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a b s t r a c t

In this paper, we propose a generalized framework for modeling the behavior of prominent congestion-
control protocols. Specifically, we define a general class of loss-based congestion-control (LB-CC) mech-
anisms and demonstrate that many variants of TCP, including those being proposed for high-speed net-
works, belong to this class. Second, we develop a stochastic model to predict the transfer time for bulk
transmissions by any protocol belonging to the LB-CC class—our model predicts both the mean as well
as the variability in the transfer time. Our model is applicable to a wide set of transfer types and network
capacities. We validate our model through extensive simulations under controlled settings, as well as
with comprehensive HTTP workloads.

We use our empirical analysis to also provide insights into several important issues, including: (i) iden-
tifying the settings under which previously-proposed TCP models are accurate, and (ii) identifying the
conditions under which only steady-state analysis can be sufficient in modeling transfer performance.
Our generalized framework provides a powerful tool that can be used in the design, analysis, and com-
parison of next-generation transport protocols. We demonstrate this benefit by comparing prominent
TCP proposals for high-speed networks.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

TCP is the most widely-used transport protocol in the Internet
[1]. Analytical models that accurately predict the performance of
a TCP transfer on a given Internet path are needed for several rea-
sons. First, such models can be used to understand how well Inter-
net’s dominant transport protocol works under different network
and end-host settings. Second, such models are useful in distrib-
uted routing frameworks that, for a given TCP transfer, select the
best path from a candidate set [2]. Third, these models are an
essential ingredient in distributed computing frameworks—such
as the GRID [3]—that need to incorporate the cost of network
transfers and server computations in deciding how to distribute
heavy-duty scientific computations. Finally, TCP models lie at the
basis of the design of TCP-friendly congestion control mechanisms
[4,5].

The TCP protocol itself is subject to change over time as newer
versions are developed and deployed [6–12]. A TCP performance
model is most useful when it incorporates this diversity and can
be used to compare the different versions. Many TCP performance
models have been proposed in the literature over the last decade
[13–26]. Unfortunately, many of these models can be applied to

very few (and often no more than one) variants of TCP. Further-
more, all these models predict either an expected steady-state
throughput or an expected transfer time for a given TCP trans-
fer—none of these estimate the variability in the transfer times.
In this paper, we propose a class of TCP performance models that
address these limitations.

Specifically, we make the following contributions. First, we for-
mulate a simple framework that characterizes several TCP protocol
variants. In particular, we define a general class of loss-based con-
gestion-control (LB-CC) mechanisms and demonstrate that many
variants of TCP, including those being proposed for high-speed net-
works, belong to this class. Second, we develop a stochastic model
to predict the transfer time for bulk transmissions by any protocol
belonging to the LB-CC class—our model predicts both the mean
and the variability in the transfer time. Our model is applicable
to short as well as long transfers and is applicable in more diverse
settings of transmission capacity than previous models. We vali-
date our model through extensive simulations under controlled
settings, as well as with comprehensive HTTP workloads. Third,
through computations and simulations, we identify the settings
under which previously-proposed TCP models are accurate. In
particular, we draw insights into the question: when is steady-
state-only analysis sufficient for modeling the performance of TCP
connections? Our generalized framework provides a powerful tool
that can be used in the design, analysis, and comparison of
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next-generation transport protocols. We demonstrate this benefit
by comparing prominent TCP proposals for high-speed networks.

The rest of this paper is organized as follows. In Section 2, we
outline our modeling objectives and approach. The LB-CC class is
defined in Section 3. In Section 4, we present our transient analysis
model for the LB-CC class. The model is validated using extensive
simulations and real traces in Section 5. In Section 6, we discuss
the computation efficiency of our model, and in Section 7, the
applicability of steady-state analysis. We summarize our conclu-
sions in Section 8.

2. Objectives and approach

TCP performance models help predict the time it would take to
transfer a given number of bytes between two Internet hosts. In
this section, we derive the requirements that such models should
satisfy and discuss the state of the art in existing models. To in-
form this discussion, we begin by briefly reviewing the basic
mechanisms used in TCP and the factors that impact TCP
performance.

2.1. The transmission control protocol

TCP provides a reliable, in-order byte-stream service to applica-
tions. TCP senders transmit application bytes in chunks, called seg-
ments, and receivers send cumulative acknowledgments (ACKs) to
indicate the successful receipt of each segment. Lost segments
are detected and retransmitted on the receipt of multiple (typically
three) duplicate ACKs (referred to as Fast Retransmit) for earlier
segments. Additionally, a timeout is used to trigger retransmission
of segments that are not acknowledged. TCP receivers guarantee
in-order delivery to the application by buffering segments that ar-
rive out-of-order.

TCP also provides flow control and congestion control seman-
tics. For this, it employs a window-based sending mechanism in
which senders limit the maximum number of unacknowledged
segments they transmit to a value, namely the Send Window (W).
In order to provide flow-control, W is not allowed to grow more
than the flow control limit, K, which is the minimum of the sender
and receiver-advertised window sizes. TCP implements congestion
control using three kinds of mechanisms to maintain W: (i)
increasing W on receiving indications (ACKs) of successful segment
transmissions; (ii) detecting the occurrence of congestion on the
path between the sender and receiver; and (iii) responding to con-
gestion indications by reducing W. Different versions of TCP differ
in the mechanisms and policies that are used for each of these
three tasks. Most TCP variants—including Tahoe, Reno [27], SACK,
Scalable [10], High-speed [28], and BIC [11]—rely on packet losses
to detect congestion. Some versions—such as Vegas [6] and Fast-
TCP [9]—additionally rely on increase in segment round-trip times
to detect the onset of congestion. Explicit Congestion Notification
(ECN) can also be used to signal congestion in the network. An
ECN-enabled TCP Reno sender will reduce W upon receiving a con-
gestion signal in the same manner as it would on detecting a seg-
ment loss.

TCP versions differ more significantly in how they update W
(see Section 3). The general principle, though, is that TCP senders
are more aggressive in reducing their send window on detecting
congestion than they are in increasing it in the absence of conges-
tion. In addition, most TCP versions define a Slow Start phase in or-
der to achieve fast start-up behavior. In Slow Start, W is
incremented aggressively until it reaches the slow-start threshold,
S. When the window is above S, a TCP sender is said to be in the
Congestion Avoidance phase.

2.2. Factors that impact TCP performance

The throughput of a TCP session at any given time is governed
by the value of W as well as the time it takes for all segments in
the window to get acknowledged. A number of factors impact
the growth of W. First, different TCP versions react differently to
indications of successful transmission or to indications of conges-
tion. As a result, they differ in the send window they maintain
and, consequently, the throughput they achieve. Second, since W
is incremented only when ACKs are received, the latency and rate
at which ACKs arrive directly impacts throughput—the longer it
takes for ACKs to arrive, the slower is the TCP transfer. This implies
that TCP throughput depends directly on the path round-trip times
and bottleneck transmission capacity.1 Third, packet losses are used as
congestion indicators and result in an aggressive reduction in W, and
consequently, TCP throughput. Fourth, the send and receive buffer
limits, and the rate at which the receiving end of an application con-
sumes data, impose a limit on the W and, hence, throughput. Finally,
the sender’s setting of S impacts the rate at which the send window
gets incremented initially, especially for transfers that are short.

It follows that the performance of any TCP session will depend
on the exact nature in which it encounters the factors mentioned
above. Below, we outline several observations related to the diver-
sity with which the above factors occur in the Internet and use
these to derive our modeling objectives.

2.3. Modeling objectives

� Incorporating TCP variants: TCP congestion control has under-
gone several enhancements, since it was originally proposed in
[29]. While newer versions are getting widely deployed, several
different TCP versions may co-exist in the Internet simulta-
neously [6,7,27]. Furthermore, with the advent of high-speed
networks, several researchers are proposing new variants of
TCP to enable it to efficiently use network bandwidth [8–
11,30]. A TCP model is most useful when it can incorporate sev-
eral of these variants and, possibly, help in comparing these.
This leads to the following modeling objective.

Objective 1. A TCP model should be applicable to different and
newer versions of the protocol.

� Incorporating variability: TCP connections can experience sig-
nificant statistical variability around average network properties
such as round-trip times and packet losses [31,32]. A perfor-
mance model that estimates only the expected transfer time
may, therefore, be far off from the actual performance experi-
enced by a given TCP connection. It is, therefore, important to
also estimate the amount by which the two quantities may dif-
fer. The estimation analysis itself, however, should be computa-
tionally simple for it to be usable in practice.

Objective 2. A TCP model should efficiently estimate not just the
expected performance of a transfer, but also the
amount by which the actual performance may devi-
ate from the expected behavior.

� Incorporating network speeds: The Internet is extremely
diverse in the types of edge networking technology used and
the end-to-end bottleneck link capacities present. Internet users
may sit behind 56 Kbps phone modem lines and engage mostly
in text-based email and browsing applications. Other home

1 The bottleneck transmission capacity of a path is defined as the minimum of the
transmission capacities of all links on the path.
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users sitting behind broadband technology, such as ADSL or
cable modems, have a bottleneck capacity of a few megabits
per second available to them and may engage in the download
of large audio and video files. Large organizations and commer-
cial enterprises may have local area networks made of 10/
100 Mbps or even Gigabit Ethernet technology. Finally, new net-
works being deployed for scientific computing with extremely
large data sets, have an end-to-end capacity of more than a
few gigabits per second [33]. A TCP performance model should
not only incorporate the diversity in link technologies present
in today’s Internet, but also be applicable to future ultra-high-
speed networks. This leads to the following modeling objective.

Objective 3. A TCP model should incorporate end-to-end bottle-
neck capacity and be applicable to paths with differ-
ent types of edge networking technology—ranging
from phone modem lines to high-speed gigabit opti-
cal fibers.

� Incorporating Transfer Settings: TCP transfers can be extre-
mely diverse in the size of the transfer [34] as well as the end-
host settings for various protocol parameters. For instance, the
total number of bytes transmitted in a bulk TCP transfer can vary
from as few as 40 B to as much as several megabytes. While
short transfers account for a majority of Internet connections,
long transfers account for a majority of bytes transferred [35];
hence, it is important to model both types. Furthermore, differ-
ent operating systems differ in the default initial settings of S,
the slow-start threshold, and K, the maximum limit on conges-
tion window size. This leads to our next modeling objective.

Objective 4. A performance model should be applicable to all
types of TCP transfers—independent of the size of
transfer and end-host protocol parameter settings.

A TCP performance model is most useful when it meets all of
the above objectives and, thus, caters to the diversity inherent in
the Internet.

2.4. State of the art

Many analytical models for TCP have been proposed over the
last decade [13–25,36]. One way to categorize these is based on
whether they conduct steady-state or transient analysis of TCP con-
nections. We discuss only a few of these below.

A simple formulation for the steady-state throughput of a bulk
TCP transfer, as a function of round-trip time and loss rate, was ini-
tially presented in [18]. More comprehensive steady-state models
were subsequently developed in [13,15,19–24]. One distinguishing
feature for some of these is the way in which packet losses are
modeled—in [21], the authors conduct fluid analysis of TCP win-
dow size behavior by modeling the arrival of packet loss signals
as a Poisson process. The model proposed in [13] allows for the
incorporation of general and correlated distributions for losses.
Perhaps the most prominent steady-state throughput model for
TCP was presented in [23], in which the authors modeled the
TCP Congestion Avoidance phase using a Markovian model and
correlated losses. This work incorporated the impact of retransmis-
sion timeouts, fast retransmit, and delayed acknowledgments on
TCP throughput. The model was validated by comparing with the
actual throughput achieved by several TCP connections instanti-
ated across the Internet. There have also been recent attempts at
developing generalized steady-state models that incorporate two
or more variants of TCP [14,24,25].

The category of transient TCP analysis has seen less work
[16,26,36]. The model in [16] has received much attention, in

which the authors extended TCP modeling to transient analysis
of the initial Slow Start phase in order to accurately derive the
transfer time for short-lived connections. For long transfers, the
model incorporated the steady-state throughput formulation
from [23] for estimating the remaining transfer time for connec-
tions that entered Congestion Avoidance. The authors demon-
strated that their formulation was more accurate than past
work for not only short transfers, but also when the packet loss
rates were very low. It may, therefore, be fair to say that the
model in [16] is among the most comprehensive TCP models that
exist today.

While many recent models have been well-validated in sev-
eral realistic scenarios, none of them satisfy simultaneously all
of the objectives derived in Section 2.3. In particular, several past
models mostly incorporate the congestion-control mechanisms in
TCP-Reno and are not directly applicable to other TCP versions
(Objective 1). Second, to the best of our knowledge, all past mod-
els predict only the average-case performance for a given TCP
transfer—they do not estimate the variability in transfer times
(Objective 2). Thus, past models fail to cater to the random
dynamics in Internet traffic conditions. Third, none of the past
models incorporate the impact of bottleneck transmission capac-
ities on TCP performance and hence, are accurate for only limited
types of edge-networking technologies (Objective 3). Finally, the
analyses in [13–15,17–25] model only the steady-state behavior
of long-lived TCP connections and hence, are not applicable to
the majority of Internet connections (Objective 4). Furthermore,
transient models that switch to steady-state formulations for
long transfers, do not adequately deal with the issue of when
to switch. We substantiate several of the above observations
about past work with analysis and simulations in Sections 5
and 6.

2.5. Our approach

In order to simultaneously achieve all of our modeling objec-
tives, we use the following key ideas:

� We incorporate protocol diversity by first defining an abstract
class of Loss-based Congestion Control (LB-CC) mechanisms. Our
definition is fairly general and we show that several TCP vari-
ants, including those being proposed for high-speed networks,
belong to the LB-CC class. We then develop a parameterized sto-
chastic model that predicts, for any member of the LB-CC class,
the time it would take to transfer (TTT) a given number of bytes
on a given Internet path.

� We conduct transient analysis of TCP—that does not assume sta-
tionarity in TCP window size dynamics—and that predicts the
transfer time for a TCP connection accurately, irrespective of
the transfer size. Our transient analysis is compute-intensive
for long transfers—we enhance it with a simple mechanism for
detecting steady-state and switching to a steady-state estima-
tion of transfer time. Our resulting model is both computation-
ally efficient as well as accurate for long and short transfers.

� We estimate the deviation of actual performance from the pre-
dicted performance by modeling both the expected value as well
as the standard deviation in TTT. Our formulation of TCP win-
dow dynamics as a semi-Markov process is fundamental to
our ability to compute these performance metrics.

� We explicitly model the impact of the bottleneck transmission
capacity on the minimum spacing between ACKs. This allows
us to pace TCP ‘‘ack-clocking” and, consequently, its throughput.

In what follows, we define the LB-CC class in Section 3 and pres-
ent our models in Section 4.
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3. The LB-CC class

Two requirements guide our definition of an abstract frame-
work for different TCP variants. First, the definition should capture
as many details of mechanisms common to different versions as
possible. This will allow analysis conducted using the framework
to be accurate. Second, the definition should be generic enough
so that it allows the incorporation of the differences between cur-
rent TCP versions, as well as many new protocol variants.

Recall from the discussion in Section 2.1 that many TCP variants
share mechanisms such as use of Fast Retransmit, a flow-control
limit, and the Slow Start phase. They may, however, differ in tech-
niques used to detect congestion (segment loss or increase in de-
lays), as well as the window updating functions. In this paper,
we focus on TCP versions that use only segment losses to detect
congestion. We generalize the window-updating functions of all
such protocols by defining the LB-CC class below. In the rest of this
paper, we denote the slow-start threshold by S, the flow-control
limit on window size by K, and the send window by W.

Definition 1. A transport protocol is said to belong to the class of
loss-based congestion control (LB-CC) protocols, if the sender
employs the following policies for updating its send window and
slow-start threshold:

� On receiving the acknowledgment for the successful transmis-
sion of a segment, the sender updates its send window as
follows:

W ¼
minfW þ f1ðWÞ;Kg; if W < S

minfW þ f2ðWÞ;Kg; if W P S

�
ð1Þ

where ðW þ fiðWÞÞ, for i ¼ 1;2, are non-decreasing functions of
W. S does not get updated on the receipt of an ACK for a success-
ful transmission.

� On receiving the indication of a packet loss through multiple
duplicate acknowledgments, the sender reduces W and S as
follows:

W ¼
maxfW � g1ðWÞ;1g; if W < S

maxfW � g2ðWÞ;1g; if W P S

�
ð2Þ

S ¼
maxfW � g3ðWÞ;1g; if W < S

maxfW � g4ðWÞ;1g; if W P S

�
ð3Þ

where giðWÞ are positive functions such that for all W, g3ðWÞP
g1ðWÞ and g4ðWÞP g2ðWÞ, and ðW � giðWÞÞ are non-increasing
functions of W, for i ¼ 1;2;3;4.

� On receiving the indication of a packet loss through retransmis-
sion timeouts, the sender reduces W and S as follows:

W ¼
maxfW � h1ðWÞ;1g; if W < S

maxfW � h2ðWÞ;1g; if W P S

(
ð4Þ

S ¼
maxfW � h3ðWÞ;1g; if W < S

maxfW � h4ðWÞ;1g; if W P S

(
ð5Þ

where hiðWÞ are positive functions such that for all W, h3ðWÞP
h1ðWÞ and h4ðWÞP h2ðWÞ, and ðW � hiðWÞÞ are non-increasing
functions of W, for i ¼ 1;2;3;4.

Observe that our definition of the LB-CC class is quite generic
and can incorporate many new protocol designs in addition to
those existing today. Below, we illustrate how several TCP variants
map to the LB-CC class.

3.1. TCP-Reno

Reno senders alternate between the two stages—Slow Start and
Congestion Avoidance—of congestion control [27]. Reno senders
employ a multiplicative-increase multiplicative-decrease (MIMD)
window updating policy during Slow Start, and an additive-increase
multiplicative-decrease policy during Congestion Avoidance [37].
Specifically, when segment losses are detected using triple dupli-
cate ACKs, Reno senders use Fast Recovery to effectively reduce
their window size by half. Reno maps to the LB-CC class with the
following parameters:

f1ðWÞ ¼ 1; f 2ðWÞ ¼
1
W

g1ðWÞ ¼ g2ðWÞ ¼
W
2

h1ðWÞ ¼ h2ðWÞ ¼W � 1

g3ðWÞ ¼ g4ðWÞ ¼ h3ðWÞ ¼ h4ðWÞ ¼
W
2

3.2. TCP-Tahoe

The design of TCP-Tahoe [29] predates that of Reno. Reno em-
ploys an additive-increase policy during Slow Start and a multiplica-
tive-increase policy during Congestion Avoidance. In response to
packet losses detected by duplicate ACKs as well as retransmission
timeouts, Tahoe senders reduce their window size to 1 segment.
Tahoe uses Fast Retransmit, but not Fast Recovery. Tahoe, there-
fore, maps to the LB-CC class with the following parameters:

f1ðWÞ ¼ 1; f 2ðWÞ ¼
1
W

g1ðWÞ ¼ g2ðWÞ ¼ h1ðWÞ ¼ h2ðWÞ ¼W � 1

g3ðWÞ ¼ g4ðWÞ ¼ h3ðWÞ ¼ h4ðWÞ ¼
W
2

3.3. Scalable TCP (S-TCP)

Scalable TCP proposes to achieve high utilization in high-speed
networks by adding an MIMD window update region (when the
congestion window is above a threshold, L) to the Reno SS and
CA phases [10]. It maps to the LB-CC class with the following
parameters:

f1ðWÞ ¼ 1

g1ðWÞ ¼
W
2

h1ðWÞ ¼ h2ðWÞ ¼W � 1

g3ðWÞ ¼ h3ðWÞ ¼
W
2

g4ðWÞ ¼ h4ðWÞ ¼min
W
2
; L

� �

f2ðWÞ ¼
1
W ; if S 6W < L

0:01; if W P L

(

g2ðWÞ ¼
W
2 ; if S 6W < L

0:875W; if W P L

�

3.4. High-speed TCP (HSTCP)

High-speed TCP is a generalized form of Scalable TCP, in which
the MIMD increment and decrement functions are parameterized
as follows [28]:
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f2ðWÞ ¼
1
W ; if S 6W < L

cðWÞ; if W P L

(

g2ðWÞ ¼
W
2 ; if S 6W < L

kðWÞW; if W P L

�

where c and k are functions of the current window size, the loss
probability, as well as several parameters. In real implementations,
it is proposed that these functions be looked up from a pre-com-
puted table. A recommended set of parameters is specified in
[28], which yields the following forms for these functions:

kðWÞ ¼ 0:5þ 0:4
logðWÞ � logðLÞ

logðWhighÞ � logðLÞ

cðWÞ ¼ 2WpðWÞ1� kðWÞ
1þ kðWÞ

where pðWÞ ¼ 0:078=W1:2 and Whigh ¼ 83;000. We use the above
forms in our evaluations in Section 7.

3.5. Square root fair (SRF) TCP

SRF TCP is also designed for achieving high-utilization in high-
speed networks, and additionally aims to achieve good TCP-friend-
liness and minimize RTT-unfairness [12]. Specifically, it advocates
a square-root function for window-dynamics in the high-speed re-
gion and maps to the LB-CC class with the following parameters:

f1ðWÞ ¼ 1

g1ðWÞ ¼
W
2

h1ðWÞ ¼ h2ðWÞ ¼W � 1

g3ðWÞ ¼ h3ðWÞ ¼
W
2

g4ðWÞ ¼ h4ðWÞ ¼min
W
2
; L

� �

f2ðWÞ ¼
1
W ; if S 6W < L

aWa; if W P L

(

g2ðWÞ ¼
W
2 ; if S 6W < L

bWb
; if W P L

(

where a ¼ � 1
2 ; b ¼ 1

2, and a, b are positive constants. The recom-
mended values for these are a ¼ 1:25 and b ¼ 15 [12].

4. A transient model for the LB-CC class

In this section, we first formulate the behavior of an LB-CC sen-
der as a semi-Markov process, and then compute performance
metrics—specifically, the mean and variance in time to transfer n
bytes in a bulk transfer. Below, we describe each of these steps
in detail.

4.1. Formulating a semi-Markov process

We assume that in a bulk transfer, the TCP sender always trans-
mits packets of the same size B, which is equal to the maximum seg-
ment size.

4.1.1. State variables
Recall that one of our modeling objectives is to develop a model

that is simple to use for deriving TCP properties. One of the first
hurdles in achieving this objective is that the state of an LB-CC
TCP sender at any time t is represented using two quantities: the
send window WðtÞ and the Slow Start threshold SðtÞ (see Definition
1). Keeping track of two variables is significantly more complex

than keeping track of only one variable. The challenge then is:
how can we reduce the complexity of tracking two variables?

We meet this challenge by exploiting the fact that the state var-
iable SðtÞ is used only when WðtÞ < SðtÞ. Furthermore, SðtÞ is up-
dated to a function of only WðtÞ, and one which does not depend
on past values of SðtÞ. These two facts collectively imply that we
need not keep track of SðtÞ for any time instants t at which
WðtÞP SðtÞ. This results in a significant gain in efficiency, since
the only situations in which SðtÞ needs to be modeled is either at
the beginning of a session, or after the occurrence of a timeout.2

We rely on standard TCP terminology below, in which the TCP ses-
sion is said to be in slow-start phase when WðtÞ < SðtÞ, and in conges-
tion avoidance phase when WðtÞP SðtÞ.

4.1.2. Modeling discrete state updates
Since TCP is an event-driven protocol, state updates can be

modeled using discrete time steps. Most past models do so by
using the approximation that state variables get updated once
every flight, where a flight is typically defined as the time interval
between the transmission of the first packet of the current window
and the receipt of its acknowledgment. The flight duration is
approximated by the mean RTT of the path between the TCP sender
and receiver.

In practice, however, TCP senders do not use the notion of
flights, but update their state on the receipt of every ACK or on
detecting packet losses or time-outs. We accurately model such
behavior as described below.

Let Un be the time when the nth acknowledgment is received. Let
Wn ¼WðUn�Þ be the window-size of the session just before the nth
acknowledgment is received. Similarly, define Sn ¼ SðUn�Þ. We as-
sume window-size dependent packet losses: we denote pLðWnÞ as
the probability for a sender to receive a third duplicate ACK in the
nth ACK event, and pTðWnÞ as the probability for a timeout to follow
immediately after the nth ACK is received. Thus, if pL and pT do not
depend on the window-size, the model reduces to independent and
identically distributed packet losses.

Note that these probabilities do not depend on the value of S. To
summarize, we assume that the nth acknowledgment indicates a
packet loss via multiple duplicate ACKs with probability pLðWnÞ, a
packet loss via timeout with probability pTðWnÞ and a successful
transmission with probability 1� pðWnÞ, where pðWnÞ ¼ pLðWnÞþ
pTðWnÞ.

With the above assumptions and notation, we can model the
fðWn; SnÞ;n P 0g process as a Discrete-time Markov chain. Recall
that we do not need to keep track of Sn during the congestion
avoidance phase. We exploit this fact by setting Sn ¼Wn as long
as the process stays in the congestion avoidance phase.

For brevity, we use the following notation:

�f iðwÞ ¼minfwþ fiðwÞ;Kg; i ¼ 1;2;
giðwÞ ¼maxfw� giðwÞ;1g; i ¼ 1; . . . ;4;

hiðwÞ ¼maxfw� hiðwÞ;1g; i ¼ 1; . . . ;4:

Clearly �f i; gi, and hi, are bounded below by 1 and above by K. We fur-
ther assume that gi and hi are bounded above by L 6 K .3 Thus the
state space of the fðWn; SnÞ;n P 0g process is fðw; sÞ : 1 6 w < s 6
Lg [ fðw; sÞ : 1 6 w ¼ s 6 Kg. This state space grows as the square
of L, but only linearly in K. This allows computing efficiencies in

2 It is important to note that although in practice, SðtÞ gets updated on detecting
losses through multiple duplicate ACKs, we need not model it. This is because
WðtÞ and SðtÞ are set to the same value in response to such events. Since WðtÞ is not
less than SðtÞ, therefore, we need not track the latter quantity.

3 This formulation fits in nicely both with current protocols, for which L ¼ K , as
well as for high-speed protocols, for which L is the low threshold [28,10].
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the analysis of connections with large K, especially in high-speed
networks.

Using the above framework, the transition equations for the
fðWn; SnÞ; n P 0g process are given below.

Congestion avoidance (CA) phase: For 1 6 w 6 K

ðWn ¼w;Sn ¼wÞ! ðWnþ1;Snþ1Þ ¼
�f 2ðwÞ;�f 2ðwÞ
� �

; w: p: 1�pðwÞ
ðg2ðwÞ;g2ðwÞÞ; w: p: pLðwÞ
ðh2ðwÞ;h4ðwÞÞ; w: p: pTðwÞ

8><
>:

ð6Þ

Slow-start (SS) phase: For 1 6 w < s 6 L

ðWn ¼ w; Sn ¼ sÞ ! ðWnþ1; Snþ1Þ

¼

�f 1ðwÞ; s
� �

;w: p: 1� pðwÞ; if �f 1ðwÞ < s
�f 1ðwÞ;�f 1ðwÞ
� �

;w: p: 1� pðwÞ; if �f 1ðwÞP s

ðg1ðwÞ; g1ðwÞÞ; w: p: pLðwÞ
ðh1ðwÞ;h3ðwÞÞ;w: p: pTðwÞ

8>>>><
>>>>:

ð7Þ

Note that the functions g3 and g4 do not play any role in these tran-
sition equations. This implies that we can restrict our attention to
LB-CC protocols with g3 ¼ g1 and g4 ¼ g2.

4.1.3. Modeling the time between updates
In order to compute time-related performance metrics such as

the transfer time of a session, we also need to model Un, or more
specifically, the time between the receipt of acknowledgments:
Unþ1 � Un. If we assume that acknowledgments are uniformly dis-
tributed within a flight, then the time between acknowledgments
at time t can be approximated as: RTT=WðtÞ, where RTT is the mean
RTT. Indeed, this is precisely what is done in past work, where the
instantaneous throughput is modeled as the inverse of this quan-
tity, namely WðtÞ=RTT . Unfortunately, this formulation ignores
the impact of bottleneck transmission capacity on the spacing be-
tween ACKs. In particular, if the minimum transmission capacity
among all links on the paths between the sender and receiver is
C, then the segments will be spaced on an average at least B=C time
units apart when delivered to the receiver, where B is the segment
size. Consequently, ACKs received at the sender will also have the
same minimum spacing. Another way to describe this behavior is
that when the window size grows beyond the delay-bandwidth
product (RTT � C=B) of the path, the bottleneck transmission capac-
ity of the path will limit TCP throughput.

The time between two acknowledgments is, therefore, esti-
mated by:

aðWnÞ ¼maxfRTT=Wn; B=Cg

Let tTO be the average timeout duration for the TCP session. We
incorporate the impact of timeouts by assuming that if the nth
acknowledgment indicates a timeout, the next acknowledgment is
delayed by an additional time tTO. This is a crude but satisfactory
method of accounting for the fact that no new segments are trans-
mitted during a timeout. Also, during Fast Retransmit, the sender
retransmits the lost segment, before sending out new packets at
its reduced window. Thus, we see that:

Unþ1 � Un ¼
aðWnÞ w: p: 1� pðWnÞ
aðWnÞ þ RTT w: p: pLðWnÞ
aðWnÞ þ tTO w: p: pTðWnÞ

8><
>: ð8Þ

With this formulation we see that fðWðtÞ; SðtÞÞ; t P 0g is a semi-
Markov process. This probabilistic structure allows us to compute
many desired performance measures in an easy fashion. In particu-
lar, we are interested in Tn, the time to transfer n segments success-
fully. Below, we compute the mean and variance of Tn for an LB-CC
TCP session.

4.2. Computing mean transfer time

Define, for the CA and SS phases, respectively:

snðwÞ ¼ EðTnjWð0Þ ¼ w; Sð0Þ ¼ wÞ; 1 6 w 6 K

snðw; sÞ ¼ EðTnjWð0Þ ¼ w; Sð0Þ ¼ sÞ; 1 6 w < s 6 L

Note that the expected transfer time while in CA mode, snðwÞ, does
not depend upon the value of the S. This greatly simplifies the com-
putation. Also note that since the TCP session starts in state
ðWð0Þ ¼ 1; Sð0Þ ¼ LÞ, the time to send n packets successfully is given
by snð1; LÞ.

Now let uðwÞ be the expected time until the next acknowledg-
ment, given that current window is w.

From Eq. (8), we get

uðwÞ ¼ aðwÞ þ tTOpTðwÞ þ RTTpLðwÞ; 1 6 w 6 K:

Now condition on the time to receive this acknowledgment. It takes
an expected amount given by uðwÞ. When it arrives, the state of the
session changes according to Eqs. (6) and (7). If the acknowledg-
ment indicates a success, we need to transmit n� 1 more packets;
else we need to transmit n more packets. Putting all these events to-
gether, we get the following equations:

snðwÞ ¼ uðwÞ þ ð1� pðwÞÞsn�1
�f 2ðwÞ
� �

þ pTðwÞsnðh2ðwÞ;h4ðwÞÞ þ pLðwÞsnðg2ðwÞÞ; 1

6 w 6 K ð9Þ

snðw; sÞ ¼ uðwÞ þ ð1� pðwÞÞsn�1
�f 1ðwÞ; s
� �

þ pTðwÞsnðh1ðwÞ;h3ðwÞÞ þ pLðwÞsnðg1ðwÞÞ;1

6
�f 1ðwÞ < s 6 L ð10Þ

snðw; sÞ ¼ uðwÞ þ ð1� pðwÞÞsn�1ðsÞ þ pTðwÞsnðh1ðwÞ;h3ðwÞÞ
þ pLðwÞsnðg1ðwÞÞ;1

6
�f 1ðwÞ ¼ s 6 L ð11Þ

We have the following initial conditions:

s0ðwÞ ¼ 0; s0ðw; sÞ ¼ 0:

Since sn appears on both sides of Eqs. (9)–(11), we need an efficient
method of computing the above quantities. One such method is to
use iterations, which we explain for Eq. (9). Assume that sn�1ðwÞ
is known for all 1 6 w 6 K . Let sn;0ðwÞ ¼ 0 for all 1 6 w 6 K and
compute

sn;kþ1ðwÞ ¼ uðwÞ þ ð1� pðwÞÞsn�1
�f 2ðwÞ
� �

þ pTðwÞsn;kðh2ðwÞ; h4ðwÞÞ
þ pLðwÞsn;kðg2ðwÞÞ; 1 6 w 6 K ð12Þ

It is easy to see that the above iteration is a contraction mapping
and as k!1; sn;kðwÞ approaches snðwÞ geometrically at the rate
max(pðwÞ). This is a very rapid convergence, especially when the
loss probabilities are small. Finally, we can recursively obtain sn

starting with the initial condition s0 ¼ 0.

4.3. Computing variance in transfer time

Next we derive the second moment of Tn. Define

rnðwÞ ¼ EðT2
njWð0Þ ¼ w; Sð0Þ ¼ wÞ; 1 6 w 6 K

rnðw; sÞ ¼ EðT2
njWð0Þ ¼ w; Sð0Þ ¼ sÞ; 1 6 s < w 6 L

The variance of the time to send n packets is then given by

VðnÞ ¼ rnð1; LÞ � ðsnð1; LÞÞ2
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By doing the same type of first step analysis as for the first moment,
we get

rnðwÞ ¼ E½T2
njWð0Þ ¼ w; Sð0Þ ¼ w�

¼ ð1� pðwÞÞE½ðaðwÞ þ Tn�1Þ2jWð0Þ ¼ �f 2ðwÞ; Sð0Þ

¼ �f 2ðwÞ� þ pLðwÞE½ðaðwÞ þ RTT þ TnÞ2jWð0Þ
¼ g2ðwÞ; Sð0Þ

¼ g2ðwÞ� þ pTðwÞE½ðaðwÞ þ tTO þ TnÞ2jWð0Þ
¼ h2ðwÞ; Sð0Þ ¼ h4ðwÞ�1 6 w 6 K ð13Þ

rnðw; sÞ ¼ E½T2
njWð0Þ ¼ w; Sð0Þ ¼ s�

¼ ð1� pðwÞÞE½ðaðwÞ þ Tn�1Þ2jWð0Þ ¼ �f 1ðwÞ; Sð0Þ

¼ s� þ pLðwÞE½ðaðwÞ þ RTT þ TnÞ2jWð0Þ
¼ g1ðwÞ; Sð0Þ

¼ g1ðwÞ� þ pTðwÞE½ðaðwÞ þ tTO þ TnÞ2jWð0Þ

¼ h1ðwÞ; Sð0Þ ¼ h3ðwÞ�;1 6 �f 1ðwÞ < s 6 L ð14Þ

rnðw; sÞ ¼ E½T2
njWð0Þ ¼ w; Sð0Þ ¼ s�

¼ ð1� pðwÞÞE½ðaðwÞ þ Tn�1Þ2jWð0Þ ¼ s; Sð0Þ

¼ s� þ pLðwÞE½ðaðwÞ þ RTT þ TnÞ2jWð0Þ
¼ g1ðwÞ; Sð0Þ

¼ g1ðwÞ� þ pTðwÞE½ðaðwÞ þ tTO þ TnÞ2jWð0Þ

¼ h1ðwÞ; Sð0Þ ¼ h3ðwÞ�1 6 �f 1ðwÞ ¼ s 6 L ð15Þ

After tedious algebra and using Eqs. (9)–(11), and using the notation

vðwÞ ¼ RTT2pLðwÞ þ t2
TOpTðwÞ � aðwÞ2; 1 6 w 6 K;

the above equations reduce to

rnðwÞ ¼ vðwÞ þ 2aðwÞsnðwÞ þ 2tTOpTðwÞsnðh2ðwÞ;h4ðwÞÞ
þ 2RTTpLðwÞsnðg2ðwÞÞ þ ð1� pðwÞÞrn�1

�f 2ðwÞ
� �

þ pLðwÞrnðg2ðwÞÞ þ pTðwÞrnðh2ðwÞ;h4ðwÞÞ;1
6 w 6 K ð16Þ

rnðw; sÞ ¼ vðwÞ þ 2aðwÞsnðw; sÞ
þ 2tTOpTðwÞsnðh1ðwÞ;h3ðwÞÞ
þ 2RTTpLðwÞsnðg1ðwÞÞ þ ð1� pðwÞÞrn�1

�f 1ðwÞ; s
� �

þ pLðwÞrnðg1ðwÞÞ þ pTðwÞrnðh1ðwÞ;h3ðwÞÞ;1

6
�f 1ðwÞ < s 6 L ð17Þ

rnðw; sÞ ¼ vðwÞ þ 2aðwÞsnðw; sÞ
þ 2tTOpTðwÞsnðh1ðwÞ;h3ðwÞÞ
þ 2RTTpLðwÞsnðg1ðwÞÞ þ ð1� pðwÞÞrn�1ðsÞ
þ pLðwÞrnðg1ðwÞÞ þ pTðwÞrnðh1ðwÞ;h3ðwÞÞ;1

6
�f 1ðwÞ ¼ s 6 L ð18Þ

These equations have the same structure as the equations for the
mean transfer time, and hence can be solved by the same iterative,
recursive fashion.

4.4. Modeling pT and tTO

Retransmission timeouts are a TCP-specific mechanism, the de-
sign of which impacts pT , the probability of a timeout event, and
tTO, the average duration of a timeout. In [23], the following formu-

lation is suggested for estimating pT and tTO from the packet loss
probability, p:4

pTðwÞ ¼ min 1;
ð1� p3

i Þ 1þ p3
i 1� pw�3

i

� �� �
1� pw

i

� �
ð19Þ

tTO ¼ TO
1þ pþ 2p2 þ 4p3 þ 8p4 þ 16p5 þ 32p6

1� p
ð20Þ

where pi ¼ 1� p and TO is the value of the average single timeout.
The probability of receiving loss indication via multiple duplicate
ACKs is then computed as: pLðwÞ ¼ p� pTðwÞ.

The above formulation has been used in other TCP modeling ef-
forts (see for example [16]). Our experimental evaluations in Sec-
tion 5 indicate, however, that this formulation is inaccurate
when packet loss rates are very high (p is greater than 1–3%). In
the absence of a more accurate formulation in the literature, we
too adopt the above for our experimental validations in Section
5—however, we emphasize that any improved formulation can
be directly applied to our model since it does not make any restric-
tive assumptions about pT . For example, to model TCP SACK (selec-
tive acknowledgements), we could replace pT and pL with those
from [38].

4.5. Modeling ECN

It is important to mention that TCP behavior in an ECN-enabled
network is not explicitly addressed in this paper. However, extend-
ing the LB-CC framework to incorporate ECN would be a fairly
straightforward exercise. In the extended framework, (i) on receiv-
ing an ECN congestion-signal, the TCP sender would reduce W ex-
actly as in Eqs. (2) and (3); (ii) pEðWnÞ would be the probability of
receiving an ECN congestion-signal; and (iii) the analysis would
reformulate to include: pðWnÞ ¼ pL þ pE þ pT , and UNþ1 � UN ¼
aðWnÞ w.p. 1� pðWnÞ þ pEðWnÞ.

5. Model validation

We have implemented the model presented in Section 4 using
the Matlab programming environment [39]. We use the Matlab
implementation to validate our model, henceforth referred to as
the LB-CC model, in two different settings: (i) validation against
simulation of a single TCP connection with carefully-controlled
network settings; and (ii) validation against TCP connections sim-
ulated using a comprehensive HTTP workload. We use NS-2 for our
simulations [40]. We compare the accuracy of our model to the one
proposed in [16], henceforth referred to as the ‘‘Cardwell” model.

5.1. Single-connection simulations

5.1.1. Validation methodology
We validate the ability of our model to accurately capture the

impact of five factors—namely, C (bottleneck), p (loss), RTT, K (win-
dow size limit), and the protocol version—on the transfer time of a
bulk TCP transfer. For each combination of these factors, we run
Nsim, where Nsim P 100, simulations of a TCP connection that trans-
fers 1000 segments, each of size 1460 B, over a linear 2-hop path
between the sender and receiver. We set all link capacities equal
to the desired C and the sum of link propagation latencies to the
desired minimum RTT. Note that the actual RTTs will be variable
due to buffering at the router. We subject the TCP connection, re-
ferred to as A1, to independent random packet losses with the de-
sired probability p. Router buffers are well-provisioned to avoid

4 It is assumed in [23] that pðwÞ is independent of w; hence, we denote it simply as
p in the formulation.
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additional packet drops due to buffer overflow. The maximum win-
dow size limit is set to the desired K.

At the end of the Nsim simulations, we compute the average va-
lue of the per-connection p (see Table 1). We then feed this quan-
tity into the LB-CC and Cardwell models and compute sn for both.
We also compute the variance VðnÞ in transfer time using our
model LB-CC. We then compare these quantities to quantities
E½Tn� and Var½Tn� estimated from the simulations. Unless explicitly
mentioned, all validations are conducted using TCP Reno (f ; g, and
h functions defined in Section 3).

5.1.2. Impact of bottleneck capacities
We simulate five kinds of networking technologies: 56 Kbps

(phone modems), 1.54 Mbps (broadband ADSL), 10 Mbps (Ether-
net), 54 Mbps (VDSL, 802.11), and 100 Mbps (fast Ethernet). For
each kind of network, we subject the single TCP connection A1 to
a round-trip propagation latency of 100 ms and a packet loss prob-
ability of 0.01 (these choices will be justified later in this section). K
is set equal to the delay-bandwidth product.

Figs. 1–3 plot the transfer time metrics as a function of the
number of segments transmitted in topologies with capacities of
56 Kbps, 1.54 Mbps, and 10 Mbps. (In all of the figures, the LB-CC
model is labeled M1, and the Cardwell model is labeled M2.) The
results with 54 Mbps and 100 Mbps were similar to the 10 Mbps
experiment and have been omitted due to space constraints. We
find that both LB-CC and Cardwell track the average transfer time
of connections quite well at high link capacities. At low link capac-
ities, however, Cardwell is unable to track the impact of bottleneck
capacity on ACK spacing, and hence under-predicts the expected
transfer time.

Recall from the discussion in Section 4 that the impact of small
bottleneck capacities on TCP throughput increases when the win-
dow grows larger than the delay-bandwidth product. To better
illustrate this effect, we re-use the 56 Kbps topology, but simulate
a TCP connection with K ¼ 44 segments.5 This window size far ex-
ceeds the delay-bandwidth product of the topology, but represents a
likely scenario, in which TCP connections use default operating sys-
tem settings. Fig. 4 plots the results of this experiment. We find that
the ability of Cardwell to estimate the transfer time accurately wors-
ens even further in this case. The LB-CC model is, however, able to
estimate the transfer time fairly accurately for all settings of C and K.

The LB-CC model also tracks the standard deviation in Tn rea-
sonably well. In some cases, though, the deviation in the simula-
tion transfer times are higher—we expect these to reduce if we
increase Nsim. It is interesting to note that the deviation with
K ¼ 44 (Fig. 4) is much lower for both simulations and the LB-CC
model, than in Fig. 1. We believe that this is because with
K ¼ 44, A1 has a greater likelihood of receiving three duplicate
ACKs and, hence, suffers a lower number of timeouts (see Table
1). Timeout events are likely to add significant variability to trans-
fer times. In our validation experiments below with different loss rates

and RTTs, we restrict our attention to a 10 Mbps topology and
set K to the delay-bandwidth product. This helps ensure a fair com-
parison of LB-CC and Cardwell—using a smaller C or larger K is
likely to bias the results against Cardwell.

Table 1
Comparison of computed and observed values of pT .

Figure Observed p (%) Computed pT (%) Observed pT (%)

1 0.994 0.059 0.983
2 0.994 0.059 0.077
3 0.989 0.058 0.063
4 0.991 0.058 0.186
5 0.093 0.001 0.002
6 2.938 0.479 0.370
7 4.961 1.306 0.960
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Fig. 1. 56 Kbps, 100 ms RTT, 0.01 loss.

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e 
to

 T
ra

ns
fe

r (
se

c)

Number of segments

SIM: 0.01 loss
M1: 0.01 loss
M2: 0.01 loss

Fig. 2. 1.54 Mbps, 100 ms RTT, 0.01 loss.

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e 
to

 T
ra

ns
fe

r (
se

c)

Number of segments

SIM: 0.01 loss
M1: 0.01 loss
M2: 0.01 loss

Fig. 3. 10 Mbps, 100 ms RTT, 0.01 loss.

5 The maximum window that can be advertised without using extra options is
64KB. With 1460-byte segments and no extra options, the window size can be at most
44 segments.
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5.1.3. Impact of loss rates and RTTs
Internet loss probabilities can range from less than 10�6 (med-

ium errors) to more than 0.05 (congestion and wireless links). End-
to-end RTTs can also vary from a few to hundreds of milliseconds.
In order to validate our model under a diverse set of loss rates and
RTTs, we simulate a set of 10 Mbps topology with three kinds of
end-to-end propagation latencies—10 ms (metropolitan networks),
100 ms (cross-country transfers), and 200 ms (inter-continental
transfers). (Note that the actual RTTs will vary due to buffering
at the router.) We then run different experiments, in which we
subject A1 to different loss probabilities—specifically, 0.0001,
0.001, 0.01, 0.03, and 0.05.

Figs. 3, 5, and 6 plot the transfer metrics for a 100 ms topology
with loss probabilities of 0.01, 0.001, and 0.03, respectively. We
find that both LB-CC and Cardwell are equally good at modeling
loss probabilities of 0.01 or lower in a 10 Mbps topology. At higher
loss probabilities, however, both models under-predict TCP trans-
fer time. Table 1, which lists the values of pT observed in the sim-
ulations against those computed using Eq. (19), shows that at high
loss rates, the computed values of pT can be fairly inaccurate. We
believe that this inaccuracy is responsible for the under-estimation
by both models. In order to validate our conjecture, we use as input
to our model the observed values of pT from Table 1—Fig. 6 also
plots the resultant predictions of transfer time (labelled as
M1 � p)—we find that an accurate value of pT ensures that the

model is fairly accurate even at high loss rates. We emphasize
again that this indicates only a need for more accurate modeling
of pT at high loss rates and does not say anything about the relative
accuracy of LB-CC and Cardwell at different loss rates.

We find that the LB-CC model tracks the deviation in simulation
transfer times well for loss probabilities lower than 0.01. We also
find that the end-to-end RTTs do not influence the accuracy of
our model, except at the high loss rates noted above. In the remain-
ing validation experiments, we restrict our attention to a loss prob-
ability of no more than 0.01.

5.1.4. Validation with different protocols
All validations presented so far have been conducted with TCP

Reno. We also validate our model for four other LB-CC protocols,
namely, Tahoe, Scalable TCP, High-speed TCP, and Square Root Fair
TCP. We simulate a Tahoe TCP connection on a 10 Mbps topology—
the latter three protocols are also simulated at 100 Mbps and
1 Gbps topologies (since these protocols are designed for high-
speed networks). We subject each topology to different loss rates
ranging from 0.00001 to 0.01, and RTTs ranging from 10 ms to
200 ms.

We find that the LB-CC model tracks the simulation results
quite well in all of these experiments (we omit the plots due to
space constraints).

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

T
im

e 
to

 T
ra

ns
fe

r 
(s

ec
)

Number of segments

SIM: 0.01 loss
M1: 0.01 loss
M2: 0.01 loss

Fig. 4. 56 Kbps, K = 44, 100 ms RTT, 0.01 loss.

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600 700 800 900 1000

T
im

e 
to

 T
ra

ns
fe

r 
(s

ec
)

Number of segments

SIM: 0.001 loss
M1: 0.001 loss
M2: 0.001 loss

Fig. 5. 0.001 loss, 10 Mbps, 100 ms RTT.

 0

 10

 20

 30

 40

 50

 60

 70

 0  100  200  300  400  500  600  700  800  900  1000

T
im

e 
to

 T
ra

ns
fe

r 
(s

ec
)

Number of segments

SIM: 0.03 loss
M1: 0.03 loss
M2: 0.03 loss
M1-p: 0.03 loss

Fig. 6. 0.03 loss, 10 Mbps, 100 ms RTT.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  100  200  300  400  500  600  700  800  900  1000

Ti
m

e 
to

 T
ra

ns
fe

r (
se

c)

Number of segments

SIM: 0.05 loss
M1: 0.05 loss
M2: 0.05 loss
M1-p: 0.05 loss

Fig. 7. 0.05 loss, 10 Mbps, 100 ms RTT.

M.C. Weigle et al. / Computer Communications 33 (2010) 513–525 521



Author's personal copy

5.2. HTTP workload simulations

The validations conducted in Section 5.1 do not incorporate the
impact of competing cross-traffic on the performance of a given
TCP connection. In this section, we present validation results from
several simulations conducted with an empirically-derived HTTP
workload model [41].

5.2.1. Experimental methodology
We simulate extensive two-way HTTP traffic workload gener-

ated on the topology depicted in Fig. 8. Each circle and hexagon
in the figure represents five ‘‘clouds” of HTTP clients or servers
(i.e., end systems sharing an aggregation link). The dashed lines
represent the direction of the flow of data traffic in the network.
Regular traffic is generated by circles 0 and 5 and traverses all rou-
ters. Cross-traffic is generated by circles 1–4 and shares only one
link with regular traffic. This topology, first proposed in [42], al-
lows us to simulate end-to-end paths with multiple congested
links and different offered loads. In addition to the link propagation
delays, the routers have been modified to delay segments by a
fixed amount on a per-connection basis—this allows us to simulate
TCP connections with different minimum RTTs and, thus, represent
large networks.

We use the PackMime model [41] to generate synthetic web
traffic. We also use PackMime to generate an empirical minimum
RTT distribution. We run several experiments in which we simu-
late 1–3 bottleneck links and generate HTTP workloads ranging
from 50% to 90% of the bottleneck capacity. These experiments
help us sample a very diverse set of TCP connections, with loss
probabilities ranging from 0.0008 to more than 0.04 and round-trip
times ranging from 60 ms to 400 ms.

5.2.2. Validation
We consider all TCP connections simulated as regular traffic

above and for each, record n (total number of segments trans-
ferred) and Tn (transfer time) and compute the values of p, pT ,
and mean tTO. We then feed these quantities to the LB-CC model
and compute the predicted transfer time, TLB�CC

n , for each connec-
tion. Fig. 9 plots the cumulative distribution of the relative er-
rors—computed as Tn�TLB�CC

n
Tn

� �
. We find that our model tracks Tn

reasonably well. For instance, the prediction accuracy is within
0.1 of the simulations for 80% of the connections.

6. Achieving computational efficiency

One limitation of our iterative model is that the complexity of
computing sn is linear in n, the number of segments to be trans-
ferred. This is not the case with most past TCP models, since they
rely on steady-state analysis for computing the (constant) mean
TCP throughput for long transfers. However, a TCP transfer may
transmit quite a few segments before it attains steady-state
throughput—this is especially true in high-speed networks. For
accurately modeling short transfers, therefore, it is important to
conduct transient analysis of the kind presented in Section 4. In or-
der to achieve simultaneously modeling accuracy as well as com-
putational efficiency, we use the approach of: (i) detecting when a
TCP transfer has attained steady-state, and (ii) using steady-state
throughput to predict its remaining transfer time. The basic idea here
has been used even in past work—indeed, the model in [16]
switches to a steady-state prediction model as soon as the sender
leaves the initial Slow Start phase. The key difference, however, is
in deciding when to switch.

Our approach is based on the following key insight. The slope of
the sn curve converges as n increases; Fig. 11, which plots the
instantaneous throughput ðB=sn � sn�1Þ for the M1 curve in Fig. 3,

Fig. 8. HTTP workload simulations.
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illustrates this. This implies that after some value of n; sn can be
approximated by a linear function of n. We use this insight in
improving the efficiency of our model as follows. For each value
of n, we compute the slope of the transfer time curve as:
wn ¼ sn � sn�1. The above observation on convergence of the slope
implies that wn � wn�1 converges to 0. Let N� denote the smallest
value of n such that wn � wn�1 < �. Then, for any specifiable �, we
approximate the curve for all values of n > N� by a straight line
of slope wN� , such that the line passes through the point ðN�; sN� Þ.
Using this idea, we have reduced the complexity of computing sn

to a tunable value: Oðminðn;N�ÞÞ. In fact, the graphs plotted in Sec-
tion 5 have been computed using � ¼ 10�12.

6.1. When is steady-state-only analysis usable?

Observe that models that rely only on steady-state analysis of
TCP work fairly well for bulk transfers that are long. A natural
question to ask is: how long does a TCP transfer have to be before a
steady-state-only analysis can accurately predict its transfer time?

Fig. 11 also plots the average throughput, Hn ¼ nB=sn, as a func-
tion of n for the experiment depicted in Fig. 3 (10 Mbps C, 100 ms
RTT, 0.01 p). Hn converges to the steady-state throughput, H1, as n
increases. It follows that steady-state analysis can be used for all
connections large enough, such that Hn is reasonable close to
H1. With this understanding, and using H10000 as a reasonable
approximation of H1, we answer the question raised above as
follows.

For any given d, we find the smallest value of n—denoted by
Nd—such that Hi �H1 < d, for all i P Nd. In Fig. 10(a)–(c), we plot
Nd as a function of C, RTT, and p, respectively. In each figure, we
plot curves for d = 0.01,0.03,0.05,0.1. We find that Nd increases
with C and RTT. To put this observation in the proper perspective,
recall that we set K equal to the bandwidth-delay product for all
of these experiments. Thus, K is higher for topologies with larger
C and RTT, and it is expected that a connection will take longer to
grow up to a window size of K. Nd decreases as p increases. We
expect this to be the case because the steady-state average win-
dow size is likely to be lower at high loss rates, and hence, is at-
tained faster.

Perhaps the most surprising observation is that Nd can be as
large as several thousands of segments, even for d ¼ 0:1. This im-
plies that models that rely only on steady-state analysis are likely
to be accurate only for transfers larger than several megabytes.
Internet traffic analysis in [35] shows that such transfers may ac-
count for less than 1% of HTTP transfers in the Internet. Our results,
thus, highlight the importance of using transient analysis to model
short connections.

7. Example model application: comparison of high-speed
protocols

In this section, we illustrate the usefulness of the LB-CC frame-
work by using it to evaluate the relative performance of several re-
cently-proposed ‘‘high-speed” variants of TCP congestion-control.
Our aim is not to provide a comprehensive evaluation of these pro-
tocols, but simply to illustrate in some example settings how the
LB-CC framework can help draw fundamental observations about
the behavior of the protocol. We consider a set of diverse network
topologies in which: (i) the bottleneck transmission capacity is set
to either 100 Mbps, 1 Gbps, or 2.5 Gbps, (ii) the RTT is set to either
10 ms or 100 ms, and (iii) the packet loss rate can take on values
ranging from 10�7 to 10�3. We model three prominent high-speed
protocols—namely, HighSpeed TCP (HSTCP), Scalable TCP (S-TCP),
and Square Root Fair (SRF) TCP—and compute the time to transfer
100,000 segments (100 MB worth of data). Fig. 12(a), (c), and (e)
plot the computed values for bottleneck capacities of 100 Mbps,
1 Gbps, and 2.5 Gbps, respectively. Each figure is a three-dimen-
sional plot of the transfer time as a function of the packet loss
probability and the path RTT.

We also compute the value of the instantaneous throughput, as
defined in Section 6, attained by each of the protocols after trans-
mitting 100,000 segments. Fig. 12(b), (d), and (f) plot this quantity
using the three-dimensional view. Note that the direction of both
the x- and y-axes is reversed from the three corresponding plots
for transfer time.
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We find that:

� As expected, a higher packet loss rate as well as a larger path RTT
increase the transfer-time and decrease the instantaneous
throughput level attained after transmitting the 100,000
segments.

� With large RTTs, high link capacity does not have a significant
impact on the transfer-time or the instantaneous throughput
level achieved. This is because the link capacity impacts the per-
formance of a transfer only after the congestion-window has
reached a value equal to the bandwidth-delay product. This
product is quite large on large-RTT networks (larger than the
congestion-window value that is attained after sending only
100,000 segments). For instance, we find that the throughput
level achieved in quite similar in a 100 ms RTT network across
the three values of bottleneck capacity studied.

� Under all network conditions, SRF always outperforms HSTCP
and S-TCP (in both the transfer-time as well as instantaneous
throughput metrics).

� S-TCP and HSTCP provide similar performance in several cases.
However, HSTCP provides lower transfer times in high-speed
networks, especially when the RTTs are high. In contrast, the
instantaneous throughput achieved by S-TCP is higher than that
of HSTCP in topologies with neither too large nor too low band-
width-delay products (100 Mbps capacity and 100 ms RTT, or
Gbps capacity and 10 ms RTT).

� In a 100 Mbps network, all protocols are able to attain a
100 Mbps worth of throughput when loss rates are low and RTTs
are small—however, when both of these quantities have large
values, none of the protocols attain that throughput after trans-
mitting only 100,000 segments. In higher-speed networks, even
with low loss rates and small RTTs, only SRF is successful in
attaining a throughput equal to the bottleneck capacity after
transmitting 100,000 segments.

We reiterate again that our purpose is not to provide a compre-
hensive evaluations of these three protocols, but merely to illus-
trate the power of the LB-CC framework in drawing several
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Fig. 12. Time-to-transfer and throughput achieved after transmitting 100,000 segments.
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fundamental insights (such as those listed above) about protocol
performance.

8. Concluding remarks

In this paper, we present the design of a class of performance
models that predict the transfer time for bulk TCP transfers under
diverse settings of loss rates, round-trip times, end-to-end bottle-
neck capacities, protocol parameter settings, and protocol versions.
We do so in two steps. First, we define the general class of Loss-
based Congestion Control (LB-CC) protocols and demonstrate that
many TCP variants, including those being proposed for high-speed
networks, belong to this class. We then develop a stochastic frame-
work to compute the mean and variance in transfer time for any
LB-CC protocol. We validate our model against extensive simula-
tions and show that it is accurate under more diverse settings than
past models.

Our work leads to a number of useful modeling guidelines. First,
our evaluations indicate that the bottleneck transmission capacity
can have a significant impact on TCP performance in low-speed
networks. It should, therefore, be incorporated in TCP analysis. Sec-
ond, unlike what was previously assumed, the probability and im-
pact of retransmission timeouts can take a range of values for a
given packet loss rate. Since timeouts impact TCP performance sig-
nificantly, this implies that either accurate techniques should be
developed to relate timeout probability to packet loss probability,
or the two should be treated independently in TCP analysis. We
use the latter approach in this paper. Finally, our computations
indicate that models that rely only on steady-state analysis may
be applicable only to connections that transfer more than several
megabytes. This underscores the importance of analyzing TCP’s
transient behavior.

We believe that the generalized LB-CC framework is a powerful
tool that can be used in the design and analysis of next-generation
transport protocols. In particular, our model provides the opportu-
nity of evaluating the impact of different combinations of fi; gi; hi

on TCP performance in high-speed networks. Furthermore, the sto-
chastic framework developed in Section 4 facilitates the derivation
of additional metrics, such as the distribution of Wn. As part of fu-
ture work, we plan to systematically evaluate the impact of each
model parameter on such quantities. Finally, we plan to derive
empirical models of per-connection losses and round-trip times
and use our framework to study their impact on real-world TCP
performance.
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