(N-1)/2\) inversions
 - In algorithms that swap only *adjacent* elements:
 - Each swap removes only one inversion
 - So, $\Omega(N^2)$ swaps are required

- **To do better, must:**
 - Compare and swap elements that are far apart
 - Try to eliminate more than just one inversion per swap