
A Passive State-Machine Approach for Accurate Analysis
of TCP Out-of-Sequence Segments �

Sushant Rewaskar, Jasleen Kaur, and F. Donelson Smith
Department of Computer Science

University of North Carolina at Chapel Hill

rewaskar@cs.unc.edu, jasleen@cs.unc.edu, smithfd@cs.unc.edu

ABSTRACT
In this paper we describe a new tool being made available to the
networking research community for passive analysis of TCP seg-
ment traces. The purpose of the tool is to provide more complete
and accurate classification of out-of-sequence segments than those
provided by prior tools. One of the crucial factors that limits the
accuracy of prior tools is that these do not incorporate variations
across TCP implementations (for different operating systems) that
have different parameters (e.g., timer granularity, minimum RTO,
duplicate ACK thresholds, etc.) or algorithms that influence what
can be inferred about out-of-sequence segments. Our tool explic-
itly accounts for implementation-specific details in four prominent
TCP stacks (Windows, Linux, FreeBSD/Mac OS-X, and Solaris).
We validate our tool through several controlled experiments with
instances of all four OS-specific implementations used in the anal-
ysis. We then run this tool on packet traces of

���
million Internet

TCP connections collected from
�

different locations and present
the results. We also include comparisons with results from running
selected prior tools on the same traces.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring; C.4 [Performance
of Systems]: Measurement Techniques; D.4.m [Operating Sys-
tems]: Miscellaneous

General Terms
Measurement, Design

Keywords
TCP Analysis, Passive, State Machine, Loss

1. INTRODUCTION
In this paper we describe a new tool being made available to

the networking research community for passive analysis of TCP
segment traces. The purpose of the tool is to provide more com-
plete and accurate results for identifying and characterizing out-
of-sequence segments than those provided by prior tools such as
tcpanaly, tcpflows, LEAST, and Mystery [9, 18, 19, 26].

Our methodology classifies each segment that appears out-of-
sequence (OOS) in a packet trace into one of the following cate-
gories: network reordering or TCP retransmission triggered by one
�
This research was supported in part by NSF CAREER grant CNS-

0347814, a UNC Junior Faculty Development Award, and NSF RI
grant EIA-0303590.

of—timeout, duplicate ACKs, partial ACKs, selective ACKs, or
implicit recovery. Further, each retransmission is also assessed for
whether it was needed or not.

One of the crucial factors that limits the accuracy of prior tools
is that different TCP implementations (for different operating sys-
tems) have unique parameters (e.g., timer granularity, minimum
RTO, duplicate ACK thresholds, etc.) or algorithms that influ-
ence what can be inferred about out-of-sequence segments. Our ap-
proach is to analyze each TCP segment trace from the perspective
of each of four implementations (Linux, Windows, FreeBSD/Mac
OS-X, and Solaris) and determine which specific implementation
behavior best explains the out-of-sequence segments and timings
observed in the trace.

We validate our tool through several controlled experiments with
instances of all four OS-specific implementations used in the anal-
ysis. We then run this tool on packet traces of

���
million Internet

TCP connections collected from
�

different locations and present
the results including comparisons with results from running se-
lected prior tools on the same traces.

Given that prior tools have been shown to provide reasonably
good results, one might question whether the additional complete-
ness and accuracy justifies creating a new tool. We believe that they
do so for the following reasons. First, as we discuss in Sections 2
and 5 below, each of these prior tools has particular strengths and
weaknesses for analyzing some aspect(s) of out-of-sequence seg-
ments but none deal with all aspects at the desired level of accuracy.
Second, a number of potential uses for the analysis results are much
enhanced when they are are accurate. For example, while the TCP
loss detection and recovery mechanisms are quite mature and un-
likely to undergo major design changes, there may still be opportu-
nities for “fine-tuning” to improve certain cases. Prior studies have
indicated (and our analysis in this paper has substantiated) that re-
transmissions are triggered much more frequently by timeouts than
by duplicate ACKs, and that significant numbers of retransmissions
are unnecessary. Having accurate data on issues such as these is
necessary for quantifying the potential benefits of fine-tuning these
TCP mechanisms. Another example where accurate results from
analysis of out-of-sequence segments are needed is in validating
and evaluating models of TCP performance; such models are based
on the evolution of TCP’s congestion window as it changes along
with retransmissions, and according to how the need for a retrans-
mission was detected (timeout or duplicate ACKs) [14, 15, 25]. An
inaccurate classification of such retransmission can mislead such
evaluations.

In the rest of this paper, we describe our passive analysis method-
ology in Section 2. We present tool validation in Section 3 and our
analysis of Internet connections in Section 4. We summarize re-
lated work in Section 5 and our conclusions in Section 6.



2. PASSIVE INFERENCE OF TCP LOSSES
A packet trace of a TCP connection is a time-ordered sequence

of data segments and acknowledgments (ACKs) exchanged (and
observed at the trace-collecting monitor) between the TCP sender
and the TCP receiver. Our objective is to find out, given a packet
trace, which TCP segments were lost in the network. Below, we
first describe the sources of Internet packet traces used throughout
this paper and then describe our passive loss inference methodol-
ogy.

2.1 Data Sources
Table 1 describes the traces used in our analysis. These traces

are collected from links with transmission capacity ranging from
155 Mbps to OC-48. The abi traces [5] are collected from a back-
bone link of the Internet-2 network (Abilene); the jap trace [6] is
collected off a trans-Pacific link connecting Japan to the US by the
MAWI working group; the unc trace is collected at the campus-
to-Internet links of the University of North Carolina; and the wls
and wrd traces are captured inside the UNC campus. The wls trace
captures wireless TCP connections from over 600 wireless access
points while the wrd trace captures just the wired network. The
lei [4] traces are collected at the campus-to-Internet links of Uni-
versity of Leipzig; the ibi trace captures traffic served by a cluster
of high-traffic web-servers (mirror for ibiblio.org). All traces ex-
cept the one from the link to Japan were collected using Endace
DAG cards [2]; the jap trace was collected using tcpdump [17].
The abi and lei traces are from the NLANR repository. The unc,
ibi, and jap traces include TCP options as well. Our trace set is
fairly diverse in its geographic location, proximity to TCP senders,
as well as types of users represented.

For our analysis, we use only those connections that transmit
at least 10 segments. Furthermore, since our objective is to study
TCP retransmissions, we select only those connections in which at
least one OOS segment is observed (“OOS” connections). Table 2
shows the impact of applying the latter filter. While less than

�����
of connections that transmit at least 10 segments also have some
OOS segments, these connections carry most of the bytes in this
class. Furthermore, the traces vary significantly in the distribution
of bytes transmitted per connection—this adds to the diversity of
our results.

2.2 Passive Loss Inference Methodology
TCP uses a well-known combination of detection and recovery

mechanisms to deal with packet losses—we refer the reader to [8,
12, 15, 16, 23, 31] for details of retransmission timeouts (RTOs),
fast retransmit/recovery (FR/R), triple duplicate acks (TDA), par-
tial acks (PAs), and selective acks (SACKs). Each of these mecha-
nisms is used to detect and retransmit segments that are perceived
to be lost. Below we consider several approaches that exploit the
existence of these mechanisms, for reliably inferring packet losses
from the packet trace of a TCP connection.

Why not consider all retransmissions?
Since TCP retransmits segments on detecting packet losses, the
simplest (and common) approach for inferring segment loss is to
simply look for the reappearance of some segments in the TCP
packet trace and assume that the original transmission was lost
somewhere between the monitor and the receiver [21]. However,
this approach can lead to over-estimation of losses as illustrated in
Fig 1, which depicts part of a TCP connection selected from the
unc trace. Segment 3 is retransmitted during a post-timeout pe-
riod, although the original transmission was successfully received

Figure 1: Implicit TCP Retransmission. Segment 1 is retrans-
mitted due to a timeout. Segment 2 is a necessary implicit
retransmission while segment 3 is an unnecessary implicit re-
transmission triggered simply due to TCP’s recovery mecha-
nism.

(as is confirmed by the subsequent duplicate ACK). In [9], Allman
proposes an algorithm, LEAST, that accounts for such unneeded re-
transmissions in computing the true loss rate of a connection, by
simply subtracting the count of duplicate ACKs that are received
after timeouts. However, such an approach does not help identify
which retransmissions were unneeded.

Note that while segment 3 was retransmitted, this was not the
result of any explicit loss detection/recovery attempt by the TCP
protocol. This example, thus, illustrates that in order to reliably in-
fer packet losses from all segment retransmissions, it is important to
track the explicit triggering of TCP’s loss detection mechanisms—
namely, RTO, TDA, PA, and SACK.

Why not simply track TCP sender state?
It turns out that even simply tracking the triggering of loss detec-
tion/recovery mechanisms in a TCP sender—as is done in [19]—is
not sufficient for reliably inferring packet losses. This is because
of two reasons related to TCP’s inability to accurately infer packet
losses:

Some losses do not trigger TCP’s loss detection phases. For im-
plementation efficiency, TCP senders maintain only a limited his-
tory about unsuccessful transmissions. In particular, if multiple
packet losses are followed by a timeout, the sender explicitly dis-
covers and recovers only from the first of those losses. As a re-
sult, the remaining packet losses may not get discovered by sim-
ply tracking the invocation of TCP’s four loss detection mecha-
nisms (RTO, TDA, PA, SACK). Fig 1 illustrates this for segment 2,
which was unsuccessfully transmitted the first time. The segment
gets retransmitted in the post-timeout period, but without explicitly
triggering TCP’s loss detection/recovery mechanisms. It is, thus,
important to identify implicit retransmissions that are needed for
recovering from packet losses.

Note that if history about all previously transmitted data packets
is maintained, then the ACK stream can help identify such retrans-
missions (in Fig 1, the cumulative ACK received after retransmis-
sion of segment 1 indicates that segment 2, which was previously
transmitted, was lost).

A TCP sender may incorrectly infer packet losses. TCP may re-
transmit a packet too early if its RTO computation is not conser-



Trace Duration Avg TCP Load # Connections # Bytes # Packets
Abilene-OC48-2002 (abi) 2h 211.41 Mbps 7.1 M 190.3 G 160.1 M
Japan-155Mbps-2004 (jap) 4h 1.93 Mbps 0.3 M 3.5 G 3.7 M
UNC-wireless-2005 (wls) 178h 1.58 Mbps 20.2 M 126.9 G 157.6 M
UNC-wired-2005 (wrd) 178h 2.18Mbps 6.8M 175.1 G 217.5 M

Liepzig-1Gbps-2003 (lei) 2h 45m 9.53 Mbps 2.4 M 11.8 G 17.3 M
UNC-1Gbps-2005 (unc) 4h 74 Mbps 14.5 M 133.3 G 151.0 M
Ibiblio-1Gbps-2005 (ibi) 4h 90.64 Mbps 0.9 M 163.2 G 158.9 M

Table 1: General Characteristics of Packet Traces. The trace name indicates the location, link speed, the year data was collected and
the acronym used for the trace. The remaining columns describe the duration of the trace, average load on the link, and the number
of connections, bytes, and packets.

All Connections OOS Connections All OOS Segments Explained
Trace # Conn # Bytes # Packets # Conn # Bytes # Packets # Conn # Bytes # Packets

abi 389.0 K 180.1 G 148.4 M 66.1 K 120.1 G 100.0 M 40.5 K 55.8 G 45.0 M
jap 58.0 K 5.0 G 4.8 M 29.8 K 4.2 G 4.1 M 23.1 K 1.3 G 1.5 M
wls 329.8 K 121.7 G 144.1 M 101.3 K 113.3 G 122.1 M 63.3 K 28.0 G 40.1 M
wrd 290.9 K 171.3 G 208.8 M 98.0 K 167.7 G 200.0 M 73.3 K 36.7 G 63.1 M
lei 75.4 K 10.5 G 12.6 M 14.0 K 7.8 G 9.7 M 10.7 K 3.1 G 4.4 M
unc 774.8 K 121.3 G 129.5 M 168.1 K 94.7 G 100.5 M 131.7K 46.0 G 49.1 M
ibi 287.5 K 161.8 G 157.2 M 78.5 K 135.6 G 129.5 M 59.8 K 57.4 G 64.9 M

Table 2: Characteristic of Connections That Transmit More Than 10 Segments. Connections that transmit atleast 10 data segments
are described under “All Connections”. Out of these, the connections with traces that contain atleast one OOS segment are described
under “OOS Connection”. The final set of columns describe the characteristics of the connections for which our tool was able to
unambiguously explain and classify all OOS segments.

Figure 2: Unneeded Retransmission. This visualization of a
real connection from the unc trace shows how a single occur-
rence of network reordering results in some spurious duplicate
ACKs, that ultimately trigger 64 subsequent phases of unnec-
essary retransmissions.

vative. Furthermore, some packet re-ordering events may result in
the receipt of TDAs, triggering a loss detection/recovery phase in
TCP. In fact, Fig 2, which again depicts part of a TCP connec-
tion selected from the unc trace (and visualized using the tcptrace
utility [3]), plots a connection in which a single packet reordering
event resulted in the triggering of 	�
 subsequent phases of fast re-
transmit/recovery, that lasted for more than

�
seconds! It is, thus,

important to identify explicit retransmissions that are not needed
for recovering from packet losses.

Such unneeded explicit retransmissions are not identified by
LEAST [9]—our analysis of Internet TCP connections in Section 4
shows that more than 90% of unneeded segment retransmissions in
the Internet may occur due to explicit loss detection/recovery ac-
tions by TCP. Note that an explicit retransmission can be identified
as unneeded if an ACK is received within a fraction of the connec-
tion’s minimum RTT after the segment is retransmitted—we use a
fraction of 0.75 in our analysis.

Basic Approach
As reasoned above, if the timing and history about all previously
transmitted packets are maintained for each connection, then the
ACK stream can help achieve each of the three goals outlined above.
Based on this intuition, our basic approach for passive inference of
TCP losses is to: (i) replicate partial state machine for a TCP sender
that uses the data and ACK streams to track the triggering of loss
detection/recovery mechanisms, and (ii) augment the state machine
with extra state and logic about the transmission order and timing of
all previously-transmitted packets, in order to classify retransmis-
sions as needed or not. Using this basic approach, we can classify
segment retransmissions as triggered by: (i) RTOs, (ii) TDAs, (iii)
PAs, (iv) SACKs, and (v) implicit. Furthermore, each retransmis-
sion is also classified as needed or unneeded. Fig 3 depicts this
classification taxonomy.

A similar approach is taken in [19] for developing a tool, tcpflows,
for studying congestion window behavior of TCP connections. How-
ever, due to the different objective, tcpflows does not focus on ac-
curately identifying and classifying segment losses. In particular, it
classifies retransmissions into RTO-triggered, TDA-triggered, RTO-
recovery, and FR/R-recovery. It does not analyze implicit retrans-
missions (RTO-recovery) to see if these are needed or not. In Sec-
tion 4, we show that up to 30% of needed (and up to 40% of un-
needed) segment retransmissions in the Internet occur during such
an RTO-recovery phase.



2.3 Practical Challenges in Loss Inference
Three kinds of practical concerns complicate the implementation

of the above approach. We describe these concerns and how we
address them below.

Diverse and Non-documented TCP Stacks
The Challenge:
TCP implementations written by different operating system (OS)
vendors may differ (sometimes significantly) in either their inter-
pretations or their conformance to TCP specification/standards. Fur-
thermore, a few aspects of TCP—such as how a sender responds to
SACK blocks—are not standardized. As a result, the sender-side
state machines can differ across OSes. This results in two main
challenges in implementing our basic approach. First, the differ-
ence in implementations on different OSes necessitates that we im-
plement different analysis tools to analyze connections originating
from different sender-side OSes. More significantly, given the trace
of a TCP connection, it is non-trivial to identify the corresponding
sender-side OS and decide which OS-specific analysis program to
use for analyzing the connection. Second, most OSes either have
proprietary code or have insufficient documentation on their TCP
implementations. Without detailed knowledge of the loss detec-
tion/recovery implementations, it is not trivial to replicate these
mechanisms in our OS-specific analysis programs.

This challenge has not been addressed in tcpflows [19], which
replicates only the TCP standards specification [8, 12, 16, 23, 27].
tcpflows has been validated only against connections with FreeBSD
senders (that follow the standards closely). Our analysis of general
Internet connections in Section 4 reveals that more than 80% of
real-world connections involve either a Windows or Linux sender.
More importantly, we find that analyzing such connections with a
FreeBSD-based tool can introduce significant inaccuracy in identi-
fying and classifying TCP losses.

Our Approach:
We consider and incorporate 4 prominent OS stacks in our analysis
tools—namely, Windows XP, Linux2.4.2, FreeBSD 4.10, and So-
laris. The TCP sender stack in MacOS is identical to the FreeBSD
stack; hence this OS is also implicitly incorporated in our analysis.
We used the popular passive fingerprinting tool, p0f [32], in order
to identify the sender OS in three of our traces (unc, ibi and jap)—
we found that nearly 90% of TCP connections originated from one
of these 5 sender-side OSes.

We extract sufficient details about the implementation of loss de-
tection/recovery in the above OS stacks using three different ap-
proaches: (i) by studying the source code when publicly available,
(ii) through direct communication with OS Vendors, and (iii) by
using an approach similar to the TBIT approach described in [24]
(in order to infer non-public details). To extract OS information
using TBIT we install all four above-mentioned OSes on experi-
mental lab machines and run the Apache web-server on each ma-
chine. We then implement an application-level TCP receiver (by
borrowing from the TBIT code base) that initiates TCP connections
to each of the server machines and requests HTTP objects. Once
the server machines start sending the objects, the receiver artifi-
cially generates different sequences in the ACK stream to trigger
loss detection/recovery mechanisms on the sender-side stacks (in-
cluding TDAs, RTOs, PAs, and SACKs). We then use the man-
ner in which the server responds to the ACK stream for inferring
several characteristics of the sender-side TCP implementation, in-
cluding the computation of RTO, the number of duplicate ACKs
that trigger FR/R, and the response to SACK blocks. Details of the

extracted characteristics can be found in Table 3 and in [28]. We
use these details in our implementation of four OS-specific trace
analysis programs.

For each TCP connection to be analyzed, we run its packet trace
against all four analysis programs. We then select the program that
is able to explain and classify each retransmission event.

Delays and Losses Between Monitor and Sender
The Challenge:
Packet traces used in passive analysis are typically collected at links
that aggregate traffic from a large and diverse population. As a
result, there may be several network links on the path between a
TCP sender and the trace monitoring point. Thus, the data packets
transmitted by the sender may experience delays,1 losses, dupli-
cation, or reordering before the monitor observes them; the same
is true for ACK packets that traverse between the monitor and the
sender. Consequently, the data and ACK streams observed at the
monitor may differ from those seen at the TCP sender. In partic-
ular, if some of the TDAs observed at the monitor fail to reach
the sender, the analysis programs may incorrectly conclude that the
sender has entered FR/R. Similarly, if a data packet gets lost be-
fore it reaches the monitor, and subsequently gets retransmitted,
the analysis programs may fail to infer that the packet has been re-
transmitted. Thus, the programs may not be able to accurately track
the sender-side state machine.

Our Approach:
In order to deal with this complication, we use a general approach
in which loss indications in the ACK stream trigger only tentative
state changes in the monitor state machine, which are confirmed
only by subsequent retransmission behavior by the sender. In ad-
dition, we consider all out-of-sequence (OOS) segments (and not
just retransmitted segments) as possible indicators of packet loss.
Furthermore, we infer network reordering by either (i) detecting if
an OOS segment appears within a fraction (0.75) of the connec-
tion’s minimum RTT after the segment with the next higher se-
quence number, or (ii) detecting reordering in the IP-id field of
packets seen from a given TCP source. Finally, we infer network
duplication of packets by detecting repetition in the IP-id field of
reoccurring segments seen from a given TCP source. We remove
such duplicated OOS segments from further analysis.

Non-availability of SACK Blocks in Traces
The Challenge:
A large number of traces do not capture the TCP option field. SACK
blocks are transmitted as TCP options and hence are not available

1The RTT measured at the monitor (monitor-receiver-monitor) is
less than that measured at the sender (sender-receiver-sender). We
address this issue (i) by estimating the monitor-sender-monitor de-
lay during the initial three-way SYN/SYN+ACK handshake, and
(ii) by adding this quantity to each estimate of the monitor-receiver-
monitor delay, in order to obtain the sender-receiver-sender RTT.
The initial sub-RTT obtained from the SYN/SYN+ACK exchange
is a good approximation of the minimum monitor-sender-monitor
delay [7]. If subsequent delays on this sub-path vary significantly,
the RTO computed at the monitor may be smaller than that used
by the sender. Fortunately, this discrepancy does not negatively
impact our analysis—the RTO is used as a minimum threshold for
the gap between the original transmission and retransmission of a
lost segment. Therefore, a smaller-than-actual value of RTO would
simply lower the threshold and still be able to correctly identify
retransmissions that occur due to timeouts.



All Out of Sequence Packets

Retranmissions

Needed No Inference Unneeded

ImplicitSackPartial AcksDupackRTO

Explained By TCP Behavior

Network Reordering Unexplained

Figure 3: Classification Taxonomy.

for passive analysis of these traces. The sender may have used the
SACK block information to retransmit certain packets. In absence
of these blocks, the monitor will fail to accurately identify the cause
of these retransmissions.

Our Approach:
To overcome this problem, we develop the following heuristic to
identify whether a packet could have been triggered by incom-
ing SACK information. We classify a segment retransmission as
SACK-triggered if: (i) the connection is in FR/R, (ii) the retrans-
mission is not explained by either RTO or a PA, and (iii) the se-
quence number of the retransmitted segment is less than the high-
est sequence number that was in flight when the connection entered
FR/R. We evaluate this heuristic using the unc and jap traces. We
first run our analysis tools with the SACK blocks available and log
all OOS segments that were SACK-triggered. Then we remove the
SACK blocks from these traces and run the tools with the above
heuristic. The heuristic-based analysis identified all of the OOS
segments identified as SACK-triggered by the analysis based on
SACK blocks; however, it also marked 6.9% and 15.3% of the
unexplained events as being SACK-triggered, in the unc and jap
traces respectively. Our analysis of Internet TCP connections in
Section 4 shows that only a small fraction (less than 7%) of all
OOS segments are SACK-triggered—the possible overestimation
introduced by the above heuristic, therefore, is not significant.

2.4 Summary of Our Methodology
Our methodology for reliably inferring and classifying TCP losses

can be summarized as follows.

1. We first extract the implementation details of four prominent
TCP stacks (Windows XP, Linux 2.4.2, FreeBSD 4.10 (Ma-
cOS), and Solaris) using the approaches described in Sec-
tion 2.3. These details primarily include the initial RTO, the
minimum RTO, the RTO estimation algorithm, the number
of duplicate ACKs that trigger FR/R, and the responses to
partial ACKs and SACKs. In addition, some OS-specific pe-
culiarities are included—for instance, if a segment with op-
tions fields is to be retransmitted in FR/R, some versions of
Windows transmit a small packet equal to the size of the op-
tions field.

2. We then replicate the loss detection/recovery mechanisms in
four OS-specific analysis state machines—these state ma-
chines use the data and ACK streams as input. Loss indi-
cations in the ACK stream are used to only tentatively trig-
ger state transitions, which are confirmed only by subsequent
segment retransmission behavior. For instance, on detecting

an RTO-based retransmission, the state machine will enter an
“RTO-recovery” state. A new RTO is calculated, any pend-
ing RTT measurements are canceled and the SACK block, if
present, is cleared. The machine exits this state on receiving
an ACK for the highest packet that was in flight when RTO
was detected.

3. We then augment these machines with extra logic and state
about all previously-transmitted packets, in order to clas-
sify retransmissions as needed or unneeded and infer packet
losses with accuracy greater than TCP.

4. We then run each connection trace against all four machines
and use the results from the one that can explain and classify
all of the observed OOS segments. In case more than one
machine matches this criteria, we check if the classification
of each OOS segment is the same in each machine. If not,
we discard the connection. We also discard the connection in
case none of the machines can explain each OOS segment.

Our methodology classifies all OOS segments that appear within
the packet trace of a TCP connection, according to the taxonomy
depicted in Fig 3.

We have implemented the above machines in the C programming
language. All four implementations can analyze more than a mil-
lion connections in a few minutes. Several details of our methodol-
ogy and implementation have not been included in this section due
to space constraints. These details can be found in [28]. The source
code is available online via [1].

In the next two sections, we validate our methodology and com-
pare its performance with past work.

3. VALIDATION
Our primary validation method is to compare the output from the

analysis tools for TCP connections where the “ground truth” about
the classification of each OOS segment is known. To do this, we
modified the TCP Behavior Inference Tool (TBIT) [24] in order to
observe the sender’s responses under additional controlled condi-
tions. We supplement this validation by comparing the determina-
tion made by the tools for identifying a specific OS implementation
with the results from p0f [32] - a well-known passive fingerprinting
tool.

3.1 Validation Against TBIT Controlled Condi-
tions

TBIT emulates a TCP protocol stack for the receiver side of a uni-
directional data transfer where the sender is a normal application
(in our case a Web server) running over a real TCP implementation
in a specific operating system. We modify TBIT to simulate dif-
ferent packet loss scenarios that would trigger sender responses by
withholding ACKs, sending duplicate ACKs, and providing SACK
blocks. Because the state-machine analysis critically depends on
inferring the TCP sender’s RTO to identify retransmissions trig-
gered by timeouts, we use TBIT to delay ACKs thus simulating
variable round-trip delays. For some of the validation scenarios
described below we also use dummynet on the TBIT machine to
create additional constant latency between the sender and receiver.

For each validation scenario we used two machines, one run-
ning TBIT and the other running a web server, connected over a
switched 100/1000 Mbps Ethernet that is shared by users in the
Computer Science department. TBIT established a TCP connection
to the web server and sent a valid HTTP request for a very large
file. TBIT then implemented the desired validation scenario with a
specifically generated ACK stream. Unless stated otherwise, each



Parameter Linux Windows FreeBSD Solaris
Timer granularity 10ms 100ms 10ms 10ms

Initial RTO (s) 3 3 3 3.375
Min RTO (ms) 200 200 1200 400

RTO srtt + srtt + srtt+ 1.25*srtt +
vartt 4*rttvar 4*rttvar 4*rttvar

Dup-ACK threshold 3 2 3 3

Table 3: Values of key parameters in different TCP Stacks

validation scenario was repeated 100 times because not all sources
of variation in timing could be controlled (e.g. OS scheduling, Eth-
ernet switch delays, etc.). Separate estimates of these uncontrolled
delays concluded that the majority were less than 1 millisecond and
nearly all were less than 10 milliseconds.

The entire suite of validation scenarios was run with TBIT con-
necting to each of four different TCP implementations on the server
machine – Windows XP, Solaris, Linux 2.4.2, and FreeBSD 4.10.
Bidirectional tcpdumps of all packets were taken on these server
machines and the traces were then used as input to our validation
procedures. The procedures have two parts – (1) to verify that
each TCP implementation responds in real operation as expected
(thus establishing the “ground truth”) , and (2) to verify that the
state-machine analysis programs correctly emulate each implemen-
tation’s responses. For part (1) we processed the tcpdump traces
with tcptrace [3] and other tools to verify the implementations’ re-
sponses by inspection. For part (2), we used the tcpdumps as input
to the state-machine analysis programs and recorded their outputs.
By comparing the results from the state-machine analysis with the
known implementation responses, we could determine how correct
the inferences about conditions at the sender were. We also used
the tcpdumps as input to the analysis program, tcpflows, presented
in [19] but report the results from this only when they differ sub-
stantially from ours. In addition, we implement the LEAST algo-
rithm from [9] for identifying unneeded retransmissions.

3.1.1 RTO classification:
The first group of validation scenarios deal with how well the

state-machine analysis can infer the sender’s estimate of RTT and
RTO which are critical in identifying retransmissions triggered by
timeouts. In this group of validation scenarios, TBIT causes all re-
transmissions to be triggered by timeouts (by withholding ACKs).
The analysis state machine for each implementation requires cor-
rect values for parameters defining the initial and minimum RTO,
the timer granularity, and the equations used in computing RTO.
These elements are verified as part of the validation results. Table 3
gives the values used in the state machine for each TCP implemen-
tation.2 3

RTT estimation:
Dummynet was used in experiments with constant minimum RTTs—
of 50, 100, 150, 200, 400, 1000, and 2000 ms—between the two
machines. All RTTs estimated for segment/ACK pairs by our state
machines were within +/- 10 milliseconds of the value set by dum-
mynet (these differences are consistent with the inherent variable
delays in the switches).

2Details about the RTO computation (srtt and rttvar) are taken from
RFC 2988 [27]. Linux, however, uses a significantly different com-
putation for the variance in RTT—we extract this from the Linux
source code. The details can be found in [28].
3Some parameters for Windows are based on private communica-
tion with engineers at Microsoft Corp.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Estimation Error Normalized to Timer granularity

Linux
BSD
WIN 

Sol

Figure 4: Error in RTO estimation for different OSes

Initial RTO setting:
The initial RTO parameter helps classify retransmissions of SYN or
SYN+ACK segments at connection establishment. TBIT initiated a
connection (sent SYN) but did not respond to the SYN+ACK sent
by the server. This resulted in a retransmission of the SYN+ACK
after the initial RTO interval. Our OS-specific state machines cor-
rectly identified the SYN+ACK retransmission as being triggered
by RTO; further, the measured RTO was equal to the value expected
+/- the timer granularity (also shown in Table 3).

Minimum RTO setting:
No delays were added to the actual RTT (typically 1 millisecond)
over the switched Ethernet. TBIT received and ACKed a signif-
icant number of segments (typically 50 or more) so the sender’s
RTO calculation stabilized before withholding all ACKs to trigger
an RTO retransmission. The extremely small RTT and the stabi-
lization of the RTO before we simulate a dropped packet ensure
that RTO should occur after an interval approximately equal to the
minimum RTO. The OS-specific state machines correctly identified
these retransmissions as triggered by RTO using these minimum
values and timer granularities.

RTO Estimation
These validations were conducted with both near-constant and highly
variable random delays. For the experiments with near-constant de-
lays (varying by only 1-10 ms caused by switch delays), we used
dummynet to set a target minimum RTT ranging from 10 to 1000
ms between the two machines. For experiments with highly vari-
able delays, ACKs were delayed randomly by TBIT to vary the RTT
from 0 to 400% above the dummynet minimum delays described
above. In both sets of experiments TBIT triggered RTO retransmis-
sions by withholding ACKs after a randomly selected packet.

Figure 4 summarizes the results of all the RTO experiments. It
shows the CDF of the error between the actual RTO extracted from
the tcpdump and the RTO value predicted by the state machines,
normalized to the timer-granularity. We see that the errors fell well
within the timer granularity for a particular OS except for Win-
dows. Windows exhibits a strong instability in its RTO calculation.
We contacted engineers at Microsoft who attributed our observa-
tions to a “rounding issue” with the OS, the details of which were
not revealed due to copyright issues. However, our heuristics for
timeout detection in the state machine for Windows are conserva-
tive enough to not be affected by the error. In terms of absolute
numbers, the difference between the observed and state machine



Trace # OOS p0f-identified % Linux % Windows % FreeBSD % Solaris % Other
Connections Connections Correct Wrong Correct Wrong Correct Wrong Correct Wrong OSes

jap 23923 21260 (89%) 25.79 0.02 21.21 0.32 41.51 0 1.98 0.05 9.11
ibi 59713 59713 (100%) 99.80 0.20 0 0 0 0 0 0 0
unc 138214 136524 (99%) 7.26 0 78.08 0.69 5.02 0 8.52 0.17 0.25

Table 4: Validation using p0f. The third column lists the number (and percent) of connections for which p0f was able to identify the
source OS. For each OS, we next list the percent of connections for which our estimation of sender OS was correct or wrong. The last
column lists the percent of connections which did not belong to any of the OSes that we model. All percent values are with respect to
the second column.

RTO was within
������

for Linux and within
����

for FreeBSD and
Solaris.

These experiments also allowed us to estimate the percentage
of RTO timeout events that would have been missed if we used
only the RFC specifications in the analysis tools as is done for
tcpflows [19]. We found that if only the RFC specification was
used, we would miss 85% of RTO events in Linux TCP connec-
tions, 55% in Windows, and 100% in Solaris. This is perhaps the
most important reason that OS-specific logic needs to be incorpo-
rated in the analysis tools.

3.1.2 FR/R classification:
The second group of TBIT validation scenarios deals with how

well the state-machine analysis can infer the sender’s response to
duplicate ACKs, partial ACKs in Fast Recovery, and SACK blocks.
In all cases, TBIT received and ACKed a randomly chosen number
of segments before creating a specific loss scenario.

Number of duplicate ACKs to trigger retransmission:
To simulate this case, TBIT sent duplicate ACKs (without delays)
in response to subsequent segments (thus simulating loss of a ran-
dom segment). The number of duplicate ACKs was varied from
1 to 4. We repeated each of these experiments 4 times with dif-
ferent random number seeds. In the absence of enough duplicate
ACKs, the sender times out and this is detected correctly by our
OS-specific state machines. In the presence of enough duplicate
ACKs, the retransmission was by a Fast retransmit and our OS-
specific state machines also classified these events correctly. For a
windows connection, the tcpflows tool failed to identify the retrans-
missions triggered by 2 duplicate ACKs. This is because it assumes
that 3 duplicate ACKs are needed, as is recommended in the RFC
specification.

Response to Partial ACKs in Fast Recovery:
TBIT triggered a retransmission by sending sufficient duplicate ACKs
(as described above) and then sent partial ACKs for a randomly
chosen segment from among those transmitted between the origi-
nal and retransmission. We repeated this experiment 4 times with
different random seeds. Our OS-specific state machines correctly
identified these Partial ACK events. Note that Windows TCP does
not retransmit on receiving a partial ACK during FR/R but instead
retransmissions are triggered by RTO (does not implement newReno
but does use SACK if present).

Response to SACK blocks
TBIT triggered a retransmission by sending sufficient duplicate ACKs
and generated several different cases of SACK block contents indi-
cating gaps in the received segments beyond the simulated loss. In
all cases, our OS-specific state machines correctly classified such
retransmissions. There are minor differences in the way Windows

responds to SACK. This can cause a RTO-triggered retransmission
even in presence of correct SACK blocks. These packets were
correctly classified by our Windows-specific state machine. The
tcpflows tool, which does not use SACK blocks, classified the above
as simply retransmissions during “FR/R recovery”.

Unneeded and Needed Retransmissions:
TBIT simulated instances of the implicit retransmission scenario
of Fig 1. In a second set of scenarios, it sends spurious duplicate
ACKs to trigger an unneeded retransmission (similar to Fig 2). Our
OS-specific state machines correctly classified the corresponding
retransmissions as needed or unneeded. These experiments also
allowed us to compare our state-machine results with those we ob-
tained by implementing the algorithm used in LEAST [9]. LEAST
correctly identified the unneeded retransmissions in the first sce-
nario but failed to identify them in the second case.

3.2 Validation Against Real TCP Connections
Next, we validate our tool-set against traces of real-world TCP

connections. In this case, since we do not have access to either the
TCP sender or the receiver for these connections, the ground truth
about the classification of each OOS segment is not known. Con-
sequently, we can not use the same validation tests as those used in
Section 3.1. Instead, we use our tool to identify the sender OS (as
the one corresponding to the state machine that is able to explain
all OOS segments). Our validation evaluates how accurately does
our tool-set identify the sender-OS (and hence, is able to accurately
model the sender state machine and classify OOS segments).

For establishing the ground truth about the sender-OS, we rely
on p0f [32]—a popular passive fingerprinting tool which uses the
information present in the option fields of SYN, SYN+ACK, or
Reset segments to identify the source OS for the packet. We use p0f
to identify the sender-side OS for all OOS connections in the jap,
ibi, and unc traces that were successfully classified by our tool-set.
These traces include TCP option fields and, hence, can be analyzed
by p0f.

We compare our estimate of the sender-OS to that reported by
p0f. Table 4 reports the comparison results. The numbers listed
under the OS-specific columns report the percent of p0f-identified
connections for which our tool-set correctly or incorrectly identi-
fied the sender-OS. We observe that:

� p0f is able to identify the sender-OS for 89-100% of the con-
nections. The relative mix of sender-OS is quite different
across the three traces. This is to be expected; ibi repre-
sents connections to a cluster of web-servers, all of which run
Linux; unc represents members of an academic and medical
community, most of whom use Windows PCs; jap represents
trans-continental connections made by a generic mix of users
in Japan.



� Our estimate of sender-OS matches that of p0f for more than
99% of the connections—accuracy is high for all four OSes.
We attribute this high level of success to two factors: (i) our
in-depth modeling of sender-state as well as high granularity
of analysis of OOS segments; and (ii) our conservative ap-
proach of filtering out connections with even a single OOS
segment that is not robustly explained.

A natural question to ask is: in practice, how important is it to cor-
rectly model the sender OS? In particular, if an RFC-based analysis
tool is used, how different would the results be. We investigate this
and other issues in the next section.

4. IMPACT
We believe the reason for the high degree of accuracy of our

tool is that we insist on unambiguously explaining and classifying
all OOS segments that appear within a connection. In order to be
able to do so, our tool encodes significant amount of state and logic
and it incorporates much of the diversity across TCP implemen-
tations. It is natural to ask: in practice, how much difference does
this make? In particular, if prior tools are used to analyze real-world
OOS connections, how different would the classification results be?
We investigate this issue by raising several questions below—we
address each question by analyzing all of the seven Internet TCP
trace-sets described in Section 2.1.

� How many OOS segments can we successfully classify?
Table 2 reports the number of OOS connections in which all
OOS segments were unambiguously classified by our analy-
sis. We find that in nearly 25-35% of OOS connections, at
least one OOS segment could not be classified. Two main
factors are responsible for the failure to completely classify
a connection.

– First, we specifically model only 5 sender OS versions.
In order to study the prevalence of these OSes, we ran
p0f against all connections (whether or not they had
any OOS segments) that appear in the jap, unc, and ibi
traces. While more than 80% of connections in each
trace originated from a Windows or Linux machine,
we found that nearly 10% of connections in each trace
originated from an OS different from the above five—
such connections, consequently, may not be success-
fully modeled by our state machines.

– Second, recall that we apply a conservative filter for ac-
cepting a connection classification: (i) each OOS seg-
ment that appears in a connection trace must be ex-
plained, and (ii) the explanations must match if more
than one state machine explains all such segments.
More that 50% of the discarded connections are dis-
carded only due to the second rule above. In Section 3.2
we saw that p0f can be used quite effectively for iden-
tifying the source OS of connections. This allows us
to eliminate the second filtering rule—if more than one
state machines explain all OOS segments of a connec-
tion, p0f can be used to identify the sender OS, and the
corresponding OOS classification can be accepted. We
are currently incorporating this feature in our tool-set.

Figure 5 plots the distribution of the number of unexplained
OOS segments in each OOS connection. We see that all
segments are classified in 62-95% of the connections and
these are accepted by our filters (as is also indicated in Ta-
ble 2). More interestingly, the number of unexplained OOS

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Number of Unexplained OOS

abi
ibi

jap
lei

unc
wls
wrd

Figure 5: The distribution of the number of unexplained OOS
segments in each OOS connection.

segments are less than 5 in most of the remaining connec-
tions. Since the total number of unexplained segments is
small, it may be worthwhile to include in our analysis the ex-
plained OOS segments even from the discarded connections.
We study below how our classification results change if we
do so. For the rest of the analysis in this section, however,
we do not include results from such connections.

� How important is it to replicate TCP sender state?

Tables 5 and 7 report our classification for OOS segments in
the seven traces, according to the taxonomy of Fig 3. Table 7
shows that the fraction of retransmissions that are unneeded
(the original transmission of the segment was not lost) ranges
from 3-19%. This suggests that, in practice, TCP loss rate
would be significantly overestimated if every segment re-
transmission is taken as an indicator of packet loss—this un-
derscores the importance of modeling and replicating TCP
sender state.

In order to study the effect of our connection filter—that re-
quires that each OOS segment be unambiguously classified—
we present in Table 6, our classification results when the
explained OOS segments are included from all connections
(including the connections discarded by our filter). We find
that the number of unexplained segments are small (7-16%)
in each trace. More importantly, Tables 5 and 6 are quite
comparable in the distribution of elements within the classi-
fication tree.4 This suggests that our filter does not bias our
classification results significantly.

� How important is it to identify unneeded explicit retrans-
missions?

Table 7 also compares the classification of needed and un-
needed retransmissions made by our tool-set to that made by
LEAST [9]. We find that the number of unneeded retrans-
missions reported by LEAST is always lower (sometimes by
more than 50%) than that reported by our tool-set. There
are two reasons for this. First, as illustrated in Section 2 and
as demonstrated in Section 3, LEAST does not identify some
explicit retransmissions that are unneeded. Table 7 indicates

4We also find, although not reported here, that the values in Table 7
(including those reported for LEAST) do not change significantly
if explained OOS segments from discarded connections are also
included.



Our Tool-set tcpflows
Trace # OOS % % Segment Retransmissions % % Segment Retransmissions

Segments Network Total RTO Dupack PA SACK Implicit Network RTO Dupack RTO FR/R
Reorder Reorder recovery

abi 339.2 K 14.1 85.9 33.4 17.9 4.4 7.1 23.1 - - - - -
jap 121.7 K 4.2 95.8 46.9 13.9 5.8 2.4 26.9 - - - - -
wls 1119.5 K 5.8 94.2 52.9 10.7 6.1 2.4 22.1 - - - - -
wrd 1250.4 K 5.3 94.7 66.0 9.6 2.5 1.1 15.6 - - - - -
lei 110.5 K 0.2 99.8 53.5 9.9 2.8 5.0 28.6 0.8 55.2 7.5 34.7 1.8
unc 1327.4 K 12.9 87.1 40.3 13.2 6.1 6.5 20.9 13.8 39.5 7.0 36.0 3.6
ibi 787.4 K 0.2 99.8 32.8 17.3 8.7 0.4 40.8 0.27 26.5 21.2 29.7 22.3

Table 5: Classification of OOS segments by tcpflows and by our tool-set. These are from connections for which we were able to unam-
biguously explain and classify all OOS segments. tcpflows classifies an OOS segment as one of: network reordering, retransmission
triggered by RTO, duplicate ACKs, or during FR/R or RTO-recovery.

Trace # OOS % Network % Segment Retransmissions
Segments Reordered Total RTO Dupack PA SACK Implicit Unexplained

abi 1345.0 K 11.4 88.6 26.9 17.1 4.0 7.3 17.4 16.0
jap 340.8 K 6.3 93.7 35.6 14.6 5.0 4.2 22.1 12.2
wls 2927.5 K 7.7 92.3 39.9 11.4 5.9 2.7 22.3 10.0
wrd 4177.3 K 7.3 92.7 43.9 11.4 2.2 0.8 19.2 15.3
lei 294.5 K 0.4 75.6 40.6 11.6 3.1 5.6 24.0 14.7
unc 2752.9 K 12.6 87.4 32.9 12.7 5.7 6.0 20.1 10.0
ibi 2383.9 K 0.7 93.0 26.3 19.6 10.9 0.2 34.8 7.5

Table 6: Classification of all OOS segments (including unexplained events) by our tool-set. These are all connections irrespective of
whether we were able to explain all events or not.

that a majority of unneeded retransmissions occur due to ex-
plicit TCP loss detection-recovery actions. Second, when
duplicate ACKs generated by unneeded implicit retransmis-
sions are lost in the network, LEAST fails to conclude that the
retransmission was not needed. While this is true even for
our tool-sets, our additional analysis of the timing between
the retransmission and the ACK (ACK arrives within a frac-
tion of the minimum RTT) for the segment helps us identify
some of these retransmissions.

� How important is it to classify implicit retransmissions?
Implicit retransmissions are not analyzed for whether these
are needed or not by tcpflows [19]. Table 5 indicates that the
fraction of retransmissions that are sent implicitly by TCP
is significant (16-40%). More importantly, Table 7 indicates
that, in practice, up to 30% of needed (and up to 40% of
unneeded) segment retransmissions occur implicitly. Clas-
sifying these is, therefore, important for any study of either
TCP losses or the effectiveness of TCP mechanisms.

� How important is it for the analysis to be OS-sensitive?
tcpflows [19] is based on TCP standards specified in RFCs
and does not incorporate variations that exist in TCP imple-
mentations across different OSes. In order to assess the im-
pact of being OS-insensitive, we analyze using tcpflows all
OOS connections that were explained by our tool-set in the
lei, unc, and ibi traces (the other traces could not be pro-
cessed by tcpflows due to incompatible trace formats). Ta-
ble 5 includes the results—note that the “FR/R” classification
of tcpflows is a combination of our PA- and SACK-triggered
categories, and that “RTO-recovery” is captured by our im-
plicit category. The classification differs significantly from

that of our tool-set reported in the same table, underscoring
the need for incorporating popular implementations.

We also evaluate the need for OS-sensitive analysis using
our tool-set. For this, we again consider all OOS connec-
tions in the above three traces that were explained by our
OS-sensitive tool-set, and observe the classification results
when only our FreeBSD-specific state machine (which fol-
lows the TCP standards fairly closely) is used on these. This
state machine was unable to explain around 50% of all OOS
segments in each trace!

� How important is it to incorporate delays and losses be-
tween the monitor and the sender?
Table 5 shows that significant number of OOS segments oc-
cur due to network reordering between the sender and the
monitor. We have also observed that a significant fraction of
losses occur between the sender and the monitor. It is, there-
fore, important to incorporate such network anomalies in the
analysis.

In the abi and unc traces,5 nearly 13-14% of OOS events
are classified as due to network packet reordering between
the sender and the monitor—these numbers appear unusually
high. To investigate these events further, in Fig 6, we plot
the time gap (referred to as the resequencing delay) between
each such OOS segment and the segment with the next higher
sequence number. We find that most of the resequencing de-
lays are within 5 ms—this indeed corresponds to timescales

5A known contributor of excessive reordering in the UNC trace
is the presence of intrusion detection appliances that divert, from
selected connections, a few IP packets from the fast data-path for
deeper inspection.



Our Tool-set
Trace # Total % Needed % Unneeded % No LEAST [9]

Retran Total Implicit Explicit Total Implicit Explicit Inference % Needed % Unneeded
abi 291.9 K 79.1 13.1 66.0 12.0 4.9 7.1 8.8 89.6 10.4
jap 116.6 K 82.4 4.4 78.0 15.6 6.6 9.0 2.0 92.7 7.3
wls 1054.2 K 86.7 22.3 64.4 13.2 1.1 12.1 0.1 98 2.0
wrd 1184.2 K 96.2 15.9 80.3 3.7 0.5 3.2 0.1 97.7 2.3
lei 110.3 K 82.5 19.6 62.9 12.7 4.2 8.5 4.8 87.7 12.3
unc 1155.9 K 91.2 21.4 69.8 7.7 1.1 6.6 1.5 96.2 3.8
ibi 785.5 K 76.6 23.2 53.4 18.9 13.1 5.8 4.5 85.0 15.0

Table 7: Needed and Unneeded Retransmissions (for connections with all OOS segments unambiguously explained).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Time (ms)

unc
abi

Figure 6: Resequencing delays for reordered segments

of network reordering and is much smaller than typical RTTs.
The small fraction of OOS segments with large resequencing
delays occur in connections with large minimum RTTs as
well.

5. RELATED WORK
There already exists an extensive body of work on passive anal-

ysis of TCP connections. Tcptrace [3] is perhaps the most widely
used among the many tools available for passive analysis. How-
ever, tcptrace, like many other tools, does not maintain enough state
to accurately infer TCP losses. The most closely related work is
tcpflows [19], a state-machine approach for analysis of TCP con-
nections. This state-machine design is based on RFC specifica-
tions for congestion response, retransmissions, and RTO calcula-
tions. tcpflows can perform a passive analysis of traces taken at an
arbitrary network link and attempts to characterize the causes of
losses using inferences of RTO and the sender’s congestion win-
dow. Study of a trace from a backbone link using tcpflows in [19]
concluded that 9-19% of retransmissions were unneeded, and that
7-25% of out-of-sequence events were because of packet reorder-
ing. Though this tool was a significant advance in passive analysis,
we found that this method has several practical limitations because
of the differences in the various widely used TCP implementations.
Furthermore, since the primary purpose of [19] was not to study
packet losses in detail, their analysis tool is limited in the granu-
larity with which OOS segments are classified. The results from
their method (especially the RTT calculation and the subsequent

RTO calculation) are dependent on the frequency with which RTT
is measured (per packet vs. per flight), and the inferences neces-
sary to track the sender’s congestion window. All of these depend
on the details of specific TCP implementations. To overcome these
problems we have used OS-specific state machines to more robustly
infer TCP sender state in passive analysis.

OS-specific analysis is not a new idea. In [26], Paxson imple-
mented a stateful implementation-specific analysis in his tool “tcp-
analy” for passive analysis of traces at the end system. The primary
limitation is that it has not been extended to handle traces taken
from an arbitrary link. Since the analysis were performed on end
system traces, there was no need to address several practical chal-
lenges such as packets lost between the trace point and end system.
Further, the analysis did not have to infer the specific TCP imple-
mentation characteristics because the end system OS was known
in advance. Given the above reasons and the significant pace of
changes to TCP implementations since the time the tool was devel-
oped, we believe that our tools represent a substantial advance.

Finally, there is work related to identification and classification
of TCP losses. We do not consider active loss characterizations [13,
30, 29] as they are studying loss properties of network paths, rather
than loss characteristics of TCP connections. In [11], the authors
design a tool for actively measuring reordering on a network path.
This tool exploits the relative sequence number spacing between
segments transmitted and can not be easily adapted for passive
monitoring of the network. TCP mystery [20] is another tool which
identifies loss events and classify them as necessary or unneces-
sary. This tool uses a subset of the algorithms used in tcpflows—our
comparison to tcpflows suggests that it needs to incorporate addi-
tional details in order to achieve accuracy similar to ours. In [9], the
authors have presented the LEAST algorithm for passively estimat-
ing unneeded retransmissions that occur after a timeout (for Reno
implementations) or using SACK blocks. We find that their method
underestimates unneeded retransmissions in Reno implementations
because they do not address additional retransmissions in Fast Re-
transmission/Fast Recovery. Further, the limited state maintained
does not track unneeded retransmissions when duplicate ACKs are
lost. Our tools maintain sufficient history about all packets, includ-
ing those that are retransmitted, so a more robust identification of
unneeded retransmission can be made.

There are other methods in the literature for identifying spuri-
ous retransmission due to timeouts [10, 22]. Both these methods
deal only with timeout-triggered retransmissions. [10] relies on
the time difference between the retransmitted segment and the ACK
to identify spurious timeouts. [22] proposed the Eifel Algorithm
which uses the timestamp option to actively detect spurious time-
outs. This method requires end-system cooperation and is not suit-
able for passive analysis.



6. CONCLUDING REMARKS
The primary contribution of our work is the implementation and

validation of a new suite of tools for passive analysis of TCP con-
nections. These tools are freely available to the networking re-
search community and we hope they will encourage others to con-
tribute to our understanding of TCP behavior “in the wild” by ana-
lyzing larger and more diverse sets of traces. While many of the
ideas used in these tools are not new (see the discussion of re-
lated work), we believe this is the first time all have been inte-
grated into a single, carefully validated, analysis approach. Further,
we have made significant advances by explicitly including TCP
implementation-specific factors for those operating systems that are
currently (and likely to be for the foreseeable future) the dominant
end points for TCP connections (Windows, Linux, FreeBSD/MAC
OS X, Solaris). We have also been careful to cover many of the
“corner cases” and boundary conditions that are missing in prior
work, choosing to rely on explicit sender-state tracking rather than
approximations or heuristics where possible.

We believe the accuracy and high classification granularity of our
tools will enable other networking researchers to address issues re-
lated to the efficacy of TCP’s loss detection/recovery mechanisms,
to develop new models for the underlying loss processes that TCP
must deal with, and to better understand the impact of network con-
gestion on real-world TCP performance. For example, the analysis
of real-world TCP connections may suggest important implications
for the refinement of analytic models of TCP throughput as a func-
tion of loss rates [14, 25].

While we have discussed only the analysis of TCP loss and re-
transmission characteristics, that is not the end of the story. We
believe the TCP implementation-specific state machines are suffi-
ciently detailed and robust that they can form the basis for passively
tracking additional TCP and network states, specifically congestion
windows, packets in flight, and end-system buffering. Additional
research is in progress to address these issues.

Acknowledgments. The authors would like to thank Sharad Jaiswal
for making available and helping install the code for tcpflows.

7. REFERENCES
[1] URL http://www.cs.unc.edu/ � jasleen/research/.
[2] The dag project,univ. of waikato, URL

http://dag.cs.waikato.ac.nz/.
[3] tcptrace. URL

http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html.
[4] URL http://pma.nlanr.net/special/leip1.html.
[5] URL http://pma.nlanr.net/traces/long/ipls1.html.
[6] URL http://tracer.csl.sony.co.jp/mawi/.
[7] J. Aikat, J. Kaur, D. Smith, and K. Jeffay. Variability in TCP

round-trip times. In Proceedings of the ACM SIGCOMM
Internet Measurement Conference, October 2003.

[8] M. Allman, V. Paxson, and W. Stevens. RFC 2581: TCP
congestion control, 1999.

[9] Mark Allman, Wesley M. Eddy, and Shawn Ostermann.
Estimating loss rates with TCP. SIGMETRICS Perform.
Eval. Rev., 31(3), 2003.

[10] Mark Allman and Vern Paxson. On estimating end-to-end
network path properties. In SIGCOMM ’99: Proceedings of
the conference on Applications, technologies, architectures,
and protocols for computer communication, pages 263–274,
New York, NY, USA, 1999. ACM Press.

[11] John Bellardo and Stefan Savage. Measuring packet
reordering. In IMW ’02: Proceedings of the 2nd ACM

SIGCOMM Workshop on Internet measurment, pages
97–105, New York, NY, USA, 2002. ACM Press.

[12] E. Blanton, M. Allman, K. Fall, and L. Wang. RFC 3517: A
conservative selective acknowledgment (SACK)-based loss
recovery algorithm for TCP, April 2003.

[13] J. Bolot. End-to-end packet delay and loss behavior in the
Internet. In SIGCOMM ’93: Conference proceedings on
Communications architectures, protocols and applications,
1993.

[14] Neal Cardwell, Stefan Savage, and Thomas Anderson.
Modeling TCP latency. In INFOCOM (3), pages 1742–1751,
2000.

[15] K. Fall and S. Floyd. Simulation-based comparisons of
tahoe, reno, and SACK TCP. ACM Computer
Communication Review, 26(3), July 1996.

[16] S. Floyd, T. Henderson, and A. Gurtov. RFC 2582: The
newreno modification to TCP’s fast recovery algorithm,
2004.

[17] V. Jacobson, C. leres, and S. McCanne. tcpdump: URL
http://www.tcpdump.org.

[18] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and
D. Towsley. Measurement and classification of
out-of-sequence packets in a tier- � ip backbone. In
Proceedings of IEEE INFOCOM, April 2003.

[19] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and
D. Towsley. Inferring TCP connection characteristics
through passive measurements. In Proceedings of IEEE
INFOCOM, March 2004.

[20] Sachin Katti, Dina Katabi, Charles Blake, Eddie Kohler, and
Jacob Strauss. Multiq: automated detection of multiple
bottleneck capacities along a path. In IMC ’04: Proceedings
of the 4th ACM SIGCOMM conference on Internet
measurement, pages 245–250, New York, NY, USA, 2004.
ACM Press.

[21] R Krishnan, M Allman, C Partridge, and J Sterbenz. Explicit
transport error notification (ETEN) for error-prone wireless
and satellite networks. Technical Report TR-8333, BBN
Technologies, March 2002.

[22] Reiner Ludwig and Randy H. Katz. The Eifel algorithm:
making TCP robust against spurious retransmissions.
SIGCOMM Comput. Commun. Rev., 30(1):30–36, 2000.

[23] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC
2018: TCP selective acknowledgement options, 1996.

[24] J. Padhye and S. Floyd. On inferring TCP behavior. In
Proceedings of ACM SIGCOMM, 2001.

[25] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim
Kurose. Modeling TCP throughput: a simple model and its
empirical validation. In Proceedings of ACM SIGCOMM,
pages 303–314. ACM Press, 1998.

[26] V. Paxson. Measurements and Analysis of End-to-End
Internet Dynamics. PhD dissertation, University of
California, April 1997.

[27] V. Paxson and M. Allman. RFC 2988: Computing TCP’s
retransmission timer, November 2000.

[28] S. Rewaskar, J. Kaur, and D. Smith. Passive inference of
TCP losses using a state-machine based approach. Technical
Report TR06-002, Department of Computer Science,
University of North Carolina at Chapel Hill, October 2005.

[29] Stefan Savage. Sting: A tcp-based network measurement
tool. In USENIX Symposium on Internet Technologies and
Systems, 1999.



[30] Joel Sommers, Paul Barford, Nick Duffield, and Amos Ron.
Improving accuracy in end-to-end packet loss measurement.
In SIGCOMM ’05: Proceedings of the 2005 conference on
Applications, technologies, architectures, and protocols for
computer communications, volume 35, pages 157–168, New
York, NY, USA, October 2005. ACM Press.

[31] W. Richard Stevens. TCP/IP illustrated (vol. 1): the
protocols. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1993.

[32] M. Zalewski. Passive OS fingerprinting tool: URL
http://lcamtuf.coredump.cx/p0f.shtml., 2006.


