BINARY HEAPS

Two Additional Properties

- **“Structure” property:**
 - Levels are “filled” in order, left to right
 - Also known as complete binary trees
 - All levels (except possibly bottom) completely filled
 - Bottom level filled from left to right

- **“Heap order” property:**
 - Key in parent of X \(\leq \) key in X
 - Only defined for Comparable objects
 - Where would the minimum be?
 - Where would the maximum be?
Are These Binary Heaps?

Binary Heaps: Structural Properties

- How many nodes does a binary heap with height \(h \) have?
 - \(\geq 2^h \)
 - \(\leq 2^{h+1} - 1 \)

- What is the height of a binary heap with \(N \) nodes?
 - \(\text{floor}(\log_2 N) \)
Binary Heaps: Array Implementation

- Structure property ➔ heaps are complete binary trees
 - No “holes” in any level (including bottom)
 - Levels are filled in order (left-to-right)
- Good match for array implementation
 - Without wasting space
- Root at A[0]
- A[x] has left child at A[2x+1]
- A[x] has right child at A[2x+2]
- A[x] has parent at A[(x-1)/2]

```
A   0  1  2  3  4  5  6  7  8  9 10 11 12 13
  13 21 16 24 31 19 68 65 26 32
```

Binary Heaps: Array Implementation

- Structure:
 - Root at A[0]
 - A[x] has left child at A[2x+1]
 - A[x] has right child at A[2x+2]
 - A[x] has parent at A[(x-1)/2]

- Optimization – move everything right by 1
 - Root at A[1]
 - A[x] has left child at A[2x]
 - A[x] has right child at A[2x+1]
 - A[x] has parent at A[x/2]

```
A   0  1  2  3  4  5  6  7  8  9 10 11 12 13
  13 21 16 24 31 19 68 65 26 32
```
Binary Heap: Class Structure

```java
public class BinaryHeap<AnyType extends Comparable<? Super AnyType>> {
    private AnyType[] array;
    private int currentSize;

    public BinaryHeap(int capacity) {
        currentSize = 0;
        array = (AnyType[]) new Comparable[capacity+1];
    }

    public AnyType min() { ... }
    public void insert(AnyType x) { ... }
    public AnyType deleteMin() { ... }
    public AnyType isEmpty() { return currentSize == 0; }
    public AnyType isFull(){return currentSize == array.length-1;}
}
```

Binary Heaps: Basic Operations

- Required operations: min, insert, deleteMin
- min: easy!
 - Just read the element stored at the root!
 - // PRE: heap is not empty
 - public AnyType min() { return array[1]; }
 - Run-time?
- Also easy to perform the remaining two operations:
 - Mainly ensure that the two heap properties are maintained
Binary Heaps: \textit{insert}

- To insert element X to heap:
 - Create a hole at next available location
 - To maintain “structure” property
 - If “heap-order” allows, placed X in hole
 - Else, bubble hole up toward the root
 - Until X can be placed in hole

- Example: insert 14

Implementing \textit{insert}

// PRE: heap is not full
public void insert(AnyType x) {
 // Create hole
 currentSize++;
 int hole = currentSize;

 // Percolate up
 array[0] = x;
 for(; x.compareTo(array[hole/2]) < 0; hole = hole/2)
 array[hole] = array[hole/2];
 array[hole] = x;
}

- Complexity of \textit{insert}?
 - \(O(\log N)\) – arrays help with \(O(1)\) moves between levels
Binary Heaps: deleteMin

- Finding the min is easy – how to remove it?
 - When min is removed, hole is created at root
 - Since heap size reduce by 1, last element X must be moved somewhere
 - Unlikely that X can be moved to hole at root, though
 - “Percolate down” the hole –
 - By sliding smaller of the hole’s children into it
 - Repeat until X can be placed in the hole

→ effectively, place X in correct spot, along a path from root containing minimum children
Implementing `deleteMin`

// PRE: heap is not empty
public AnyType deleteMin() {
 // min value to be returned
 AnyType minItem = array[1];
 // Move last item to root
 array[1] = array[currentSize];
 currentSize--;
 // And percolate it down to the right
 percolateDown();
 return minItem;
}

Implementing `percolateDown`

private void percolateDown() {
 tmp = array[1];
 int hole = 1;
 int child; // smaller child of array[hole]
 for(; hole*2 <= currentSize; hole = child) {
 child = hole*2;
 if (child != currentSize &&
 array[child+1].compareTo(array[child]) < 0)
 child++;
 if (array[child].compareTo(tmp) < 0)
 array[hole] = array[child];
 else break;
 }
 array[hole] = tmp;
}

Complexity of `deleteMin`?
Binary Heaps: Other Operations

- Basic operations
 - min: $O(1)$
 - insert: $O(\log N)$
 - deleteMin: $O(\log N)$

- Additional operations:
 - decreaseKey(p, Δ) – lower the value at position p by Δ
 - lower value, then “percolate up” to maintain heap order
 - increaseKey(p, Δ) – increase value at position p by Δ
 - “Percolate down” to maintain heap order
 - delete(p) – remove node at position p
 - decreaseKey(p, infinity); deleteMin();
 - buildHeap(): build heap from an initial collection of items
 - How?

Binary Heaps: buildHeap

- Use N successive calls to insert:
 - Worst-case – $O(N \log N)$

- Can we do better?
 - Place N items in an unsorted array
 - While maintaining the structure property
 - For all nodes $i = N/2$, ..., 1, percolate them down one-by-one

150, 80, 40, 30, 10, 70, 110, 100, 20, 90, 60, 50, 120, 140, 130
Binary Heaps: buildHeap

- For all nodes \(i = \frac{N}{2}, \ldots, 1 \), percolate them down one-by-one