QUICK SORT

Algorithm, Complexity

Quicksort: Intro

- Divide and conquer strategy:
 - Partition array into left and right sub-arrays
 - Choose an element (pivot) of the array
 - Elements in left sub-array are all ≤ pivot
 - Elements in right sub-array are all ≥ pivot
 - Recursively sort left and right sub-arrays
 - Concatenate left and right sub-arrays in O(1) time
Quicksort: Steps for Sorting

- **QuickSort(S):**
 - If number of elements in S is 0 or 1, return.
 - Pick an element v (pivot) in S.
 - Partition S – {v} into two disjoint subsets,
 - \(S_1 = \{ \text{all values } x \leq v \} \)
 - \(S_2 = \{ \text{all values } x \geq v \} \)
 - Return \{QuickSort(S1), v, QuickSort(S2)\}

Quicksort: Example

If number of elements in S is 0 or 1, return.
Pick an element v (pivot) in S.
Partition S – {v} into two disjoint subsets,
S₁ = \{all values \(x \leq v \)\}
S₂ = \{all values \(x \geq v \)\}
Return \{QuickSort(S₁), v, QuickSort(S₂)\}
Quicksort: Partitioning In Place

- How would you implement partitioning (given a pivot)?
 - How to do it without using an additional array?
- Swap the pivot with the last element
- Start with left and right ends of the array
 - Increment left until a[left] > pivot
 - Decrement right until a[right] < pivot
 - Swap a[left] and a[right]
- Repeat above until left and right cross
- Swap a[left] and pivot (a[n-1])

1 13 24 15 2 26 27 38

Quicksort: Recursive Code

- Sorting an integer array:
  ```java
  private static void quickSort(int[] A, int left, int right) {
      if (left + cutoff <= right) {
          pivot = selectPivot(A, left, right);
          pivotPos = partition(A, left, right, pivot);
          quickSort(A, left, pivotPos -1);
          quickSort(A, pivotPos + 1, right);
      } else insertionSort(A, left, right);
  }
  public static void quickSort(int[] A) {
      quickSort(A, 0, A.length - 1);
  }
  ```
- Look up the partition code in textbook
Quicksort: Run-time Performance

- Let $T(k)$ – run-time to quicksort an array of k elements
 - $T(1) \leq c_0$
 - $T(N) = S(N) + P(N) + T(N_1) + T(N - N_1 - 1)$
 - $S(N) =$ time to select pivot
 - $P(N) =$ time to partition
 - $N_1 =$ size of left sub-array
 - $T(N) \leq c_1 + c_2 N + T(N_1) + T(N - N_1 - 1)$

Quicksort: Pivots and Run-time

- Let $T(k)$ – run-time to quicksort an array of k elements
 - $T(1) \leq c_0$
 - $T(N) \leq c_1 + c_2 N + T(N_1) + T(N - N_1 - 1)$
- Difference from mergesort – N_1 may not be $\approx N/2$
- Best pivot selection: sub-array is always split in half
 - $T(N) \leq c_1 + c_2 N + T(N/2) + T(N/2 - 1)$
 - Same as mergesort – $O(N \log N)$
- Worst pivot: one sub-array is empty at each step
 - $T(N) \leq c_1 + c_2 N + T(1) + T(N-1)$
 $\leq c_3 + c_2 N + T(N-1)$
 - Same as insertionSort – $O(N^2)$
- Average case is $O(N \log N)$ – see textbook
Quicksort: Choosing the Pivot

- Element at first (or last) location
 - Popular, but uninformed choice
 - Could be a pretty bad choice if input is not random
 - If input is presorted, or in reverse order – quadratic time!

- Choose the pivot randomly
 - Good choice
 - But random number generators:
 - Could be flawed
 - Are generally expensive to implement

- Median-of-three
 - Best choice of pivot – median of the array
 - Calculating this is expensive!
 - Instead, median of first, middle, and last elements
 - Observed to be a good choice, if data is randomly ordered

Quicksort: Properties

- Run-time
 - Worst-case – $O(N^2)$
 - Best-case – $O(N \log N)$
 - Average-case – $O(N \log N)$ – uses very few comparisons

- Space:
 - $O(\log N) – O(N)$: uses less space than mergesort

- Stability?
 - Not stable – e.g., pivot is reordered with respect to same-value elements

- Not good for small arrays

- Has good in-memory performance
 - Small footprint and good locality
In-class problems

- What is the run-time of quicksort when all keys are equal?
- Given: 1, 2, 3, 4, 5
 - Construct a permutation that is as bad as possible for quicksort (using median-of-three partitioning)