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ABSTRACT
Webpage fingerprinting methods infer the webpages visited in a
traffic trace and are serious threats to the privacy of web users.
Prior work evaluates webpage fingerprinting methods using traf-
fic samples from a single client and does not consider the client
diversity factor—webpages can be visited using different browsers,
operating systems and devices. In this paper, we study the impact
of client diversity on HTTPS webpage fingerprinting. First, we eval-
uate 5 prominent fingerprinting methods using traffic samples from
19 different clients. We show that the best performing methods
overfit to the traffic patterns of a single client and do not generalize
when they are evaluated using the samples from a different client
(even if the clients use the same browser and operating system and
only differ in device). Then, we investigate the traffic patterns of
the clients and find differences in the HTTP messages generated,
servers communicated and implementation of HTTP/2 across the
clients. Finally, we show that the robustness of the methods can be
increased by training them using the samples from a diverse set
of clients. This study informs the community towards a realistic
threat model for HTTPS webpage fingerprinting and presents an
analysis of modern HTTPS traffic.
ACM Reference format:
Hasan Faik Alan and Jasleen Kaur. 2019. Client Diversity Factor in HTTPS
Webpage Fingerprinting. In Proceedings of Ninth ACM Conference on Data
and Application Security and Privacy, Richardson, TX, USA, March 25–27,
2019 (CODASPY ’19), 12 pages.
https://doi.org/10.1145/3292006.3300045

1 INTRODUCTION
Traffic analysis, which infers information from the observation of
traffic flows [1], is a fairly diverse field—both in terms of the granu-
larity of information inferred (such as protocols, application types,
user interests, websites, and webpages) as well as in terms of the
privacy-enhancing technology used for transmitting the observed
traffic (such as HTTPS, SSH, VPN, and Tor) [2–9]. The keywords
webpages andHTTPS help set the specific context for this paper—we
focus on the problem of HTTPS traffic analysis for the purpose of
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fingerprinting the webpages being visited, with an emphasis on the
diversity of client platforms (different browsers, operating systems
and devices that can be used to visit webpages).

While there have been numerous studies on fingerprinting web
traffic [4–12], our focus differs from most in three key aspects.
First, a majority of work in this area studies web traffic sent over
tunnels using SSH, VPN or Tor—there is surprisingly scarce work
on HTTPS traffic, which is the most commonly-used privacy set-
ting. This is perhaps due to an implicit belief that fingerprinting
analysis conducted for more private VPN or Tor traffic should also
translate to less private HTTPS traffic.1 Second, most prior work is
focused on fingerprinting websites (and not individual webpages
within a website), and considers just the landing pages of different
websites. In HTTPS traffic, the website domain is often retrievable
from the Server Name Indication (SNI) extension of TLS [4, 13]—
fingerprinting webpages within a given website, however, is chal-
lenging due to similarity of webpages within a website [5]. Third,
and most relevantly to the motivation of this study, evaluations
in prior HTTPS webpage fingerprinting studies were performed
using webpage traffic samples from the same client platform [4, 5].
Specifically, Miller et al. collected traffic traces of webpage visits
using Firefox 22 browser in a virtual machine running Linux 12.04
OS [5]. Similarly, Gonzalez et al. used Firefox browser on a PC [4].
This observation leads us to question the robustness of such fin-
gerprinting methods in the real world, given the diversity of client
platforms as well as the influence of these platforms on webpage
content and traffic [14, 15].

In this paper, our main objective is to examine how client di-
versity impacts HTTPS webpage fingerprinting. Our first major
innovation is that we evaluate 5 prominent webpage fingerprinting
methods from the traffic analysis literature using webpage traffic
samples collected from 19 different clients—we consider 6 different
browsers (Chrome, Firefox, Edge, IE, Opera and Safari), 5 differ-
ent operating systems (Android, Ubuntu, Windows 10, Windows
7 and macOS), and 6 different devices (see Table 2). We show that
all 5 webpage fingerprinting methods perform the best when the
samples from the same client are used for training and test—this
is the scenario studied in prior work. However, the performance
of the methods decreases dramatically when they are tested with
the samples from a client that is different than the one used for
training—the accuracy of the best performing method decreases
from 94% to 55% (when the clients use the same browser but differ-
ent operating systems) and to 27% (when the clients use different
operating systems and browsers). Even when the training and test
clients use the same browser and operating system and only differ
in device, the best performing method achieves only 57% accuracy.

1In this paper, we show that this is not true—features and classifiers that work well
for Tor traffic do not work well in the HTTPS context.
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This finding implies that evaluation of the fingerprinting meth-
ods using the samples from the same client may overestimate the
success of a webpage fingerprinting adversary in the real world.

Next, we investigate the traffic patterns of the 19 clients. We find
differences in the HTTP messages generated, HTTP/2 implementa-
tion configuration, and the servers communicated with across the
19 clients. Particularly, we find that the User-Agent string lengths
of the clients differ significantly, which causes outgoing packet
sizes to vary greatly across the clients. We hypothesize that this is a
significant factor to help explain our findings above—when samples
from only one client are used for training, fingerprinting methods
may over-fit to features derived from the outgoing packet sizes.
This leads to very high fingerprinting accuracy when the same
client is used for testing, but very low accuracy when different
clients are used.

Finally, we search for a method that is robust to the impact of
client diversity. First, we observe a significant increase in the accu-
racy of the methods when they are trained using samples from 18
different clients and tested using samples from the remaining one
client. Then, we search for the main source of improvement in the
accuracies. We find that it is necessary to use traffic samples from
the browser of the test client during training; however, using sam-
ples of the same browser from different client devices is even more
effective in increasing the robustness of fingerprinting methods.

In the rest of this paper, we summarize problem formulation
in Section 2, data collection in Section 3, and our evaluations in
Section 4. We investigate differences across clients in Section 5 and
search for a robust model in Section 6. We summarize related work
in Section 7 and our conclusions in Section 8.

2 PROBLEM FORMULATION
2.1 Importance of HTTPS Traffic Analysis
HyperText Transfer Protocol (HTTP) is used between aweb browser
(e.g., Google Chrome) and a web server when a webpage is vis-
ited [16]. HTTP messages are not encrypted and their integrity is
not ensured. Thus, HTTP traffic is vulnerable to eavesdropping
and tampering. Given the security concerns with HTTP, browsers
(e.g., Chrome and Firefox) and organizations (e.g., Let’s Encrypt2)
promote HTTPS (HTTP over TLS) which verifies the identity of
a website, encrypts HTTP messages and ensures data integrity.
Indeed, these efforts led to the rapid adoption of HTTPS [17].

Despite the encryption of HTTP messages, HTTPS does not
provide ultimate privacy when a webpage is visited. Even though
the webpage URL (e.g., https://www.plannedparenthood.org/learn/
abortion) is carried in an encrypted HTTP message, identity of the
visited website (e.g., www.plannedparenthood.org) is often revealed
(through the IP addresses of the servers, DNS queries and/or the
server name in the SNI extension of TLS) [4]. More alarmingly,
Miller et al. (2014) showed that the URLs of the webpages visited
within a website can also be predicted with high accuracy using
machine learning and features based on network packet sizes [5].
This finding is alarming since more fine-grained confidential infor-
mation about users (e.g., health conditions and financial status) can
be learned by determining the webpages visited compared to just
determining the websites visited. For example, determining that a

2https://letsencrypt.org/

user is reading about abortion or reading about filing a bankruptcy
gives more granular information than just determining that the
user is browsing a health or a finance website. Such information can
be used for mass surveillance, targeted advertising or disclosure of
sensitive information in a targeted attack scenario that may result
in severe consequences, such as embarrassment or financial loss
of a web user. Thus, the extent of HTTPS traffic analysis should
be studied, HTTPS protocol should be improved towards a more
robust privacy enhancing technology (if necessary3), and the web
users should be informed accordingly.

2.2 HTTPS Webpage Fingerprinting
(Threat Model)

In this paper, we consider a scenario in which a user visits a web-
page within an HTTPS website and an adversary eavesdropping on
the HTTPS traffic of the user tries to predict the URL of the visited
webpage. We assume that the user do not use any privacy enhanc-
ing technology, such as a DNS proxy, VPN or Tor. Furthermore, we
assume an HTTPS only web in which the websites enforce TLS
encrypted connections and the adversary cannot decrypt the pay-
loads.4 However, the adversary has access to the information in the
TCP/IP and TLS headers, which are transmitted in cleartext, such
as the IP addresses, port numbers and server names, as well as the
side channel information, such as the packet size and timing. The
adversary can use such information and build a statistical model to
fingerprint webpages based on their traffic patterns (e.g., number
of packets sent to a specific server IP address). Furthermore, server
IP addresses, DNS queries and/or the server name in the SNI exten-
sion of TLS often reveal the visited website—possibly allowing the
adversary to narrow down the visited webpages to those within
certain websites. Entities that can employ webpage fingerprinting
methods include Internet Service Providers, Network Administra-
tors or anyone who can eavesdrop on the HTTPS traffic of a user
(e.g., an adversary who sniffs the network traffic of a public WiFi
connection).

2.3 HTTPS Webpage Fingerprinting as a
Machine Learning Problem

We study HTTPS webpage fingerprinting problem using the same
supervised machine learning setting as in prior work [4, 5]. Specif-
ically, the machine learning setting consists of two main phases
namely the data collection and evaluation. In the data collection
phase, webpage URLs are visited in a browser using a browser au-
tomation script and the network traffic of each visit is captured
using a tool such as tcpdump. In the evaluation phase, the dataset is
split into training and test samples. A supervised machine learning
method, such as Multinomial Logistic Regression or Support Vector
Machines (SVMs), is trained using the features extracted from the
traffic traces of training samples. For example, a commonly used

3While prior work achieved high accuracy in HTTPS webpage fingerprinting [4, 5], it
is not clear whether such accuracies can be achieved in the real world when several
factors, which are often not studied in prior work, are considered. In this work, we
mainly focus on one such factor namely client diversity and discuss other factors
throughout the paper.
4If HTTPS is not used or it is compromised, the adversary can simply inspect the
packet payloads and identify the webpages visited (and much more, such as online
banking login credentials) from the clear text in the payloads—a technique known as
deep packet inspection.

https://www.plannedparenthood.org/learn/abortion
https://www.plannedparenthood.org/learn/abortion
www.plannedparenthood.org
https://letsencrypt.org/


feature extraction process is to consider each unique packet size as
a feature and to count how many times each packet size occurs in
a traffic trace [6].5 During training, the label of each sample (i.e.,
webpage URL) is also provided and the machine learning method
is expected to learn a function that maps input features to the pro-
vided labels. During test, the method predicts the labels of the test
samples and is evaluated using its accuracy—how many samples
out of all the test samples it labels correctly.

The webpage fingerprinting methods in the traffic analysis lit-
erature, such as Liberatore and Levine [6], BoG [5], CUMUL [8],
K-Fingerprinting [18], and Wfin [9] mainly differ in the features
they extract from network traffic and the machine learning methods
they use. We give the details of such methods in Section 4.1 before
we evaluate them.

2.4 State of the Art
To the best of our knowledge, there is only limited prominent work
that studies webpage fingerprinting using HTTPS traffic [4, 5].
Miller et al. study traffic traces of around 600 webpages selected us-
ing a randomwalk from each of 10 prominent websites [5]. They de-
sign and evaluate a fairly elaborate fingerprinting method (termed
as Bag of Gaussians) as well as a Hidden Markov Model (HMM) of
likely browsing sequences. The researchers achieve 76% - 96% fin-
gerprinting accuracy across the 10 websites—compared to around
60% when they use the methods from previous studies on SSH [6]
and Tor traffic analysis [19, 20].

In a somewhat related work, Gonzalez et al. show that know-
ing the hostname of a visited website, which is already leaked in
HTTPS traffic, is enough for user profiling purposes if the content
of the website is homogeneous as in the case of the websites in
the games and sports categories [4]. If the content of a website is
heterogeneous, the researchers use the CUMUL method [8], which
was originally proposed for Tor traffic analysis, to classify traffic
traces of first-level webpages6 within that website. The researchers
achieve 13% - 97% classification accuracy across the websites.

The most signification distinction of our work from the above is
that prior work has evaluated HTTPS fingerprinting methods using
webpage traffic samples collected from the same client platform
(e.g., Firefox browser in a virtual machine running Linux 12.04 OS in
Miller et al.[5]). In this paper, we investigate the robustness of such
methods to client diversity—how do the webpage fingerprinting
methods perform when they are evaluated with traffic samples
from different browsers, operating systems, and devices?

3 DATA
We study the same 10 websites targeted by Miller et al. [5]. We
crawled these websites using a breadth-first crawling algorithm.
Table 1 summarizes the results of the crawls.

We randomly select 50webpages from each of 7 out of 10websites—
3 websites did not yield consistent webpages across all clients.7 We
5Incoming and outgoing packets are considered separately. For example, with a maxi-
mum packet size of 1500 bytes, a sample is represented as a vector of 3000 elements—
each element corresponds to a packet size with a direction and the value of each
element is how many times a packet with that size and direction occurs in the traffic
trace of the sample.
6Webpages that are linked from the landing page of a website.
7Netflix directed all webpage URLS to the same sign-in page; Youtube and Kaiser
Permanente webpages were redirected to URLs from hostnames that we never visit
in other clients—Kaiser Permanente webpages often reported an HTTP error in the

Table 1: Websites studied.

Host Finished Crawling URLs from Crawl

www.aclu.org No 25182
www.bankofamerica.com Yes 861
healthy.kaiserpermanente.org No 19173
www.legalzoom.com Yes 5260
www.mayoclinic.org No 13266
www.netflix.com No 127487
www.plannedparenthood.org Yes 23260
investor.vanguard.com Yes 477
www.wellsfargo.com Yes 5436
www.youtube.com No 29534

then visit each of these webpages 28 times using each of 19 different
clients (i.e., a total of 50x7x28x19 = 186,200 webpage visits) and
capture the network traffic of each visit—this dataset was collected
during the period 5 - 14 July 2018.
Client Platforms Browser, OS and device type of each client are
given in Table 2. We used four different Android devices, one Mac
mini and three different virtual machines (with Ubuntu 18.04 LTS,
Windows 10 and Windows 7 operating systems). In each operating
system except Android OS, we considered multiple browsers. For
example, in Windows 10, we used 5 different browsers namely
Chrome, Firefox, Edge, IE and Opera. Note that some browsers are
not available in all operating systems—Safari and Edge are only
available in macOS and Windows 10, respectively. Furthermore, we
excluded Opera in Windows 7 as it crashed frequently during data
collection. In Android devices, we used only Chrome as, to the best
of our knowledge, only Chrome has a driver to automate webpage
visits in Android OS.8

TrafficCapture We used the Selenium browser automation frame-
work9 and tcpdump10 to capture the network traffic of webpage
visits. For each webpage visit, a new instance of a web browser (i.e.,
a browser without any user data) was used. Webpage URLs from
all of the websites were visited in a round-robin manner 28 times
in each of the 19 clients.

4 IMPACT OF CLIENT DIVERSITY
In this section, we evaluate the impact of client diversity on the
accuracy of prominent webpage fingerprinting methods from the
traffic analysis literature. First, we summarize the webpage finger-
printing methods we evaluate. Then, we describe our evaluation
methodology. Finally, we discuss the results.

4.1 Fingerprinting Methods
Liberatore and Levine (LL) (2006) [6] uses only the packet size
counts as features and Naive Bayes classifier for classification. LL
method was introduced to fingerprint the visits to the landing pages

Android clients. To achieve a balanced dataset for supervised machine learning, we
wanted to select an equal number of samples for each webpage from each client. Thus,
we excluded these three websites and found that we have at least 28 samples from 50
webpages in each of the remaining 7 websites for each of the 19 clients.
8While any app can be automated using Android adb utility, we are not aware of a
method to determine whether a webpage is loaded in other browser apps (e.g. Firefox)—
the driver of Chrome provides such events.
9https://www.seleniumhq.org/
10http://www.tcpdump.org/
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Table 2: Browser, OS and device type of the clients used for
webpage visits. User-Agent strings of the clients are given in
Table 3.

ID Browser OS Device

1 Chrome (67.0.3396.87) Android 4.4.2 SM-T230NU
2 Chrome (67.0.3396.87) Android 4.4.4 GT-I9195I
3 Chrome (67.0.3396.87) Android 6.0.1 Nexus 5
4 Chrome (67.0.3396.87) Android 6.0.1 Nexus 7
5 Chrome (67.0.3396.99) Ubuntu 18.04 LTS vm
6 Chrome (67.0.3396.99) Windows 10 vm
7 Chrome (67.0.3396.99) Windows 7 vm
8 Chrome (67.0.3396.99) macOS 10.13.5 Mac mini
9 Edge (42.17134.1.0) Windows 10 vm
10 Firefox (61.0) Ubuntu 18.04 LTS vm
11 Firefox (61.0) Windows 10 vm
12 Firefox (61.0) Windows 7 vm
13 Firefox (61.0) macOS 10.13.5 Mac mini
14 IE (11) Windows 10 vm
15 IE (11) Windows 7 vm
16 Opera (67.0.3396.87) Ubuntu 18.04 LTS vm
17 Opera (67.0.3396.87) Windows 10 vm
18 Opera (67.0.3396.87) macOS 10.13.5 Mac mini
19 Safari (13605.2.8) macOS 10.13.5 Mac mini

of websites in an SSH proxy channel. Miller et al. [5] considered
LL as a baseline method that uses low level packet inspection and
evaluated it in the context of HTTPS webpage fingerprinting.
Bag-of-Gaussians (BoG) (2014) [5] uses features based on clus-
tering pairs of incoming and outgoing burst sizes according to
the second level domain names of the servers as well as features
based on packet size counts.11 BoG uses logistic regression with
L2 regularization for classification. Miller et al.[5] showed that
BoG achieves substantially greater accuracy in HTTPS webpage
fingerprinting compared to the methods introduced by Liberatore
and Levine [6], Panchenko et al. [19] and Wang et al. [20]. The
researchers also showed that a Hidden Markov Model can be used
to model a sequence of webpage visits within a website, that can
augment fingerprinting methods quite successfully.
CUMUL (2016) [8] uses 100 points sampled from a cumulative
representation of packet sizes as well as the number of incom-
ing/outgoing packets and the sum of incoming/outgoing packet
sizes as features. CUMUL uses SVM with RBF kernel for classifi-
cation. Panchenko et al. [8] introduced CUMUL for fingerprinting
webpages visited in Tor network traffic. Gonzalez et al. [4] used
CUMUL for HTTPS webpage fingerprinting.
K-fingerprinting (KFP) (2016) [18] uses 175 traffic features, such
as the statistics based on the number of packets and packet timings.
KFP uses Random Forest Classifier for classification. The authors of
the method evaluated KFP in fingerprinting hidden services in Tor
network traffic as well as in fingerprinting encrypted Web traffic.

11Burst size is defined as the total bytes in contiguous packets transmitted in one
direction.

Wfin (2018) [9] Yan and Kaur identified 40 most important traffic
feature categories in web traffic analysis, such as unique packet size,
packet size count, and preposition of first 300 incoming packets, and
introduced the Wfin method. Wfin uses Extra-Trees classifier for
classification. The researchers showed that features used in Wfin
yield similar performance as features used in the LL method but
perform better than features from the CUMUL and KFP methods in
classifying traffic traces of landing pages of 2,000 websites.
Packet Size Counts (PS), Incoming Packet Size Counts (IPS),
and Outgoing Packet Size Counts (OPS) Most methods in the
traffic analysis literature include packet size counts in their fea-
ture set.12 To have a baseline view of the webpage fingerprinting
accuracy achievable using only packet size counts, we evaluate
three methods that just use packet size counts and differ in the
direction of the packets used: both incoming and outgoing packet
size counts (PS), only incoming packet size counts (IPS), and only
outgoing packet size counts (OPS). We use Random Forest Classifier
for classification with these methods. Note that PS differs from LL
only in the choice of classifier.

4.2 Evaluation Methodology
We evaluate the webpage fingerprinting methods detailed in Sec-
tion 4.1, using our dataset described in Section 3. We consider five
different scenarios—the training and test samples are from: (i) the
same client (Scenario 1), (ii) the same browser, same OS but differ-
ent device (Scenario 2)13, (iii) the same browser but different OS
(Scenario 3), (iv) the same OS but different browser (Scenario 4),
and (v) different browser and different OS (Scenario 5). Note that
we have 19 clients, 7 websites, 50 webpages from each website, and
28 samples from each webpage in our dataset. We perform a total
of 20,216 evaluations (19 x 19 train/test client pairs x 8 methods x 7
websites). In this setting, an evaluation is a classification problem
with 50 classes—given a traffic trace classify it as a trace of one of
the 50 webpages within a website. When a client is used for training,
we use the first 21 samples of each webpage from that client for
training and use the remaining 7 samples when the client is consid-
ered for test—a total of 1050 training samples (i.e., 50 webpages x
21 samples) and 350 test samples are used in each evaluation.

4.3 Results
For each of the five different scenarios, Figure 1 plots the accuracy
of each method (i.e., percent of the test traffic trace samples that are
labeled with the correct webpage URL) for each website averaged
over all training and test pairs of client platforms considered in
that scenario. Figure 2 plots the accuracy in each scenario, when
averaged across all websites and client pairs (and makes it easier to
compare the overall performance of the methods across different
scenarios). We observe that:

(1) All webpage fingerprinting methods perform their best in
Scenario 1 when the training and test samples are from the
same client. Recall that this is the scenario in which eval-
uations in all prior work are conducted. In this scenario,

12We formulate HTTPS webpage fingerprinting as a machine learning problem in
Section 2.3 and describe an example method that uses packet size counts as features.
13Note that we have only two clients namely client 3 and 4 that have the same browser
and same OS but different devices.
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(a) Scenario 1 (Same Client)
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(b) Scenario 2 (Same Browser, Same OS, Different Device)
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(c) Scenario 3 (Same Browser, Different OS)
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(d) Scenario 4 (Different Browser, Same OS)
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(e) Scenario 5 (Different Browser, Different OS)

Figure 1: Performance of webpage fingerprinting methods
in five different scenarios in which the training and test
clients are varied.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Wfin 94 57 55 26 27
BoG 93 51 44 22 21
PS 92 40 36 11 11
OPS 92 25 27 6 8
IPS 69 68 52 41 23
CUMUL 51 46 35 10 11
KFP 51 39 29 13 11
LL 85 26 17 4 3
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Figure 2: Accuracy of each method in each scenario.

the best performing methods are able to classify the traffic
traces of webpages within most of the websites with high ac-
curacy. However, as reported in prior work, the traffic traces
of webpages within some websites can be classified with
lower accuracy than others [4, 5]—e.g., lower accuracies are
observed in ACLU and Wells Fargo websites in Figure 1a.

(2) Compared to Scenario 1, the accuracies decrease significantly
in Scenario 2 when the training and test samples are from the
same browser, same OS but different device (Figure 1b). The
accuracies of the Wfin and BoG methods, averaged cross all
websites, drop from 94% and 93% to 57% and 51%, respectively
(Figure 2).
Even lower accuracies are observed in Scenario 3, when
samples from the same browser but different OS are used for
evaluation (Figure 1c and 2).

(3) The lowest accuracies are observed in Scenarios 4 and 5
(when samples from different browsers are used)—see Fig-
ures 1d and 1e. Compared to Scenario 1, the accuracies of
the Wfin and BoG methods in Scenario 4, averaged across
all websites, decrease from 94% and 93% to around 26% and
22%, respectively (Figure 2).
In a real world setting, Scenarios 2, 3, 4 or 5 are much more
likely to occur than Scenario 1, if an adversary does not con-
sider the impact of client diversity (and trains a webpage
fingerprinting method using traffic samples from only a sin-
gle client). Thus, prior evaluations of fingerprinting methods
using samples from the same client may significantly overesti-
mate the success of a webpage fingerprinting adversary.

(4) While the OPS method, which uses only the outgoing packet
size counts as features, performs comparable to the best
performing methods in Scenario 1, it is outperformed in
other scenarios. On the other hand, the IPS method, which
uses only the incoming packet size counts, is one of the best
performing methods in Scenarios 2, 3, 4 and 5.
Note that features based on outgoing packet size are used in
nearly all of the fingerprinting methods—indeed, IPS is the
only method included in our evaluations that does not use
any feature based on outgoing packet size. Our results sug-
gest that the presence of features based on outgoing packet
size may lead to “over-fitting” when evaluations consider
only a single client platform.
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Figure 3: Accuracy of theWfinmethod when the training and test clients are varied (19x19 training and test client pairs). Note
that the highest accuracies are achieved when the samples from the same client are used for training and test.

In Figure 3, we plot the webpage fingerprinting accuracy (av-
eraged across the 7 websites) of the Wfin method as a matrix for
all 19x19 pairs of training and test client platforms. We find that
Wfin performs better on average, when a Chrome client is used for
training and Opera client is used for test (and vice versa) (e.g., using
one of the clients 1-8 for training and 16-18 for test) compared to
using any other client pair with different browsers. Note that the
Chrome and Opera browsers are both based on the open source
Chromium browser project14—we hypothesize that they generate
similar network traffic patterns. We also find that Wfin achieves a
significantly high accuracy when client 17 (Windows 10 - Opera)
is used for training and client 1 (Android-Chrome) is used for test
(and vice versa); and Wfin achieves the lowest accuracies when
client 14 (Windows 10 - IE), 15 (Windows 7 - IE) or 19 (macOS -
Safari) is used in an evaluation.

Figure 3 reports accuracy averaged across the 7 websites. We
select the row for training client 8 (that gives the highest average
accuracy across all test clients in Figure 3), and plot in Figure 4 the
per-website accuracy of the Wfin method when only samples from
client 8 are used for training. As before, we observe that the highest
accuracies are achieved when the training and the test clients are
the same. Significantly lower accuracies are observed when the
browsers of the training and test clients are different (e.g., when
clients 10-15 are used for test). We further investigate plausible
causes of client differences in the next section.

5 CLIENT DIFFERENCES
Using data collected in 2014, prior work has shown that when
different client platforms are used to access the landing page of
popular websites, the resulting download may differ in both content
as well as traffic [14, 21]. Our results so far suggest that this may be

14https://www.chromium.org/
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Figure 4: Accuracy of the Wfin method for each test client
and website when client 8 is used for training.

true even for modern download traffic generated when webpages
within websites are visited. In this section, we identify three major
differences across client platforms that cause variations in web
traffic patterns—these are mostly factors that influence the outgo-
ing packet sizes in web traffic (which is likely to be a significant
influence on our results in Section 4.3) .

5.1 HTTP Messages
Background When a webpage URL is entered to the address bar of
a browser, the browser sends an HTTP request message to a server.
The server interprets the request and returns an HTTP response.
The response message is parsed by the browser and additional re-
quests are sent and responses are received if other web resources,
such as CSS, image and video files, are need to be loaded. An ex-
ample HTTP message that requests the landing page of Bank of
America website is given in Figure 5.
Methodology Browser developer tools provide detailed informa-
tion about each HTTP message generated during a webpage visit.



Table 3: User-Agent strings of the clients.

ID User Agent Length

1 Mozilla/5.0 (Linux; Android 4.4.2; SM-T230NU Build/KOT49H) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36 131
2 Mozilla/5.0 (Linux; Android 4.4.4; GT-I9195I Build/KTU84P) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Mobile Safari/537.36 138
3 Mozilla/5.0 (Linux; Android 6.0.1; Nexus 5 Build/M4B30Z) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Mobile Safari/537.36 136
4 Mozilla/5.0 (Linux; Android 6.0.1; Nexus 7 Build/MOB30X) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36 129
5 Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36 104
6 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36 114
7 Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36 113
8 Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36 120
9 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/17.17134 129
10 Mozilla/5.0 (X11; Linux x86_64; rv:61.0) Gecko/20100101 Firefox/61.0 68
11 Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0 78
12 Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0 77
13 Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:61.0) Gecko/20100101 Firefox/61.0 82
14 Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; .NET4.0C; .NET4.0E; rv:11.0) like Gecko 89
15 Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; rv:11.0) like Gecko 176
16 Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36 OPR/54.0.2952.41 121
17 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36 OPR/54.0.2952.41 131
18 Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36 OPR/54.0.2952.41 137
19 Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_5) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/11.1.1 Safari/605.1.15 119

GET / HTTP/1.1
Host: www.bankofamerica.com
Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64;

x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/67.0.3396.99 Safari/537.36

Accept: text/html,application/xhtml+xml,
application/xml;q=0.9,image/webp,
image/apng,*/*;q=0.8

Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9

Figure 5: An HTTP request for www.bankofamerica.com,
generated by the Chrome browser running on Windows 10
OS (i.e., client 6 in Table 2).

All browsers we use provide such a tool—we use these to investi-
gate the differences in the HTTP messages generated by different
clients.15

Results We find several practices that result in differences (and
similarities) in the size of packets that carry HTTP requests from
different clients:

• Clients use User-Agent strings that significantly differ in
length (see Table 3 for a complete list of User-Agent strings
used by the clients). For example, client 10 (Ubuntu - Firefox)
and client 15 (Windows 7 - IE) have user agent strings that
are 68 and 176 characters long, respectively.

• Different browsers may use different header fields (e.g., IE
browser does not use “Upgrade-Insecure-Requests” header
field whereas other browsers do16). Further, HTTP header
field valuesmay differ across different browsers (e.g., Chrome

15We use the Chrome remote debugging tool to investigate the HTTP headers gener-
ated by the Android clients.
16Indeed, IE is the only major browser that does not use this header field:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Upgrade-Insecure-
Requests

and Opera include “image/webp,image/apng” string in their
default Accept value whereas other browsers do not17).

• Browsers use the same headers across different operating
systems (e.g., Chrome onWindows 10 and Chrome onmacOS
generate the same headers and only differ in the User-Agent
string).

• Clients that use Chrome or Opera browser (i.e., clients 1-8
and 16-18) use the same HTTP header fields and only dif-
fer in the User-Agent string. Of these, coincidentally, client
1 (Android - Chrome) and client 17 (Windows 10 - Opera)
have user agent strings with the same length (131 characters).
Thus, client 1 and 17 are expected to generate HTTP mes-
sages with the same length when the same URL is requested.
Indeed, in our preliminary evaluation we found that when
this client pair is used for evaluation, a significantly high
accuracy is achieved (see Figure 3).18

Our observations in this section show that HTTP request sizes can
differ across different client platforms, primarily due to user agent
strings but also due to other header fields. Furthermore, client pairs
that generate HTTP requests of the same size for a given webpage
yield high fingerprinting accuracies when used for training and
testing against each other.

5.1.1 User Specific Browser Configuration. Note that the HTTP
request headers may change according to the configuration of a
browser. For example, if a user specifies French as an additional
language preference in Chrome settings, “fr;q=0.8” string will be
added to the value of Accept-Language field in Figure 5; or if a user
specifies sending a “do not track” request, “DNT: 1” string will be
included in each HTTP request. These changes will practically have

17Note that the value of Accept field may change according to the type of resource
requested (e.g., CSS, image or video): https://developer.mozilla.org/en-US/docs/Web/
HTTP/Content_negotiation/List_of_default_Accept_values
18Note that client 4 (Android - Chrome) and client 9 (Windows 10 - Edge) also have
user agent strings with the same length (129 characters long). However, these clients
use different values for Accept-Language and Accept fields—Edge uses “en-US” and
“text/html, application/xhtml+xml, application/xml; q=0.9, */*; q=0.8”, respectively. The
Chrome values for these fields are given in Figure 5.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Content_negotiation/List_of_default_Accept_values
https://developer.mozilla.org/en-US/docs/Web/HTTP/Content_negotiation/List_of_default_Accept_values


the same impact we observed due to the variations in the length
of User-Agent string across different clients. Thus, user specific
browser configuration should also be considered as a part of client
diversity for webpage fingerprinting purposes.

5.2 HTTP/2 Implementation
Background HTTP/2 is an optimized alternative to HTTP/1.1 [22].
HTTP/1.1 allows only one request to be outstanding at a time on
a given TCP connection, suffers from head-of-line blocking, and
repeats HTTP headers in each request. HTTP/2 addresses these
issues and introduces several other features: request and response
multiplexing over a single TCP connection, compression of HTTP
header fields, request prioritization, server push and flow control.
The basic HTTP/2 protocol unit is a binary frame. Each HTTP
request/response is associated with its own stream. Naturally, the
network traffic footprint differs when a webpage is visited over
HTTP/2 versus HTTP/1.1.

Major browsers and servers support both HTTP/1.1 and HTTP/2
[23]—a client and a server negotiate which protocol to use dur-
ing the TLS handshake (selected protocol is revealed in clear text).
Figure 6 shows the average number of HTTP/2 and HTTP/1.1 con-
nections used by each client during a webpage visit in our dataset.
Note that three of the Windows clients (9, 14 and 17) generate more
HTTP/2 connections compared to other clients whereas IE 11 on
Windows 7 (client 15) does not use HTTP/2.
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Figure 6: Average number of HTTP/2 and HTTP/1.1 con-
nections used by each client during a webpage visit in our
dataset. We have 9800 webpage visit samples (7 websites x
50 webpages x 28 samples) from each client.

Methodology Since HTTP/2 is used over TLS, HTTP/2 traffic anal-
ysis requires decryption of TLS connections. Chrome, Opera and
Firefox browsers allow to generate an SSL key log file which can be
used to decrypt the TLS connections whereas other browsers (IE,
Edge and Safari) do not.19 During the data collection we generated
an SSL key log file for each visit performed in Chrome, Opera and
Firefox browsers. After the data collection, we used tshark20 to
decrypt the TLS connections and decode the HTTP/2 frames.
Results Figure 7 shows the average number of HTTP/2 frames
from each frame type generated by Chrome, Firefox and Opera
browsers during a webpage visit in our dataset. We find several

19https://wiki.wireshark.org/SSL
20https://www.wireshark.org/docs/man-pages/tshark.html
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Figure 7: Average number of HTTP/2 frames from each
frame type generated by Chrome, Firefox and Opera
browsers during a webpage visit in our dataset.

practices that are likely to change the size of packets carrying
HTTP/2 frames:

• On average, Chrome and Opera browsers generate similar
number of frames. This is likely due to the fact that both
Chrome and Opera are based on the Chromium open source
project, and hence share the same HTTP/2 implementation.

• Firefox generates more WINDOW_ UPDATE and PRIORITY
frames than Chrome or Opera. Further analysis of Firefox
traffic traces reveals that WINDOW_UPDATE and HEADER
frames are often found in the same network packet.
A WINDOW_UPDATE frame is 13 bytes long.21. Thus, even
if Chrome and Firefox browsers generate the same HTTP/2
HEADERS frames, most packets that contain a FirefoxHEAD-
ERS frame will have 13 more bytes due to the WINDOW_
UPDATE frame in the same packet compared to the cor-
responding CHROME packets—significantly changing the
outgoing packet sizes generated by the two browsers.

• Unlike the Chromium browsers, Firefox sends multiple PRI-
ORITY frames in the same packet that contains the connec-
tion preface string.22

Our analysis in this section shows that different browsers differ
in several aspects of their HTTP/2 implementations, resulting in
differences in the number of packets generated as well as size of
packets.

5.3 Client Specific Connections
When a webpage is visited, browsers often communicate with mul-
tiple servers to load web resources, such as HTML, CSS and image
files, as well as communicate with tracking and advertisement
servers. Figure 8 shows the total number of TCP connections from
each client to 14 domains—we selected the domain names of the
7 websites we study and 7 additional domain names to illustrate
219-octet frame header + 4 octet payload [22].
22The client and server send a preface string to establish the initial settings of HTTP/2:
https://tools.ietf.org/html/rfc7540#section-3.5.

https://tools.ietf.org/html/rfc7540#section-3.5


the similarities and differences in the domains communicated by
different clients.
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Figure 8: Total number of TCP connections from each client
to 14 selected domain names in our dataset.

Similar to the observations in prior work [21], we find that some
clients communicate with certain domain names significantly more
than others, mainly due to browser specific communication: Opera
browser (i.e., clients 16, 17 and 18) communicates with “opera.com”,
IE and Edge browsers (i.e., clients 9, 14 and 15) communicate with
“microsoft.com” and Firefox browser (i.e., clients 11, 12 and 13) com-
municates with “mozilla.com”. Furthermore, client 17 (Windows 10 -
Opera) is the only client that communicates with “duckduckgo.com”.
The client specific connections significantly change the traffic fea-
tures of a webpage across the clients, such as the number of in-
coming and outgoing packets—such features are used by several
fingerprinting methods (e.g., Wfin, CUMUL and K-fingerprinting).

6 SEARCH FOR A ROBUST METHOD
In this section, we investigate whether a webpage fingerprinting
method that is robust to the traffic variations across different clients
can be trained through diversification of training samples.
Diversification of Training Samples We consider a scenario
where a webpage fingerprinting entity, that is aware of the impact of
client diversity and has sufficient computational resources, collects
traffic samples from a diverse set of clients but does not consider a
specific client during training—and the test samples are from that
specific client. This scenario can be studied using one of the clients
in our dataset as a test client and using the remaining 18 clients for
training the webpage fingerprinting methods—we perform 19 such
evaluations in each website with each method. As in our evaluation
methodology in Section 4.2, we use the first 21 samples of a webpage
from a client when the client is considered for training and use the
remaining 7 samples when the client is used for test. Note that this
scenario is rich in training data since we use 18 clients x 21 samples
= 378 samples for each webpage during training (compared to the
scenarios in Section 4 where we use only 21 samples from a single
client for each webpage). Figure 9 plots the average accuracy of
each method in each website in this scenario.

We observe a significant increase in the accuracy of Wfin and
BoG methods compared to the scenarios in Section 4 where we
evaluate the methods using samples from two different clients
(Scenarios 2, 3, 4 and 5). For example, Wfin achieves around 35%
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Figure 9: Webpage fingerprinting accuracy when samples
from one client are used for test and samples from the re-
maining 18 clients are used for training—19 such evalua-
tions are performed with each method in each website.

accuracy in Vanguard in Scenario 2 (Figure 1b) whereas it achieves
around 80% in present scenario for the same website (Figure 9).23

However, the fingerprinting accuracy of all methods is still lower
than that achieved in Scenario 1 (Figure 1a)—even when signifi-
cantly more training samples that are collected from multiple di-
verse clients are used. This further supports our hypothesis that
when samples from only one client are used to evaluate fingerprint-
ing methods (which is true for all prior work on HTTPS webpage
fingerprinting), the fingerprinting accuracy may be significantly
exaggerated (due to overfitting to specific packet sizes).

Figure 10a plots the accuracy of the Wfin method observed with
each of the 19 test clients used in this scenario for each website.
Compared to Figure 4, wherewe evaluate thismethod using training
samples from only the single client 8, we observe higher and more
uniform accuracies across the 19 test clients and the 7 websites.

While we find that the methods perform better when they are
trained using more samples from a diverse set of clients, compared
to when they are trained using less samples from a single client,
the main source of the improvement is not clear. Is it the diverse
samples from different browsers? Is it the samples of the same
browser from different clients or is it simply using more training
samples? In order to answer these, we consider several other sce-
narios and evaluate the accuracy of the Wfin method, one of the
best performing methods.
Samples From Just 6Clients ThatRepresentDifferent Browsers
Figure 10b plots the accuracy of the Wfin method when the method
is trained using samples from 6 different clients namely 6, 9, 10, 15,
16 and 19—these are clients that use the browsers Chrome, Edge,
Firefox, IE, Opera, and Safari, respectively. Note that samples from
all 6 browsers in our dataset are used during training, and 126
training samples (6 clients x 21 samples) are used for each webpage.
We observe lower accuracies compared to Figure 10a where we
train using samples from 18 different clients. However, compared to
Figure 4, we observe much higher and more uniform accuracies for
all websites and all test clients. It may be tempting to conclude that
the 6 diverse clients represented in the training data are contribut-
ing to the performance improvement—however, it is important to
23Note that the average accuracy of some methods, such as PS, IPS and CUMUL, are
lower in Figure 9 for some websites, compared to Figure 1b—in Figure 1b, we use only
two test clients that use the same browser and OS but differ in device (clients 3 and
4), whereas in Figure 9 we average the accuracy over 19 test clients. When only the
accuracies achieved in the two test clients used in Figure 1b are averaged, all methods
achieve a higher accuracy when samples from 18 clients are used for training.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Test Client ID

ACLU

Bank of America

Legal Zoom

Mayo Clinic

Planned Parenthood

Vanguard

Wells Fargo

Mean Accuracy

76 71 54 57 85 71 80 74 17 64 55 63 59 9 8 77 68 71 26
100 98 97 98 91 96 97 99 96 94 97 97 95 90 84 94 98 98 93
98 98 97 98 98 95 95 99 83 60 72 78 55 37 41 95 96 92 53
90 90 88 91 94 93 95 96 84 88 93 96 89 72 42 93 97 95 85
97 96 97 94 93 93 99 94 86 86 80 96 83 50 42 91 95 90 27
87 85 79 87 81 80 83 84 82 85 85 86 77 68 76 75 82 75 67
68 67 67 68 69 69 69 68 69 68 68 69 64 63 58 70 65 68 67
88 86 83 85 87 85 89 88 74 78 79 84 75 56 50 85 86 84 60

(a) When samples from one client are used for test and the samples from the
remaining 18 clients are used for training.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Test Client ID

ACLU

Bank of America

Legal Zoom

Mayo Clinic

Planned Parenthood

Vanguard

Wells Fargo

Mean Accuracy

62 57 35 60 82 T 71 66 T T 59 58 50 9 T T 49 45 T
94 94 93 96 93 T 97 97 T T 94 91 91 86 T T 88 93 T
73 59 60 78 88 T 81 78 T T 49 51 41 37 T T 77 68 T
61 48 57 47 93 T 91 94 T T 92 92 85 78 T T 88 80 T
67 48 57 54 87 T 94 91 T T 59 58 69 54 T T 71 77 T
72 79 67 78 78 T 84 86 T T 77 69 73 65 T T 70 76 T
64 39 41 69 68 T 70 69 T T 66 68 62 52 T T 57 61 T
70 61 59 69 84 T 84 83 T T 71 70 67 55 T T 71 71 T

(b) When samples from clients 6, 9, 10, 15, 16 and 19 are used for training. “T”
indicates that a client is used for training.
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(c) Effect of increasing the number of training samples per webpage.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Test Client ID

ACLU

Bank of America

Legal Zoom

Mayo Clinic

Planned Parenthood

Vanguard

Wells Fargo

Mean Accuracy

75 77 61 84 85 74 67 76 n/a 69 57 63 60 n/a n/a 77 72 66 n/a
96 97 97 98 92 94 97 95 n/a 93 96 98 95 n/a n/a 91 94 95 n/a
96 100 98 99 95 96 98 98 n/a 71 70 78 63 n/a n/a 79 83 81 n/a
91 91 93 93 73 95 97 97 n/a 93 96 97 91 n/a n/a 82 93 84 n/a
89 95 91 93 93 91 97 93 n/a 84 73 93 81 n/a n/a 81 92 90 n/a
80 87 80 86 82 78 82 75 n/a 80 85 85 72 n/a n/a 62 65 46 n/a
65 65 64 66 69 63 68 64 n/a 66 67 69 59 n/a n/a 66 64 66 n/a
85 87 83 88 84 84 87 85 n/a 79 78 83 74 n/a n/a 77 80 75 n/a

(d) The clients are grouped into those that use the same browser (client ID
ranges are given in parentheses): Chrome (1-8), Firefox(10-13) and Opera(16-
18). One client in a group is used for test and the remaining clients in the
group are used for training. “n/a” indicates that a client is not considered in
this scenario.

Figure 10: Accuracy of the Wfin method in each website
for each test client in different scenarios where the training
samples are varied. The same 350 test samples from a test
client (50 webpages within a website x 7 test samples) are
used in each evaluation.

remember that the number of training samples is quite different for
the evaluations summarized in each of Figures 4, 10a, and 10b. We
isolate the impact of number of training samples next.
Effect of Number of Training Samples Figure 10c plots the effect
of increasing the number of training samples per webpage in the
scenarios of Figures 10a and 10b—for both scenarios, Figure 10c
reports the average accuracy achieved for the 13 test clients that
are evaluated in Figure 10b (i.e., 13 test clients x 7 websites = 91
evaluations are performed to calculate each accuracy point). Equal
number of training samples are used from each of the training
clients. The x-axis represents the number of training samples used
per webpage—for example, when 36 samples are used per webpage,
2 samples are used from each of 18 training clients (and 6 samples
are used from each of 6 training clients). We observe a significant
increase in the accuracy when more samples are used from each of
18 clients—when 90 samples are used per webpage (5 samples from
each of 18 clients) the accuracy increases to around 82% compared to
around 70% when only 18 samples per webpage are used. However,
the accuracy gain seems to saturate after 72 samples.

In the scenario using just 6 training clients, the performance
gains are only slight when more samples are used from each client.
Note that the 6 training clients use different browsers whereas
among the 18 clients, there are multiple clients that use the same
browser. We hypothesize that with 18 different training clients,
Wfin mainly benefits from the larger number of samples of the
same browser across different clients. We test this next.
Samples From the Same Browser Across Different Clients We
divide clients into groups that use the same browser—we create 3
groups corresponding to Chrome, Firefox, and Opera. We then use
one client from a group for test and the remaining clients to train
the Wfin method. In order to remove the influence of number of
training samples, we use around 21 samples from each webpage
for training and take equal number of samples from each training
client—we take 3 samples from each of 7 training clients in Chrome
group, take 7 samples from each of 3 training clients in Firefox
group, and take 11 samples from each of 2 training clients in Opera
group. Since we have less than 3 clients that use IE, Edge and Safari
browsers, we do not consider the corresponding clients here.

Figure 10d plots the accuracy observed. We observe higher and
more uniform accuracies across the test clients compared to Fig-
ure 10b. The accuracies are also similar to those in Figure 10a. Note
that in this scenario, we use significantly less training samples for
each webpage compared to Figure 10b (21 versus 126 samples),
and use similar number of training samples as the scenario in Fig-
ure 4 (in which we use 21 samples from a single client). We find
that using samples of the same browser from different clients for
training increases the robustness of the methods more (Figure 10d)
compared to using samples from clients that use different browsers
(Figure 10b). This experiment also shows that if the browser of a
test client can be identified [24], a robust fingerprinting method
can be trained by using samples from a diverse set of clients that
use the same browser.

Based on the evaluations in this section, we conclude that:

• Even though the samples from the test clients are not con-
sidered in the evaluations during training, machine learning



methods are able to capture the variations in the traffic fea-
tures across the diverse set of training clients and are now
more robust to the traffic variations compared to when they
are trained with samples from a single client (Figure 4).

• Significant browser differences (Section 5) necessitate that
the training phase includes samples from the browser of the
test client (even if the samples from the OS and device of the
test client are not included).

7 RELATEDWORK
Web traffic analysis research has been quite active for two decades.
HTTPS Cheng and Avnur (1998) performed the first webpage
fingerprinting study in the traffic analysis literature [25]. They
studied a single website and showed that most of the webpages
have distinct HTML sizes which allows the visits to be identified in a
traffic trace. Using HTTPS server logs, George Danezis investigated
how much information can be inferred from HTTPS requests and
whether a Hidden Markov Model can be used to find the most
plausible explanation for the observed resource sizes [26].

In 2014, Miller et al. performed the first systematic HTTPS web-
page fingerprinting study [5]. In 2016, Gonzalez et al. evaluated a
method from the Tor traffic analysis domain in HTTPS webpage
fingerprinting. These are discussed in Section 2.4.
EncryptedWeb Proxy After the HTTPS study of Cheng andAvnur,
a growing body of the traffic analysis literature investigated the
feasibility of using webpage fingerprinting techniques for the web
traffic protected by privacy enhancing technologies (PETs) such as
SSH, VPN and Tor. One common property of these technologies is
that they all use proxy tunnels to transmit web traffic and hide the
identities of the web servers communicated by a client. Thus, an
adversary has to consider that a client may visit any webpage on
the web—the webpages cannot be narrowed down to those that are
served from a single server.

Sun et al. were the first to consider such a proxy tunnel sce-
nario [27]. They studied a scenario where a web user can visit
111,884 webpages and an adversary is interested in determining
whether the user visits one of the 2191 target webpages. They
argued that even though the false positive rate (i.e., the rate of pre-
dicting a visit to a webpage even though the webpage is not visited)
may increase when all the webpages on theWeb is considered, their
methodology can be used for pruning the possibilities for a more
sophisticated method. Similarly, Andrew Hintz showed that object
sizes can be used to reveal the webpages visited in an encrypted
web proxy named SafeWeb [28].
SSH Proxy Tunnel Bissias et al. [10] and Liberatore and Levine
[6] investigated whether packet sizes can be used for fingerprint-
ing webpages visited in an SSH proxy tunnel. Bissias et al. used
cross correlation to measure similarities between packet size and
inter-arrival time traces [10]. Similarly, Liberatore and Levine mod-
eled a webpage as a multiset of packet sizes (with direction) and
experimented with Jaccard Similarity and Naive Bayes classifier [6].
Anonymized NetFlow Records Coull et al. [29] and Yen et al. [24]
studied fingerprinting webpages in anonymized NetFlow records
(when only flow level information is available and the IP addresses

are anonymized using consistent pseudonyms). Coull et al. con-
sidered the issues of network locality (collecting training and test
data in different networks), browser caching, and browsing session
parsing [29]. Yen et al. [24] first studied fingerprinting browsers in
anonymized NetFlow records. The researchers then studied clas-
sifying traffic traces of landing pages of 52 websites as an appli-
cation of browser fingerprinting. They showed that identifying
the browser that generated a traffic trace first and then using a
webpage fingerprinting method that was trained using the samples
from that browser leads to an increase in the precision and recall
(from around 25% and 5% to 32% and 15%, respectively) compared
to using a generic fingerprinting method that was trained using
samples from several browsers.
HTTP Maciá-Fernández et al. showed that the webpages visited
within HTTP websites can be identified by matching the unique
root and object file sizes of the webpages with the object sizes
extracted from a traffic trace [30].
Tor Herrmann et al. investigated the feasibility of using webpage
fingerprinting techniques against various other privacy enhancing
technologies such as VPN and Tor and evaluated a variant of the
method introduced by Liberatore and Levine [6] in this context [11].
Even though they reported less than 3% traffic trace classification
accuracy for Tor, two years later Panchenko et al. [19] introduced
a new set of features and used Support Vector Machines for clas-
sification and increased the accuracy to 55% in the same dataset.
Since then, traffic analysis of Tor has been an active research area,
with innovations mainly in the traffic features extracted and the
supervised machine learning methods employed.

Notably, Cai et al. were the first to show that a sequence of
webpage visits within a website can be modeled using a Hidden
Markov Model to increase the accuracy of identifying a visit to a
website [12]. Wang et al. [31] introduced a novel method that uses
k-Nearest Neighbor to monitor the visits to 100 webpages from an
open set of 5000 webpages. Hayes and Danezis used 150 different
traffic features and Random Forest Classifier for fingerprinting
30 Tor hidden services [18]. Yan and Kaur [9] have shown that
when an exhaustive feature selection methodology is used to find
informative features, an accuracy around 92% can be achieved in
classifying Tor traffic traces of landing pages of 100 websites.

Recent studies have questioned the assumptions made in the
Tor traffic analysis domain [8, 32]. Panchenko et al. showed that
when large number of webpages are considered, the state-of-the-art
traffic analysis methods fail to identify the visited webpages in Tor
network traffic. Juarez et al. [32] showed that variables such as the
change of a website over time, multitab browsing, browser version,
and the number of webpages considered can significantly affect the
accuracy of traffic analysis methods in practice.
VPN Feghhi and Leith showed that the timing of the outgoing
packets in an encrypted tunnel (e.g. VPN) can be used to predict
the webpages visited [7].
Other Traffic Analysis Studies Chen et al. demonstrated that
health records, tax information, investment secrets, and search
queries can be leaked in network traffic due to user interactions
such as keystrokes or mouse clicks [33]. Trevisan et al. showed
that IP addresses and hostnames can be used to identify the traffic



of popular web services, such as facebook.com, google.com and
whatsapp.net [34]. Sanders and Kaur showed that anonymized
TCP/IP headers can be used to classify webpage traffic traces using
several different labeling schemes, such as type of content, video
vs. non-video, and mobile vs. non-mobile [35].

8 CONCLUSION
In this paper, we focus on the impact of client diversity on HTTPS
webpage fingerprinting. Our analysis informs us about the differ-
ences across clients, reveals the adverse effect of client diversity
on the performance of prominent webpage fingerprinting methods,
and suggests using samples from a diverse set of clients for training
a robust webpage fingerprinting method—even if the browser and
OS of the test client are known.
Limitations While our dataset and analysis is an important step,
there are several other factors—including thousands of webpages
within a modern website, browser caching [5], browsing session
parsing [29], multitab browsing [32], and user specific webpage
content—that are expected to have a compounding adverse effect
on the performance of the fingerprinting methods in the real world.
We consider lack of large scale, labeled, and diverse webpage traf-
fic trace datasets, as well as the difficulty of simulating real user
webpage visits in laboratory conditions, as a major obstacle for a
realistic evaluation of the webpage fingerprinting methods.
Client Diversity as a Dataset Bias Problem In the computer vi-
sion literature, dataset bias is a well known problem—object recog-
nition methods trained using one dataset do not generalize in other
datasets [36]. In future work, methods that explicitly model dataset
bias (introduced by a specific web client) can be studied to approxi-
mate an unbiased traffic trace of a webpage visit (find features that
are robust in webpage visits across clients) [37].
Implications forOther TrafficAnalysis Studies Whilewe focus
on prior work on HTTPS webpage fingerprinting [4, 5], most prior
traffic analysis studies in other settings were also performed using
traffic samples from the same client [6, 7, 9, 11, 18, 25, 27, 30]. We
hypothesize that the adverse effect of client diversity can also be
observed in these settings. Future traffic analysis studies should
collect traffic samples from a diverse set of clients to evaluate the
robustness of proposed methods.

Our dataset and code have been made publicly available.24
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