
Impact of Cross Traffic Burstiness on the
Packet-scale Paradigm — An Extended Analysis

Rebecca Lovewell and Jasleen Kaur

Technical Report # TR11-007
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract—The packet-scale paradigm is a novel framework for
achieving ultra-high speed congestion control. Due to its reliance
on finely-controlled inter-packet gaps, the paradigm is expected
to be sensitive to transient burstiness in traffic encountered on
bottleneck links. This paper uses a first-principles approach to
study the impact of cross traffic burstiness on the efficiency of
the packet-scale paradigm. It relies on a simple periodic on-off
model for cross traffic and studies the interaction of the burstiness
timescale, round-trip times, and the smoothing filters adopted by
the paradigm. The analysis is validated against ns-2 simulations
with a prototype. Our analysis helps gain fundamental insights
on the impact of several factors.

I. INTRODUCTION

The packet-scale paradigm is a recently proposed frame-
work for congestion control that promises to scale up the
state of the art in ultra-high speed congestion control by
several orders of magnitude [1], [2].1 A key feature of the
paradigm is its use of short probing-streams to probe for
available network bandwidth at fine timescales, using finely-
controlled inter-packet spacings—this gives the paradigm its
characteristic properties of scalability, adaptability to dynamic
bandwidth, and queue-friendliness. Unfortunately, the excel-
lent adaptability of the paradigm to dynamically varying band-
width also raises significant concern about its sensitivity to
transient short-scale burstiness in the cross traffic encountered
on congested links. In particular, before this paradigm can be
deployed in practice, it is important to ask: to what extent does
cross traffic burstiness impact the efficiency of the packet-scale
paradigm? In this paper, we use a first-principles analysis
approach to partially study this issue.

Most congestion control protocols are analyzed for their
steady-state throughput by conducting stochastic analysis of
their window growth functions [3], [4], [5]. Most of these
analyses incorporate the impact of packet losses and round
trip-times (RTTs), considering these to be the major influences
on the throughput of a transfer. In contrast, the packet-scale
paradigm does not rely on window-based rate-control and
relies on fundamentally different mechanisms for controlling
the rate of a transfer. Furthermore, due to its agility at fine
timescales, the paradigm is mostly limited by dynamics in

1This material is based upon work supported by the National Science
Foundation under Awards CNS-1018596 and OCI-1127413.

the bottleneck queues (which, in turn, influence the available
bandwidth, avail-bw). In particular, (i) by design, the steady-
state throughput of long transfers is independent of path RTT;
and (ii) due to its queue-friendly behavior, packet losses are
expected to occur rarely (and are not expected to play a
dominant role in limiting throughput). Consequently, existing
analysis approaches are not suitable for studying the paradigm.

In this paper, we instead adopt a first-principles approach
to analyze the impact of fine-scale traffic burstiness on the
paradigm.2 Our analysis considers a simple periodic on-off
model for the cross traffic burstiness (parametrized by the
burstiness timescale) and incrementally incorporates the im-
pact of queue backlogs, RTTs, and the averaging timescales
of the paradigm. We validate our analysis against experiments
conducted with an ns-2 implementation of a prototype of the
paradigm. Our analysis shows that:
• The degree to which traffic burstiness impacts the effi-

ciency of the paradigm depends on both the average cross
traffic load, as well as its characteristic ratio of burst-to-
idle timescales.

• RTTs have little influence on the worst-case impact of
traffic burstiness on the paradigm.

• The impact of cross-traffic burstiness on the paradigm can
be alleviated by selecting the two smoothing timescales
used by the paradigm such that: (i) these are reasonably
larger than the typical burstiness timescale of the cross-
traffic encountered, and (ii) the difference between the
two smoothing timescales is small.

In the rest of this paper, we formulate the analysis frame-
work in Section II. We develop and validate the analysis in
Sections III-VI. We use the analysis to quantitatively study
the performance of the paradigm under different conditions
and settings in Section VII. We conclude in Section VIII.

II. FORMULATION

The available bandwidth of a link, observed during a time
interval (t1, t2), is defined as:

Bavail(t1, t2) = C − BCT (t1, t2)
t2 − t1

(1)

2In this paper, we ignore dynamics that occur at timescales even smaller
than a probing-stream and focus only on larger timescales.



where C is the transmission capacity of the link, and
BCT (t1, t2) is the total amount of traffic that arrives on the
link during the interval (t1, t2). The avail-bw of a link reflects
its spare capacity. The end-to-end avail-bw of a path is defined
as the minimum avail-bw among its constituent links [6].

The packet-scale paradigm attempts to measure the end-
to-end avail-bw and adjust the sending rate of the transfer to
match it. The Rapid protocol described in [1] is a prototype of
the packet-scale paradigm. Below, we briefly describe the key
mechanisms that control Rapid behavior in steady-state—for
brevity, we provide only details that are relevant to the discus-
sion in this paper. In particular, since our analysis focuses on
timescales larger than probing-streams, our description is light
on mechanisms that operate at sub-probing-stream timescales.

A. Rapid: Operation in Steady-state

The Rapid sender continuously sends back-to-back probing-
streams (p-streams) of length N packets, where each packet is
sent at a potentially different probing rate by controlling the
inter-packet gaps. The Rapid receiver records the arrival time
of packets at the receiver, and returns these to the sender.
The sender compares the receiver-gaps to the original gaps
and computes an estimate for the avail-bw according to the
highest probing rate for which the inter-packet gaps did not
show an increasing trend. Details of the bandwidth-estimation
logic and the structure of the p-streams can be found in [1].
In this paper, we ignore packetization effects and assume fluid
behavior at p-stream and lower timescales—this implies that
a Rapid p-stream returns a perfect estimate of the avail-bw.

The avail-bw estimate, Best, computed by the sender is then
fed through a moving average filter that updates the average
sending rate, R̂, used for the next p-stream as follows3:

R̂ = R̂+
L

τ
(Best − R̂), if R̂ > Best,

R̂ = R̂− L

η
(R̂−Best), otherwise

where L = N∗PbR is the duration in time of the most recent
p-stream, P is the packet size, and τ and η are the smoothing
parameters employed by Rapid for increasing or decreasing the
sending rate, respectively. Effectively, by employing the above
moving average filter, when avail-bw increases (or decreases),
Rapid linearly increases (or decreases) its average sending rate
to the new avail-bw over τ (or η) time units.

B. Cross Traffic Model

According to Equation (1), the avail-bw is determined by the
cross traffic arrival process. Note that the avail-bw influences a
Rapid p-streams via dynamics in the (shared) packet queue at
the bottleneck link. In particular, the queue-size grows when
the collective bit-rate of the p-streams and the arriving cross
traffic exceeds the link capacity—it is precisely this growth in
the bottleneck queue that Rapid relies on for estimating the
avail-bw.

3Note that this description is different from that of the Rapid protocol in [1],
which does not use η (or equivalently, sets: η = L).

Fig. 1. Periodic On-off Cross Traffic Model

Fig. 2. Topology for Experimental Validation

Bursty cross traffic creates additional (transient) queue dy-
namics. Since Rapid is capable of estimating and adapting to
avail-bw at fine timescales, it also reacts to the transient queue
build-up caused by the cross traffic bursts. In order to study
the impact of such bursts on Rapid p-streams and the steady-
state throughput it achieves, we consider a simple model of
the cross traffic in this paper—a periodic on-off source. Such a
traffic source, illustrated in Fig 1, is characterized by the fixed
duration of each burst, Ton, the inter-burst idle time, Toff , and
the on-rate, Ron. The average cross traffic rate is then give by:
Ravg = RonTon

Ton+Toff
.

Note that for a given Ravg , traffic can be made more
“bursty” by increasing Ron, and the timescale of burstiness
can be controlled using Ton. Given this model for cross traffic,
we analyze Rapid using the following metrics.

C. Metrics

In the ideal absence of burstiness in cross traffic, Rapid
should be able to fully utilize the steady-state avail-bw [1].
That is, the steady-state Rapid throughput, R, should be equal
to C−Ravg . In order to see how cross traffic burstiness impacts
Rapid throughput, in our analysis we study both R and the
overall link utilization, given by:

U =
Ravg +R

C
(2)

D. Experimental Setup

We use the ns-2 implementation of the Rapid protocol to
validate our analysis against. We generate a simple dumbell
topology illustrated in Fig 2. The Rapid transfer and the cross
traffic share the 1 Gbps bottleneck link. All other links have
a transmission capacity of 10 Gbps. The RTT of the Rapid
transfer is controlled by varying the propagation delays on
the links attached to the Rapid sender and the Rapid receiver.
Sufficient queues are provisioned on all links to avoid packet
losses. The cross traffic is driven by a periodic CBR on-off
source—the source alternates between an on state, in which it
send traffic at a fixed bit-rate of Ron for an interval of fixed
length Ton, and an off state in which it does not send any
traffic for an interval of fixed length Toff . The cross traffic
parameters are varied across experiments.



Fig. 3. Impact of RTT: Illustration

III. IMPACT OF QUEUE BACKLOG

We begin our analysis with a simple but important
observation—which will be used in subsequent analysis—
about the influence of a residual queue 4 at the bottleneck
link on the avail-bw estimates yielded by a Rapid p-stream:

Observation 1: The presence of a residual queue at the
bottleneck link does not influence the avail-bw estimates
yielded by an arriving Rapid p-stream—the avail-bw estimates
in this case will simply depend on the “arrival” process of the
cross traffic.
This is not an immediately obvious observation, since the
packets of a p-stream that arrives behind a residual queue are
likely to bunch up together while the residual queue drains.
While this is certainly true, the inter-packet gaps at the time
of departure will still be shaped according to the cross traffic
that arrives along with the p-stream (and which gets inserted
in between the p-stream packets)—the departure gaps are
independent of the amount of residual queue encountered by
the arriving p-stream. In Appendix IX, we formally establish
this for the case when two successive probing packets belong
to the same busy period of the router link.

IV. ROLE OF RTT

A Rapid sender learns of a change in the avail-bw only after
a feedback delay of RTT time units. We first investigate the
role that this feedback delay might play in influencing Rapid’s
efficiency in utilizing the avail-bw. In order to solely focus on
this factor, we set: τ = η = L — this ensures that the Rapid
sender sets its sending rate equal to a new avail-bw estimate
immediately upon learning about it (no smoothing/averaging
delay is involved).

Fig 3 illustrates a typical timeline, which includes the
periodic on-off cross traffic arrival rate, the Rapid sending rate,
and the queue buildup at the bottleneck link. The cross traffic
alternates between bit-rates of Ron and 0. Observe that:
• When a cross traffic burst arrives at the bottleneck link at

time t0, it interacts with the arriving Rapid p-streams—
the Rapid sender learns that the avail-bw has decreased
to C − Ron after a delay of 1 RTT at time: t0 + RTT .
The Rapid sender immediately reduces its sending rate
from C to C −Ron at this time.

• The cross traffic burst lasts till t0 + Ton. Note that the
queue-backlog at the bottleneck link keeps increasing

4The residual queue refers to buildup which already exists on the queue
before the first packet of a Rapid p-stream arrives.

(a) No Queue Buildup (b) Max Queue Buildup

Fig. 4. Best-case and Worst-case Queue Buildups

during the time interval [t0, t0 + Ton] (since the sum of
Rapid and cross traffic arrival rates exceeds C). However,
because of Observation 1, the Rapid p-streams arriving in
this interval yield avail-bw estimates equal to C −Ron.

• The Rapid p-streams that arrive at the bottleneck link
immediately after t0 + Ton will yield avail-bw estimates
equal to C (despite the presence of a residual queue, from
Observation 1). However, these p-streams will experience
an inflated delay in reaching the receiver (due to the extra
queuing delay waiting for the residual bottleneck queue to
drain). In fact, the first notification that the avail-bw has
now increased to C will reach the sender only after time:
t0 + Ton +RTT +D, where D is the queue drain time
of the maximum residual queue, given by: D = Qmax

C .
Therefore, the Rapid sender will increase its sending rate
back to C only at time t0 + Ton +RTT +D.

• This whole interaction repeats with the arrival of the next
cross traffic burst.

The average Rapid throughput can be computed by averaging
its sending rate over the interval [t0, t0 + Ton + Toff ] as:

R =
C · (Toff −D) + (C −Ron) · (Ton +D)

Ton + Toff

= C −Ravg
Ton +D

Ton
(3)

Note that while RTT does not appear directly in the above
term, it may indirectly influence the maximum queuing delay,
D, which adversely impacts the Rapid throughput.
D, in turn, depends on the phase lag between the cross

traffic bursts and Rapid’s response. This lag is governed
by: RTT rem = remainder( RTT

Ton+Toff
). For instance, when

RTT rem = 0 (as illustrated in Fig 4(a)), there is no queue
buildup at the bottleneck link since the cross traffic peaks
overlap perfectly with the Rapid troughs. Thus, Qmax = 0 and
D = 0. On the other hand, Fig 4(b) illustrates that the worst-
case queue buildup occurs when the peaks and troughs do not
overlap in time at all (for instance, when RTT rem > Ton and
Toff > Ton). In this case, Qmax = TonRon, and D = TonRon

C .
Note that when the peaks and troughs overlap only partially

(for instance, when RTT rem < Ton), the queue-buildup is
smaller than the worst-case and is proportional to RTT rem.
Since our objective is to quantify the extent to which burstiness
can adversely impact Rapid performance, we focus only on the



worst-case queue buildup, for which:

R = C −Ravg −
R2

avg

C

Ton + Toff

Ton

U =
Ravg +R

C
= 1− Ravg

C

2Ton + Toff

Ton

This implies that the role of RTT is limited to influencing the
phase shift between the cross traffic peaks and Rapid troughs.
The worst-case loss in utilization is independent of the path
RTT. Henceforth, we focus only on analyzing the worst-case
queue buildups.

Case L1

Case L2

Case L3

Fig. 5. Impact of Large-scale Bursts: Illustration

V. LARGE-SCALE BURSTS

Note that the parameters τ and η introduce additional delay
before Rapid completely adapts to an increase or decrease
in avail-bw. For studying the influence of τ and η, we first
consider the cases in which the cross traffic bursts are long
enough to allow Rapid to converge to all avail-bw changes. We
define large-scale cross traffic bursts to be such that Ton+D ≥
η and Toff −D ≥ τ in the steady state, so the Rapid sender
will always have enough time to completely adapt to a change
in avail-bw before it changes again. Observe:
• At t0, a cross traffic burst arrives at the bottleneck link

and the router queue starts to build up. Rapid learns of
the corresponding decrease in avail-bw after a delay of 1
RTT. It then takes η time units to converge its sending
rate to the lower value of C −Ron.

• The cross traffic burst stops at t0 +Ton. Since the queue
builds up in the meantime, however, Rapid learns of the
corresponding increase in avail-bw only after a delay of
RTT +D, where D is the time it takes for the additional

queue buildup to drain. It then takes τ time units to
increase its sending rate from C −Ron to C.

• All of this occurs before Rapid learns of another decrease
in avail-bw.

In this case, the steady-state Rapid throughput R can be
time-averaged as:

R = (C − Ron

2
)

τ + η

Ton + Toff
+ C

Toff − τ −D
Ton + Toff

+(C −Ron)
Ton − η +D

Ton + Toff

= C −Ravg
2Ton + 2D + τ − η

2Ton

Loss in Rapid throughput is proportional to D, the delay
in Rapid’s response to an increase in avail-bw. This delay is
directly proportional to the maximum queue buildup which
occurs during a cross traffic burst and is described by D =
Qmax

C . The worst-case maximum queue buildup occurs when
Rapid traffic aligns with the cross traffic bursts in such a way
that the number of bytes that Rapid sends during a cross traffic
burst is maximized. We use RTT ′rem to denote an RTT that
creates such a worst-case alignment. The three formulations
below show how RTT ′rem and Qmax are influenced by the
values of Ton, Toff , τ , and η in the presence of large bursts.
In each of the proceeding cases, we solve for the given values
using mathematical software. The closed-form solutions are in
general too unwieldy to present here.

A. Case L1: D ≤ Toff − Ton − τ

When cross traffic bursts are large and D ≤ Toff−Ton−τ ,
the worst-case queue buildup will occur when RTT ′rem ∈
[Ton, Toff − D − τ ]. In this case, the Rapid sender sends at
capacity during the entire cross traffic burst period, and the
queue buildup is described by

Qmax = RonTon

= Ravg (Ton + Toff )

When the above Qmax is substituted for, the steady-state Rapid
throughput and link utilization can be simplified as:

R = C −Ravg −
R2

avg

C

Ton + Toff

Ton
−Ravg ·

τ − η
2Ton

U = 1−
(
Ravg

C

)2
Ton + Toff

Ton
− Ravg

C
· τ − η

2Ton
(4)

B. Case L2: D ≥ Toff − Ton + η

When cross traffic bursts are large and D ≥ Toff−Ton +η,
the worst-case queue buildup occurs when RTT ′rem ∈ [Toff−
D,Ton−η]. In this case, the Rapid traffic burst lies completely
within the cross traffic burst period, and the queue buildup is
described by
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Fig. 6. Large-scale Bursts: Experimental Validation

Qmax = C (Toff −D − τ) +
(
C − Ron

2

)
(τ + η) +

(C −Ron) (Ton − Toff +D − η)−
Ton (C −Ron)

= Ravg

(
Ton + Toff

Ton

)(
2Toff − 2D − τ + η

2

)
C. Case L3: D ∈ (Toff − Ton − τ, Toff − Ton + η)

When cross traffic bursts are large and D ∈ (Toff −
Ton − τ, Toff − Ton + η), only part of the Rapid traffic
burst can fit within the cross traffic burst period. When the
cross traffic burst begins, Rapid increasing its sending rate
and has an instantaneous send rate of RM1. When the cross
traffic burst ends, Rapid is lowering its send rate and has an
instantaneous send rate of RM2. In Appendix X, we establish
that the worst-case queue buildup occurs when RTT is such
that RM1 = RM2. This occurs when

RTT ′rem = Ton −
(

η

τ + η

)
(Ton − Toff +D + τ)

In this case, the queue buildup is described by

Qmax =
(
C −RM

2

)
(Toff − Ton −D − τ) +

RonTon

RM = C −Ron
Ton − Toff +D + τ

τ + η

where RM = RM1 = RM2 is the rate at which the Rapid
sender is sending upon both the start and the end of the cross
traffic burst.
Validation We validate the above analysis against an ns-2
experiment in which: Ton = 100ms, Toff = 350ms, Ravg =
111Mbps, τ = 150ms, η = 75ms, and RTT = 125ms.
Fig 6 plots a sample of the theoretical and experimentally
observed time series for the Rapid sending rate. We find that
the experiment validates our fluid analysis quite well. We have

also conducted several additional experiments (i) by varying
the above parameters, and (ii) by using an exponential on-off
cross traffic source —our measured values for link utilization
match the predicted one very well in all cases.

Case S1

Case S2

Case S3

Case S4

Case S5

Fig. 7. Impact of Small-scale Bursts: Illustration

VI. SMALL-SCALE BURSTS

We next consider the cases in which the cross traffic bursts
are fairly short and Rapid is unable to fully adapt to a change in
avail-bw, before the latter changes again—this happens when
Ton+D < η and/or Toff−D < τ . When Toff−D < τ , Rapid
will reach a maximum sending rate of only RH < C before
learning of a decrease in avail-bw; similarly, when Ton +D <
η, Rapid will be able to reach a mimimum sending rate of
only RL > C −Ron before the avail-bw increases again.

As in the large-scale burst cases, Rapid will experience an
additional delay when learning about an increase in available
bandwidth due to queue buildup during the cross traffic burst.



This delay in Rapid’s response is directly proportional to the
maximum queue buildup during the cross traffic burst and is
described by D = Qmax

C . In all small-burst cases the worst-
case maximum queue buildup occurs when Rapid traffic aligns
with the cross traffic bursts in such a way that the number of
bytes that Rapid sends during a cross traffic burst is maxi-
mized. We use RTT ′rem to denote an RTT that creates such
a worst-case alignment. The five formulations below show how
RTT ′rem, Qmax, and Rapid’s time-averaged throughput R are
influenced by the values of Ton, Toff , τ , and η in the presence
of small bursts. In each of the proceeding cases, we solve for
the given quantities using mathematical software. The closed-
form solutions are in general too unwieldy to present here.

A. Case S1: Ton+D < η, Toff−D ≥ τ , D ≤ Toff−Ton−τ
When Toff−D ≥ τ but Ton+D < η, the Rapid sender will

have enough time to converge on an higher sending rate when
it receives a higher avail-bw estimate, but when it learns of a
decrease in avail-bw it will not have sufficient time to converge
on a lower sending rate before the avail-bw increases again.
The lowest send rate it will achieve is RL > C −Ron.

The lowest sending rate RL and and the time-averaged
steady-state Rapid throughput R are described by

RL = C −Ron

(
Ton +D

η

)
= C −Ravg

(
Ton + Toff

Ton

)(
Ton +D

η

)
R =

(
C +RL

2

)(
Ton +D + τ

Ton + Toff

)
+

C

(
Toff −D − τ
Ton + Toff

)
= C −Ravg

(Ton +D) (Ton +D + τ)
2Ton · η

When Ton ≤ Toff −D − τ , the worst-case maximum queue
buildup occurs when RTT ′rem ∈ [Ton, Toff−D−τ ]. Because
the Rapid sender will be sending data at capacity during the
entire cross traffic burst period, the maximum queue buildup
is described by

Qmax = RonTon

= Ravg (Ton + Toff )

B. Case S2: Ton+D < η, Toff−D ≥ τ , D > Toff−Ton−τ
As in Case S1, the Rapid sender will have enough time to

converge on a higher sending rate when it receives a higher
avail-bw estimate, but when it learns of a decrease in the avail-
bw estimate it will not have sufficient time to converge on a
lower sending rate before the avail-bw increases again. The
lowest sending rate RL and the time-averaged steady-state
Rapid throughput R are calculated in the same manner as
in Case S1:

RL = C −Ravg

(
Ton + Toff

Ton

)(
Ton +D

η

)
R = C −Ravg

(Ton +D) (Ton +D + τ)
2Tonτ

However, because Ton > Toff−D−τ , Rapid’s traffic burst is
too large to be contained entirely within the cross traffic burst
period; only part will lie within the burst. In Appendix X,
we establish that the worst-case maximum queue buildup
occurs when RTT is such that Rapid’s instantaneous send
rate when the cross traffic burst begins, RM1, is equal to the
instantaneous send rate when the cross traffic burst ends, RM2.
This occurs when

RTT ′rem = Ton −
Ton +D

Ton +D + τ
(Ton − Toff +D + τ)

In this case, the maximum queue buildup is described by

Qmax =
(
C −RM

2

)
(Toff − Ton −D − τ) +

RonTon

RM = C

(
Toff

Ton +D + τ

)
+RL

(
Ton − Toff +D + τ

Ton +D + τ

)
where RM = RM1 = RM2 is the instantaneous rate at which
the Rapid sender is sending upon both the start and the end
of the cross traffic burst.

C. Case S3: Ton+D ≥ η, Toff−D < τ , D ≥ Toff−Ton+η

When Ton+D ≥ η but Toff−D < τ , the Rapid sender will
have enough time to converge on a lower sending rate when
it receives a lower avail-bw estimate, but when it learns of an
increase in avail-bw it will not have sufficient time to converge
on a higher sending rate before the avail-bw decreases again.
The highest rate it will achieve is RH < C.

The highest sending rate RH and the time-averaged steady-
state Rapid throughput R are described by

RH = (C −Ron) +Ron

(
Toff −D

τ

)
= C +Ravg

(
Ton + Toff

Ton

)(
Toff −D − τ

τ

)
R =

(
RH + C −Ron

2

)(
Toff −D + η

Ton + Toff

)
+

(C −Ron)
Ton +D − η
Ton + Toff

= C −Ravg
Ton + Toff

Ton
−

Ravg
(Toff −D) (Toff −D + η)

2Ton · τ

When Ton < Toff −D + η, the worst-case queue maximum
buildup occurs when RTT ′rem ∈ [Toff −D,Ton − η]. In this
case, the entire Rapid traffic burst will occur within the cross
traffic burst period. The maximum queue buildup is described
by

Qmax =
RH − C +Ron

2
(Toff −D + η)



D. Case S4: Ton+D ≥ η, Toff−D < τ , D < Toff−Ton+η

As in Case S3, the Rapid sender will have enough time to
converge on a lower sending rate when it receives a lower
avail-bw estimate, but when it learns of an increase in the
avail-bw estimate it will not have sufficient time to converge
on a higher sending rate before the avail-bw decreases again.
The highest sending rate RH and the time-averaged steady-
state Rapid throughput R are calculated in the same manner
as in Case S3:

RH = C +Ravg

(
Ton + Toff

Ton

)(
Toff −D − τ

τ

)
R = C −Ravg

Ton + Toff

Ton
−

Ravg
(Toff −D) (Toff −D + η)

2Ton · τ
When Ton < Toff − D + η, Rapid’s traffic burst will fit
partially within the cross traffic burst period. As we establish
in Appendix X, the worst-case maximum queue buildup will
occur when RTT is such that Rapid’s instantaneous send
rate when the cross traffic burst begins, RM1, is equal to the
instantaneous send rate when the cross traffic burst ends, RM2.
This occurs when

RTT ′rem = Ton
Toff −D

Toff −D + η

In this case, the maximum queue buildup is described by

Qmax = Ton
RH +RM

2
+ (C −Ron)Ton

RM = RH
Toff − Ton −D + η

Toff −D + η
−

(C −Ron)
(

Ton

Toff −D + η

)
where RM = RM1 = RM2 is the instantaneous rate at which
the Rapid sender is sending upon both the start and the end
of the cross traffic burst.

E. Case S5: Ton +D < η, Toff −D < τ

The last small-scale burst scenario occurs when Ton+D < η
and Toff −D < τ , and Rapid is neither able to adapt to an
increase nor a decrease in avail-bw before the latter changes
again. When avail-bw increases, the Rapid sender is able to
reach a maximum sending rate of only RH < C, and when
avail-bw decreases, Rapid is able to reduce its sending rate to
a minimum value of only RL > C −Ron before the avail-bw
changes again.

In steady-state, the high and low sending rates are described
by:

RL = RH − (RH − (C −Ron))
(
Ton +D

η

)
RH = RL − (C −RL)

(
Toff −D

τ

)
where the steady-state Rapid throughput can be averaged as
R = RL+RH

2 .
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Fig. 8. Small-scale Bursts: Experimental Validation

As we establish in Appendix X, the worst-case maximum
queue buildup occurs when RTT is such that Rapid’s instan-
taneous send rate when the cross traffic burst begins, RM1,
is equal to the instantaneous send rate when the cross traffic
burst ends, RM2. This occurs when

RTT ′rem =
(

Ton

Ton + Toff

)
(Toff −D)

In this case, the maximum queue buildup is described by

Qmax = Ton
RM +RH

2
− (C −Ron)Ton

= Ton

(
RHToff −RLTon

2 (Ton + Toff )
RH

2
− C +Ron

)
RM = RH

(
Toff

Ton + Toff

)
−RL

(
Ton

Ton + Toff

)
where RM = RM1 = RM2 is the instantaneous rate at which
the Rapid sender is sending upon both the start and end of the
bike path.
Validation We validate the above analysis against an ns-2
experiment in which: Ton = 100ms, Toff = 200ms, Ravg =
111Mbps, τ = 200ms, η = 175ms, and RTT = 100ms.
Fig 8 plots a sample of the theoretical and experimentally ob-
served time series for the Rapid sending rate. We find that the
experiment validates the analysis quite well. Our experiments
with other parameter settings and with exponential on-off cross
traffic also match the analysis equally well.

VII. DISCUSSION

We next use the models we have developed to quantitatively
study the impact that cross traffic burstiness can have on
Rapid and the extent to which it can be alleviated. Sections
V-VI establish that the magnitude of τ and η relative to
Ton and Toff determines whether the cross-traffic interacts
with Rapid as “large-scale” or “small-scale” bursts. Further,
Equation (4) shows that the inability of Rapid to fully utilize
the bottleneck link due to large-scale cross traffic bursts: (i)
does not depend individually on τ or η, but rather on τ − η,
the difference between the two smoothing parameters; (ii) is



(a) Role of τ − η

(b) Role of Ravg

C

(c) Role of Ton
Toff
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proportional to the relative load of the cross traffic, Ravg

C ; (iii)
is inversely proportional to Ton; and (iv) is proportional to the
ratio: Toff

Ton
. While the small-scale bursts analysis yields closed-

form expressions that are not as simple, we use mathematical
software to quantify the influence of the above factors and find
that these are still the dominant ones.

Role of τ − η: Fig 9(a) plots U as a function of τ − η. C is
set to 1 Gbps and the different curves correspond to different

values of Ton, Toff , and Ravg .5 τ ∈ {50ms, 500ms, 1s},
while η is varied over [1ms, τ ]. We find that in all cases:
• U decreases with increase in τ − η.
• The loss in utilization due to a large τ − η is influenced

somewhat, but not significantly, by the values of Ravg ,
Ton, and Toff .

• For a given value of τ − η, a larger value of τ seems
to alleviate the loss in utilization due to cross-traffic
burstiness. However, the τ = 500ms and τ = 1s curves
are fairly close to each other—this suggests that the
influence of τ seems to be limited to whether the bursts
are “large-scale” or “small-scale” in comparison to τ . We
further explore this issue below.

Observe that τ and η are the only model parameters that are
under the control of Rapid. The above figures indicate that
independent of the cross traffic load and burstiness, these two
parameters should be set such that their difference is small. In
the rest of this discussion, we set: τ − η = 1ms.6

Role of Ravg

C , τ : Fig 9(b) plots U as a function of Ravg

C .7 The
different curves correspond to 4 different values of (Ton, Toff )
and 2 values for τ (τ − η = 1ms).8 We find that:
• U decreases with increase in Ravg

C . This trend is more
pronounced for smaller values of Ton

Toff
.

• For a given combination of Ton and Toff , Rapid per-
forms better when bursts are “small-scale” (τ, η are
sufficiently larger than Ton, Toff ). Further, as long as the
bursts are small-scale, the value of τ does not influence
Rapid performance much — in fact, the curves for
τ = 250ms, 500ms (not plotted to avoid clutter) are
fairly close to the τ = 1s for all of the cases plotted
in this figure.
This suggests that even though Rapid performance is
relatively independent of the individual values of τ and
η (and depends mostly on τ − η), it does get strongly
influenced by whether or not these parameters are larger
than the traffic bursts and idle durations. Using large
values for τ and η can help ensure that bursts are
relatively “small” in scale and Rapid performs well.

Role of Ton,
Ton

Toff
: Fig 9(c) plots U as a function of Ton

Toff
—

here, Ton = 25ms, 100ms and Toff is varied to get different
values for this ratio. C = 1Gbps and the different curves
correspond to different values of Ravg

C . We find that:
• The link utilization achieved increases with the ratio Ton

Toff
.

In most cases, the influence flattens out beyond a ratio of

5Note that Ron can not be larger than C—this limits the maximum feasible
choice of Ravg for a given

Toff

Ton
. Similarly, we have: τ−η ≤ τ —this limits

the x-range in Fig 9(a).
6It can be shown that to ensure the stability of the paradigm, we need to

select: η < τ .
7U is independent of the individual values of Ravg and C, but is influenced

by the ratio Ravg

C
, for both large-scale and small-scale bursts. This is a

significant property — it implies that the impact of burstiness dos not change
as we consider upcoming networks with higher transmission capacities of
40-100 Gbps.

8Note again that Ron < C limits the maximum feasible choice of Ravg

for a given
Toff

Ton
.



Ton

Toff
= 4.

• For a given Ton

Toff
, the impact of the individual choice of

Ton is minimal. This is a very interesting observation—
the timescale of cross traffic burstiness does not signif-
icantly influence Rapid’s performance (as long as the
smoothing timescales τ and η are larger), but the relative
durations of burst and idle periods do!

Our use of the model in this section reveals that once the Rapid
protocol parameters are configured ideally (smaller τ−η, large
τ ), the impact of cross traffic is dependent mostly on the
relative load of cross traffic, Ravg

C , and the relative burstiness-
to-idleness ratio: Ton

Toff
. With ideal parameter configuration, the

ability of Rapid to full utilize the bottleneck link can vary
from 80% to 95%, depending on the combination of these
two factors.

VIII. CONCLUDING REMARKS

The packet-scale paradigm is a promising framework for
ultra-high speed networks. However, it can deliver on its
promise only if network “noise” does not adversely impact
its bandwidth estimation process. This paper conducts the
first analysis of the interaction of the packet-scale paradigm
with one source of noise: traffic burstiness. The analysis
relies on a first-principles approach to gain several simple but
fundamental insights on the influence of network, traffic, and
protocol parameters on the efficiency of the paradigm.

While this analysis is an important first step, it is only a
small one in understanding the interaction of the packet-scale
paradigm with sources that can introduce “noise” in the inter-
packet gaps. We are currently extending this analysis in the
following directions: (i) An important source of “noise” is
non-bottleneck buffering, which occurs in almost all store-
and-forward systems that packets pass through. This buffering
occurs at very fine timescales—the packet-scale paradigm
is uniquely likely to get impacted by this due to the fine
timescales at which it operates. (ii) On a similar note, bottle-
neck burstiness that occurs at timescale smaller than probing-
streams are likely to impact the paradigm in ways that this
paper does not study. We are currently relying on packet-
level queuing theory to study these issues. (iii) Obviously, the
periodic on-off cross traffic model is unrealistic. However, we
believe it has helped us understand the relative role of several
factors and it is likely this will hold as we study more complex
and realistic models for traffic burstiness.
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IX. INFLUENCE OF A RESIDUAL QUEUE

We formally derive Observation 1 for the case when all
packets of a p-stream belong to the same busy period of the
router link.

Let a1 and a2 be the arrival times at the bottleneck link of
two successive packets, p1 and p2, of a p-stream. Let d1 and
d2 be their departure times. Since p1 and p2 belong to the
same busy period, we have:

d2 − d1 =
P

C
+
BCT (a1, a2)

C
(5)

where P is the packet size of p2, and BCT (a1, a2) is the
amount of cross-taffic that arrives in the interval (a1, a2) (and
gets inserted in between the two p-stream packets).

If p2 is sent at a probing rate of r2, then we have: a2 −
a1 = P

r2
. Let RCT denote the average cross traffic arrival

rate in the interval (a1, a2). Then we have: BCT (a1, a2) =
RCT (a2 − a1). Thus, we have:

d2 − d1 =
P

C

(
1 +

RCT

r2

)
(6)

Rearranging and solving, we get: d2 − d1 > a2 − a1 iff r2 >
C − RCT . Hence, the relation between the departure gaps
and the arrival gaps (and consequently, the avail-bw estimates
yielded by the p-stream) depend only on the cross traffic that
arrives along with the p-stream packets (and is independent of
the amount of residual queue).

X. WORST-CASE ALIGNMENT FOR CASES L3, S2, S4,
AND S5

In cases where the Rapid traffic burst can fit only partially
inside the cross traffic burst period, Rapid is increasing its
sending rate when the burst period begins and is decreasing
its sending rate when the period ends. In such cases, the
maximum queue buildup will depend on RM1 and RM2, the
instantaneous send rates of Rapid at the beginning and end of
the burst period, respectively. The maximum queue size with
respect to t, the length of time from the beginning of the burst
period until Rapid completes ramping up to its highest sending
rate RH , is described by

Q =
RH

2
(2Ton − T ) +

(
RM1

2

)
t+
(
RM2

2

)
(T − t)−

(C −Ron)Ton



where T is the amount of time during the burst period
during which Rapid is not sending at its highest rate RH .
By differentiating with respect to t, we determine that Qmax

is maximized when RM1 = RM2. Thus, worst-case queue
buildup in the case where the Rapid burst fits partially within
the cross traffic burst period is described by

Q =
RH

2
(2Ton − T ) +

(
RM

2

)
T − (C −Ron)Ton

where RM = RM1 = RM2; the relationship between RM1

and RM2 can be used to solve for RM when analyzing Qmax.


