
Can Bandwidth Estimation Tackle Noise at
Ultra-High Speeds?

Qianwen Yin Jasleen Kaur F. Donelson Smith
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract—While existing bandwidth estimation tools have been
shown to perform well on 100Mbps networks, they fail to
do so at gigabit and higher network speeds. This is because
finer inter-packet gaps are needed to probe for higher rates—
fine gaps are more susceptible to be disturbed by small-scale
buffering-related noise. In this paper, we evaluate existing noise-
reduction techniques for tackling the issue, and show that they
are ineffective on 10Gbps links. We propose a novel smoothing
strategy, Buffering-aware Spike Smoothing (BASS), which can be
applied effectively to both single-rate and multi-rate probing
frameworks and help significantly in scaling bandwidth esti-
mation to ultra-high speed networks. Besides, we provide first
evidence that accurate bandwidth estimation using our strategy
can help improve the performance of congestion-control protocols
on real 10Gbps networks.

I. INTRODUCTION

Two trends motivate the need for bandwidth estimation at
ultra-high speeds:1.

• Why estimate bandwidth? End-to-end available band-
width has been found to be an important metric in several
application domains–including server selection [1], [2],
[3], overlay routing [4], [5], TCP configuration [6],
media-streaming protocols [7], [8], and more recently,
high-speed congestion-control [9], [10], [11]. Conse-
quently, the last decade has witnessed a rapid growth in
the design of bandwidth estimation techniques [12], [13],
[14], [15], [16].

• Why consider ultra-high speeds? Boosted by the explo-
sion of multimedia services and latest communication
technology, Google fiber project is bringing Gigabit ac-
cess links to homes [17]. The next generation of network
speed is around the corner, urging bandwidth estimation
techniques to scale to ultra-high speeds.

Unfortunately, although existing bandwidth estimation tools
have been shown to perform well on 100Mbps networks, they
fail to do so at gigabit and higher network speeds [18]. This
is because small inter-packet gaps are needed for probing
higher bandwidth—such fine-scale gaps are more susceptible
to being disturbed by small-scale buffering related noise at
shared resources and at end hosts [19].

This material is based upon work supported by the National Science
Foundation under Awards CNS-1018596 and OCI-1127413

1In this paper, the term “ultra-high” refers to networks with 10Gbps+
capacity.

Several mechanisms have been proposed for reducing the
impact of noise in [20], [21], [22], but these have been eval-
uated only on 100Mbps networks. [23] developed a hardware
assisted system to achieve accurate bandwidth estimation on
10Gbps links, but no software solutions exist so far. In this
paper, we evaluate the state of the art and develop novel
strategies to address noise on ultra-high speed networks. The
main contributions of our work are:
• We evaluate existing bandwidth estimation strategies at

ultra high speeds, using a 10Gbps testbed. We find that
the best-performing strategies require a large number of
probing packets in order to scale up to 10 Gbps links.

• We propose Buffering-aware Spike Smoothing (BASS), a
smoothing mechanism that helps achieve robustness to
noise with low probing overhead, even on 10 Gbps links.
To the best of our knowledge, we are the first to show
that bandwidth estimation can effectively scale to ultra
high-speed links, free of any hardware assistance.

• Last but not least, we provide the first evidence of the
efficacy of bandwidth estimation in the context of an
ultra-high speed congestion-control protocol. Bandwidth
estimation-based protocols have been readily shunned due
to the distrust of avail-bandwith or delay measurements
in the presence of noise. However, we find that, armed
with the ability to accurately estimate and track avail-bw,
such congestion-control protocols can outperform their
loss-based counterparts.

In the rest of this paper, we summarize background on
bandwidth estimation in Section II and our experimental
setup in Section III. Section IV discusses and evaluates re-
cent noise-reduction strategies. In Section V we present our
smoothing strategy. In Section VI we develop multi-pass spike
removal for multi-rate probing frameworks. In Section VII
we incorporate and evaluate our strategy in an bandwidth
estimation-based congestion-control protocol. Related work is
summarized in Section VIII and our conclusions in Section IX.

II. BACKGROUND: PRM-BASED BANDWIDTH ESTIMATION

The past decade has witnessed a rapid growth in the design
of techniques for estimating available bandwidth [15], [13],
[24], [14]. Existing bandwidth estimation techniques base their
bandwidth estimation logic on two prominent models, namely,
the probe gap model and the probe rate model (PRM) [25].
Tool evaluations have shown that PRM tools are more robust
in the presence of multiple congested links [26], [18]—in this978-1-4799-6204-4/14$31.00 c©2014 IEEE

Fig. 1: Laboratory Testbed Configuration

paper, we focus on these. Below, we briefly summarize the
PRM approach.

PRM tools typically send multiple packets at the same prob-
ing rate, in groups commonly referred to as probe-streams—
probing rate, ri, of the ith packet is achieved by controlling
the inter-packet gap as: gs

i = pi

ri
, where pi is the size of the

ith packet and gs
i is the sendgap between packet i− 1 and i.

We use N to denote the length of a probe-stream, in terms of
number of packets.

PRM tools rely on the principle of self-congestion, accord-
ing to which: if ri > AB, then qi > qi−1, where qi is the
queuing delay experienced by the ith packet at the bottleneck
link, and AB is the available bandwidth on that link. Existing
tools try out different probing rates and search for the highest
rate rmax that does not result in increasing queueing delays.
Assuming fixed routes and constant processing delays, increas-
ing trends in queuing delays can be detected either by finding
increasing trends in the end-to-end one-way delays [27], or by
observing if the inter-packet receive gaps (or packet arrival rate
at receiver) are higher than the send gaps (or packet sending
rate) [28], [21].

Existing tools differ in the strategy used for searching rmax.
Many tools rely on iterative feedback-based binary search,
in which senders wait for receiver feedback on a probe-
stream that has been sent, and either halve or double the
probing rate for the next probe-stream, depending on whether
or not self-congestion is detected—Pathload is the most promi-
nent of such tools [15]. Some tools rely on multi-rate non-
feedback based probing, in which probe-streams spanning
several probing rates are sent back-to-back and bandwidth
estimated based on the highest probing rate that did not result
in self-congestion [29], [13].

In this paper, we will evaluate PRM strategies, based on how
accurately they can infer the occurence of self-congestion.

III. EXPERIMENTAL SETUP

A salient feature of our analysis methodology in this paper is
that all of the evaluations (of both state of the art techniques as
well as our proposals) are performed on a 10 Gbps testbed. We
begin by first describing our experimental setup—for improved
readability, some details are included only in Appendix A.

a) Testbed: For our experiments, we use the dedicated
network illustrated in Fig 1. The switch-to-switch path is a
10 Gbps fiber path. The two end hosts involved in bandwidth

estimation are connected to either sides of the switches using
10 Gbps Ethernet. The network includes an additional 10 pairs
of hosts (sender and receiver) that are used to generate cross
traffic sharing the switch-to-switch link.

b) Recording Available Bandwidth: To measure the
ground-truth about avail-bw, we collect packet traces on the
fiber links between the two switches using fiber splitters at-
tached to Endace DAG monitoring NICs—these NICs provide
timestamps with nanosecond precision and 10 nanosecond
accuracy. A complete trace of each experiment was obtained
from the DAG monitor between the switches. This trace was
used to count the number of cross-traffic bits encountered in
any given time interval—subtracting this from the bottleneck
link capacity yielded the ground truth available bandwidth at
the bottleneck link in that interval.

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Time (s)

Fig. 2: B-CT: Bursty Cross Traffic

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Time (s)

Fig. 3: S-CT: Smooth Cross Traffic

c) Cross Traffic Generation: In order to generate repre-
sentative bursty traffic loads on the bottleneck link between the
two switches, we used 10 pairs of sending and receiving hosts
running a locally-modified version of the SURGE program for
generating synthetic web traffic [30]. An important considera-
tion for comparisons among different methods for bandwidth
estimation is that the cross traffic be consistently controlled
across all experiments. In particular, the cross traffic should
not be responsive to the amount of bandwidth used by the
probe packets. The SURGE program uses TCP connections
with an MTU size of 1500 bytes for emulating web browsers
and servers. To eliminate the responsive behavior of TCP, we
recorded a packet trace of the SURGE data source (emulated
server) to be used as input to the tcpreplay program [31] during
experiments.2 The aggregate traffic for the 10 pairs of SURGE
hosts recorded by the DAG between the switches is shown in
Fig 2, plotted in 10 ms intervals. Even at this relatively large
time scale, the traffic clearly has a highly variable and bursty
character—we refer to this traffic as B-CT.

Some of our experiments were also conducted with a
smoothed version of the tcpreplay traffic. The smoothing was
implemented by running the token bucket Qdisc included in
Linux on each host pair. The maximum burst rate was limited
to 5 percent of the average sending rate for that pair along with
a buffer large enough to prevent any loss at the token bucket.
The resulting aggregate traffic for the 10 pairs recorded by the

2Specifically, each of the 10 pairs of SURGE hosts was run for at least 10
minutes and a packet trace obtained for each pair. During an experiment, each
pair of hosts then ran tcpreplay to generate traffic from the trace recorded for
that pair.

0 10 20 30 40 50 60
8

9

10

11

12

13

14

Probe Index

In
te

r
P

a
c
k
e

t
G

a
p

 (
u

s
)

sendgap
post−switch gap

(a) with CBR

0 10 20 30 40 50 60
8

9

10

11

12

13

14

Probe Index

In
te

r
P

a
c
k
e

t
G

a
p

 (
u

s
)

sendgap
post−switch gap

(b) with B-CT

Fig. 4: Gaps Observed After the Switch

DAG between the switches is shown in Fig 3, plotted in 10
ms intervals. Clearly this smoothing eliminated most of the
peaks in bandwidth utilization by the cross traffic—we refer
to this traffic as S-CT. Both B-CT and S-CT have an average
load of around 2.4 Gbps.

d) Generating (and Receiving) Probe Streams: In our
experiments, the iperf client program is used as a source of
data segments with an MTU size of 9000 bytes. To turn the
stream of segments sourced by iperf into probe streams, we
wrote a Linux Qdisc packet scheduler that sits between the
bottom of IP and the NIC device driver and creates inter-
packet gaps within probe-streams. This Qdisc created probe
streams of a given size (e.g. 64 packets) and probing rate (e.g.
6 Gbps) by computing the proper inter-packet gap to achieve
the desired average rate for the stream.

We rely on Ethernet PAUSE frames to enforce inter-packet
send-gaps (details are in Appendix A)—our measurements
show that 90% of the created gaps were within 1µs of
the intended gaps. At the receiver, we timestamp packets
with microsecond precision in an ingress Qdisc (logically
positioned in the Linux networking stack between the device
driver and the bottom of IP).

In the experiments, the average send rate of individual
probe streams starts at 5.0 Gbps and increases in 0.5 Gbps
increments up to 9 Gbps. Each probe stream is separated from
the previous by a 10 millisecond idle time with no packets sent
to eliminate any correlation in queueing time between streams.
This sequence of probe streams is repeated to obtain thousands
of observations for each of the probing rates.

e) Computing Metrics: To compute bandwidth estimates,
we used an off-line program that implements the various
algorithm for computing bandwidth estimates studied in this
paper. The inputs to this algorithm were the logs from the
kernel modules that recorded sequence numbers, intended send
gaps, and receive gaps. Only probe streams that were complete
(had the correct length and did not experience packet drops)
were used as input.

IV. STATE OF THE ART

A. Issues in High Speed Networks: Noise!

Bandwidth estimation has been shown to work well on
paper and in simulation settings, but independent real-world
evaluations have observed poor performance in practice [18].

0 10 20 30 40 50 60
0

20

40

60

80

100

120

Probe Index

In
te

r
P

a
c
k
e

t
G

a
p

 (
u

s
)

sendgap
recvgap

(a) with CBR

0 10 20 30 40 50 60
0

20

40

60

80

100

120

Probe Index

In
te

r
P

a
c
k
e

t
G

a
p

 (
u

s
)

sendgap
recvgap

(b) with B-CT

Fig. 5: Gaps Observed at Receiver

One key factor in real networks is the presence of small-
scale buffering at the several instances of shared system
resources between the sender and the receiver—such buffering
introduces noise in the per-packet delays, and can corrupt the
analysis of one-way delays or receiver-side inter-packet gaps
for estimating available bandwidth. Such noise has an even
higher impact in ultra high speed networks, in which the delays
and gaps are much finer in scale.

There are at least two types of noise sources encountered:
• Burstiness in competing-traffic at bottleneck resources: If

the available bandwidth at bottleneck resources varies at
short-timescales due to burstiness in competing traffic,
then all packets within a probe-stream may not con-
sistently show an increasing trend in queueing delays.
Fig 4 plots, for a sample probe-stream, the constant send-
gaps, as well as the gaps observed by the DAG monitors
on the shared bottleneck link with (i) constant bit-rate
(CBR) cross traffic, and with (ii) bursty replayed traffic,
B-CT. We find that bursty cross traffic can distort the
inter-packet gaps in a probe-stream in a fairly noisy
manner—such distortions can make it challenging to
make a reliable conclusion about the available bandwidth.

• Transient queuing at non-bottleneck resources: Even
though a resource may not be a bottleneck on the path
of a packet, it can certainly induce short-scale transient
queues when it is temporarily unavailable while servicing
competing processes or traffic. In our testbed topology
of Fig 1, this can happen, for instance, while accessing
the high-speed cross-connects at the switches, or while
waiting for CPU processing after packets arrive at the
receiver-side NIC. In fact, interrupt coalesence, which is
turned on by default in receivers, can force packets to
wait even if the CPU is available [32]—the waiting time
can be significant compared to the fine-scale gaps needed
in ultra high-speed networks.
Fig 5 plots, for the same probe-streams, the send-gaps,
as well as the gaps observed as soon as the pacekts
are received by the OS software (running on the CPU)
at the receiver in our topology. We find that interrupt-
coalescence can significantly further distort the inter-
packet gaps observed previously in Fig 4. Furthermore,
this can happen both for smooth as well as bursty cross-
traffic—that is, the influence of interrupt coalescence

significantly outweighs that of cross-traffic burstiness.

B. State of the Art: Dealing with Noise

Noise has been previously recognized as a potential issue for
bandwidth estimation in practice. Several smoothing strategies
have been proposed to deal with it. Pathload [33] attempts
to identify those probes that arrive within a single interrupt
burst3—it then eliminates all coalesced probes from the burst,
except the last one that exeriences the minimum queuing delay
at the receiver NIC.

However, [20] observed that Pathload is unable to estimate
bandwidth correctly in the presence of non-negligible inter-
rupt delays (> 125µs) in 100 Mbps networks. To address
this, it introduced IMR-Pathload, that first applied signal de-
noising techniques to the one-way delays (OWDs) observed
by Pathload. Two different techniques were proposed and
evaluated: multi-level discrete wavelet transform, and fixed-
window (1

10 th of probe stream length) worth of averaging of
consecutive one-way delays—in this paper, we refer to these
techniques as IMR-wavelet and IMR-avg, respectively. Both
techniques were reported to significantly improve upon the
trend-detection accuracy of Pathload with noisy OWDs.

PRC-MT [21] used the idea of sending (and averaging
over) longer probe-streams to reduce the impact of noise
in real-world probe-streams. This tool estimates available
bandwidth by finding the largest probing rate (rin) such that
the corresponding packet arrival rate (rout) at the receiver is
not lower than it. To deal with noise, the tool first tunes for
the probe-stream length, N—it does so by sending packets at
the Asymptotic Dispersion Rate (which is proven to be larger
than the available bandwidth), and searching for the smallest
N such that increasing N further does not impact the average
receive rate [21].

C. How Well Do These Work?

A fundamental building block used by all PRM tools is the
decision of: whether or not a given probing rate is larger
than the available bandwidth. We evaluate the state of the
art techniques described above for their ability to make this
decision correctly in the presence of noise. For this, we run
testbed experiments in the presence of the B-CT cross traffic,
and emulate several thousands of probe-streams of different
lengths (N = 32, 64, 128, 320 packets) and different probing
rates (5 - 9 Gbps).4 We then collect inter-packet gaps right
after the shared switch link (using the DAG monitor) as well as
those observed at the receiver. The DAG also helps us collect
ground-truth about the available bandwidth encountered by
each probe-stream.

We apply the noise-reduction techniques described above to
each probe-stream and evaluate their accuracy in estimating
whether or not the corresponding probing rate was higher
than the available bandwidth. Fig 6 summarizes the inaccuracy

3Our testbed measurements (e.g., Fig 5) show that all probes, in fact,
encounter an interrupt burst.

4We first run the N-selection logic of PRC-MT on our testbed, which
dictates that probe-streams should be of length 320 packets.

0 10 20 30 40 50 60
0

20

40

60

80

100

120

Probe Index

In
te

r
P

a
c
k
e

t
G

a
p

s
 (

u
s
)

sendgap
recvgap

(a) Probing at 6Gbps, AB: 7.5Gbps

0 10 20 30 40 50 60
0

20

40

60

80

100

120

Probe Index

In
te

r
P

a
c
k
e

t
G

a
p

s
 (

u
s
)

sendgap
recvgap

(b) Probing at 9Gbps, AB: 8.4Gbps

0 2 4 6 8 10 12

0

20

40

60

80

Probe Index

O
W

D
s
 (

u
s
)

at receiver
post−switch

(c) Probing at 6Gbps, IMR-avg

0 2 4 6 8 10 12
−40

−20

0

20

40

60

Probe Index

O
W

D
s
 (

u
s
)

at receiver
post−switch

(d) Probing at 9Gbps, IMR-avg

1 2 3 4 5 6 7
39

40

41

42

43

44

Probe Index

S
c
a

le
 C

o
e

ff
ic

ie
n

ts

(e) Probing at 6Gbps, IMR-wavelet

1 2 3 4 5 6 7
15

20

25

30

35

Probe Index

S
c
a

le
 C

o
e

ff
ic

ie
n

ts

(f) Probing at 9Gbps, IMR-wavelet

Fig. 7: Two example probe streams smoothed by IMR-Pathload.

results for probe-streams with different average probing rates,
different smoothing strategies, and the probe-stream length of
320.5 We compute the inaccuracy using both, gaps observed
at the receiver as well as those observed after crossing the
bottleneck switch (which do not include impact of receiver-
side interrupt coalescence). We find that:
• PRC-MT is fairly accurate when each probe-stream con-

sists of 320 packets. More than 90% of probe-streams
accurately infer whether the probing rate is higher or
lower than the available bandwidth—this is despite the
presence of bursty cross-traffic. PRM-MT performs well
whether used with receiver-side gaps, or with gaps ob-
served immediately after the bottleneck switch.

• The IMR techniques fail to arrive at a decision for a
huge fraction of probe-streams (see the ambiguity bars in
Fig 6). For the probe-streams for which they do provide
an answer, IMR-avg has much lower accuracy than PRC-
MT, even when probe-streams are as long as 320 packets.
For the wavelet we picked (Daubechies’s length 4 wavelet
up to level 3 as recommended in [21]), IMR-wavelet

5The bandwidth-decision error rate plotted in Fig 6 represents the fraction
of probe-streams that yielded incorrect decisions to the question—whether or
not a given probing rate is larger than the available bandwidth. For IMR-avg
and IMR-wavelet, we also include bars for the fraction of probe-streams that
were unable to arrive at a decision (ambiguous).

 0

 20

 40

 60

 80

 100

 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

B
an

dw
id

th
-d

ec
is

io
n

E
rr

or
 R

at
e(

%
)

Average Probing Rate (Gbps)

PRC-MT
IMR-avg Ambiguity

IMR-avg Inaccuracy
IMR-wavelet Ambiguity

IMR-wavelet Inaccuracy

(a) Using receiver-side gaps

 0

 20

 40

 60

 80

 100

 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

B
an

dw
id

th
-d

ec
is

io
n

E
rr

or
 R

at
e(

%
)

Average Probing Rate (Gbps)

PRC-MT
IMR-avg Ambiguity

IMR-avg Inaccuracy
IMR-wavelet Ambiguity

IMR-wavelet Inaccuracy

(b) Using post-switch gaps

Fig. 6: Bandwidth-decision Errors: State of the Art

yields inaccurate results in all experiments (and like IMR-
avg, fails to arrive at any decision for a large fraction of
probe-streams).
Furthermore, Fig 6 shows that IMR-avg and IMR-wavelet
do not work well even without interrupt coalescence
(when post-switch gaps are used).

For two example probe streams, we collect one-way delays
observed at the receiver, apply IMR-avg or IMR-wavelet on
them, and plot the smoothed OWDs in Fig 7(c)-(f)—we find
that despite the smoothing, these retain a saw-tooth pattern due
to the impact of heavily coalesced arrivals. We believe this is
primarily due to the use of the PCT and PDT metrics, which
are not robust in ultra-high speed networks, despite smoothing
using the IMR-pathload techniques. In the rest of this paper,
we focus only on PRC-MT, which significantly outperforms
the others given sufficiently long probe streams.6

We next evaluate PRC-MT when shorter probe streams
are used. Fig 8 plots the inaccuracy results for N =
32, 64, 128, 320 packets. We find that PRC-MT yields fairly
inaccurate results for probe-streams that are shorter than 320
packets. Probe streams of length 320 are pretty large for many
applications, especially those that need to probe regularly—
consider for example, the application domain of ultra-high
speed congestion control. We next ask: can light-weight/quick
probing be made to work at ultra-high speeds?

V. BUFFERING-AWARE SPIKE SMOOTHING

PRC-MT works well in reducing the impact of noise when
probe streams are fairly large, but fails to work when probe-
streams are small—this suggests that there is some underlying

6In fact, we have conducted all subsequent evaluations even with IMR-ag
and IMR-wavelet—while the smoothing mechanism we propose in Section V
helps improve their performance, these still perform significantly worse than
PRM-MT.

 0

 20

 40

 60

 80

 100

5 5.5 6 6.5 7 7.5 8 8.5 9

B
an

dw
id

th
-d

ec
is

io
n

E
rr

or
 R

at
e(

%
)

Average Probing Rate (Gbps)

n=32
n=64

n=128
n=320

Fig. 8: PRC-MT: Impact of N on Bandwidth Estimation Error

signature in the one-way delays that can be recovered robustly
only in large probe-streams. It is natural to wonder: why
can such signatures not be recovered when probe-streams are
small?

To understand this, we define the concept of a buffering
event. Consider what the “spikes” and “dips” in Fig 7(a)-(b)
represent. When a system resource (such as transmission on
the bottleneck link or processing by the receiver-side CPU)
becomes temporarily unavailable due to competing traffic or
processes, packets queue up in a system queue waiting for
access to the resource. This causes a large gap (“spike”) for
the first packet in this queue. When the resource does become
available, the remaining packets in the queue get processed
fairly quickly (especially for non-bottleneck resources), and

Algorithm 1 Buffering Aware Spike Smoothing
1: function AverageProbeStream(spike begin, spike end)
2: sum sendgap← 0, sum recvgap← 0
3: if spike begin < spike end then
4: for i = spike begin→ spike end do
5: sum sendgap+ = send gap[i]
6: sum recvgap+ = recv gap[i]
7: for i = spike begin→ spike end do
8: send gap[i] = sum sendgap÷ (spike end-spike begin+1)
9: recv gap[i] = sum recvgap÷ (spike end-spike begin+1)

10: function SpikeRemoval
11: i← 0, spike state← NONE
12: if recv gap[0] > recv gap[1] + SPIKE DOWN then
13: spike begin← 0
14: spike max← recv gap[0]
15: spike state← SPIKE VALID
16: i← 1
17: for i→ recv gap.size()-1 do
18: switch spike state do
19: case NONE
20: if recv gap[i] + SPIKE UP < recv gap[i+1] then
21: spike end← i
22: AverageProbeStream(spike begin,spike end)
23: spike state← SPIKE PENDING
24: spike begin← i+1
25: spike max← recv gap[spike begin]
26: break
27: case SPIKE PENDING
28: spike max = max{spike max, recv gap[i]}
29: if recv gap[i] + SPIKE DOWN < spike max then
30: spike state← SPIKE VALID
31: else
32: break
33: case SPIKE VALID
34: if recv gap[i] + SPIKE UP < recv gap[i+1] then
35: spike end← i
36: spike state← SPIKE PENDING
37: spike max← recv gap[i+1]
38: else
39: if recv gap[i]=recv gap.back() then
40: spike end← i

41: break
42: AverageProbeStream(spike begin, spike end)
43: spike begin← i+1
44: AverageProbeStream(spike begin, spike end)

Fig. 9: BASS: Pseudo-code

have fairly small gaps (“dips”) between them. It is clear
that such a bursty buffering event (a “spike” and all the
“dips” immediately following it) destroys all patterns in the
inter-packet gaps that were present before the event was
encountered.

A. Buffering-aware Spike Smoothing (BASS)

The previous section describes existing smoothing tech-
niques that aim to recover patterns in packet delays that
last even beyond individual buffering events, by averaging
at larger time-scales. Figs 7(a)-(b) illustrate two short probe-
streams, however, in which PRC-MT fails to correctly identify
whether the probing rate was higher or lower than the available
bandwidth. In Fig 7(a), the average of the receive gaps is
higher than the send-gap (even though the probing rate is lower

0 10 20 30 40 50 60
5

10

15

Probe Index

In
te

r
P

a
c
k
e

t
G

a
p

s
 (

u
s
)

sendgap
recvgap

(a) Probing at 6Gbps, BASS

0 5 10 15 20 25
5

10

15

Probe Index

In
te

r
P

a
c
k
e

t
G

a
p

s
 (

u
s
)

sendgap
recvgap

(b) Probing at 9Gbps, BASS

Fig. 10: Applying BASS to example probe streams.

than the bottleneck available bandwidth), where in Fig 7(a),
it is lower (even though the probing rate is too high). It can
be observed that since the spikes and dips are pretty extreme
(higher or lower), if the probe-stream does not fall precisely
on spike boundaries, the receive gaps recovered by these
smoothing techniques can be unusually (and inaccurately) low
or high.

It follows, naturally, that only buffering events in which
all “spikes” and “dips” occur completely within a probe-
stream should be considered for averaging out and recovering
signatures in the receive gaps. Furthermore, it also suggests
that if a smoothing strategy smooths within the boundaries of
individual buffering events, rather than smoothing at a fixed
timescale that is agnostic of buffering event boundaries, it may
better recover the underlying signatures in one-way delays.

Based on the above, we consider the following smoothing
strategy to reduce the impact of noise on a probe-stream:
(i) explicitly identify the boundaries of each buffering event
(starts with a spike and ends with the last dip before the
next spike), (ii) eliminate data related to incomplete spikes
at either ends of the probe-stream, and (iii) average out the
gaps/one-way delays within each buffering event. We refer to
this smoothing strategy as Buffering-aware Spike Smoothing
(BASS). Fig 9 provides the pseudo-code for BASS.

Fig 10 ilustrates the result when this strategy is applied to
the probe streams of Fig 7(a)-(b). After eliminating data from
incomplete burst events, the PRC-MT gives correct bandwidth
evaluations for both probe streams.

B. Evaluation on Single-rate Probing Framework

We next comprehensively evaluate whether the recov-
ered signature helps improve the performance of the best-
performing existing noise-reduction strategy, namely PRC-
MT. Fig 11 uses the same probe-streams 7 as Fig 8, and
pre-processes each probe-stream using BASS. It then re-
ports the bandwidth decision error for the PRC-MT + BASS
combination—we find that when gaps are first smoothened by
BASS, PRC-MT performs fairly well, even with probe-stream
of just 64 packets. Probes with just 32 packets continue to
yield high errors. Note again that each bar in our plots is based

7We only provide results here for inter-packet gaps observed at the
receiver side. For inter-packet gaps we captured after the bottleneck link, the
performance after applying BASS is comparable with using only PRC-MT.

 0

 20

 40

 60

 80

 100

5 5.5 6 6.5 7 7.5 8 8.5 9

B
an

dw
id

th
-d

ec
is

io
n

E
rr

or
 R

at
e(

%
)

Average Probing Rate (Gbps)

n=32
n=64

n=128
n=320

Fig. 11: Bandwidth Estimation Error: PRC-MT + BASS

on results collected from several thousands of probe streams,
which leads to robust conclusions.

From our analysis in this section, we conclude that short
probe-streams can be used effectively at ultra-high speeds
when a buffering-event aware smoothing strategy is used to
first recover reliable signatures in the packet gaps and delays.

VI. MULTI-RATE BANDWIDTH ESTIMATION: USING
BUFFERING-AWARE SMOOTHING

Bandwidth estimation tools differ in the strategy used
when probing for multiple candidate rates. The two dominant
frameworks are (i) an iterative feedback-based binary-search
(adopted by Pathload, PRC-MT, and IMR-Pathload) which
probes at a single rate within a probe stream; and (ii) multi-
rate non-feedback based probing (adopted by PathChirp and
TOPP) which probes for a wide range of candidate rates
using back-to-back single-rate probe streams. [26] shows that
total probing time can be significantly lowered with the latter
strategy, especially on paths with larger round-trip times. It
also causes less bandwidth overhead for probing traffic.

The previous section has shown that our buffering-
aware smoothing technique significantly reduces probe stream
lengths and estimation errors for single-rate probing tools. In
this section, we evaluate our smoothing techniques within a
multi-rate probing framework.

A. Multi-rate Probing Framework

A multi-rate probing framework sends several single-rate
probe-streams back-to-back, each at a different probing rate,
to create a multi-rate probe-stream. Such a framework can be
characterized by several parameters: Nr as the number of dif-
ferent probing rates probed by each stream, Np as the number
of packets sent at each probing rate, and Range as the probing
range for the whole probe stream.8 We constrain the the Nr

probing rates are uniformly distributed within the Range. To
estimate bandwidth, the framework finds the highest probing

8The probing range specifies how much above (or below) the average
probing rate is the maximum (or minimum) probing rate adopted within a
multi-rate probe-stream—the value of Range

2
determines this.

0 50 100 150 200 250 300
0

20

40

60

80

100

Probe Index

In
te

r
P

a
c
k
e

t
G

a
p

s
 (

u
s
)

sendgap
recvgap

(a) Streams Observed at Receiver

0 50 100 150 200 250 300

8

10

12

14

16

Probe Index

In
te

r
P

a
c
k
e

t
G

a
p

s
 (

u
s
)

sendgap

recvgap

gaps post−switch

sendgap

post-switch gap
recvgap(single-pass)

(b) Spike Removal

Fig. 12: Applying Spike Removal to Multi-rate Probe Stream

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 0 50 100 150 200 250 300

In
te

r
P

a
c
k
e
t
G

a
p
s
 (

u
s
)

Probe Index

sendgap
recvgap(multi-pass)

(a) Multi-pass Spike Removal

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 0 50 100 150 200 250 300

In
te

r
P

a
c
k
e
t
G

a
p
s
 (

u
s
)

Probe Index

sendgap
recvgap(multi-pass+avg)
actual AB gap

(b) Sliding Window Averaging

Fig. 13: Applying Multi-pass Spike Removal to Multi-rate Probe
Stream

rate at which no self-congestion is experienced—for this, it
relies on comparing the receive-gaps to send-gaps and finds the
largest probing rate beyond which all receive gaps consistently
exceed the corresponding sending gaps.

In the experiments reported here, we generate multi-rate
probe streams by controlling the parameters described above.
The control variable for probe stream generation is the av-
erage sending rate resulting from the mean of the multiple
probing rates in the stream. We control this average rate in
fixed increments of 20 Mbps between 1 Gbps and 9 Gbps.
The multi-rate streams are generated using the same packet-
scheduling Qdisc described earlier. The probe streams share
the 10 Gbps link with the highly bursty cross traffic of B-CT.
We apply our buffering-aware smoothing techniques discussed
in Sec V to each multi-rate probe stream before performing
bandwidth estimation as described earlier.

B. Effects of Multi-pass Spike Smoothing

We pick Range = 30%, Nr = 5 and Np = 64 to
illustrate the effects of Spike Removal on typical multi-rate
probe streams. Fig 12(a) plots an example multi-rate probe-
stream that experiences the typical distortions in receive-gaps
due to interrupt coalescence. In Fig 12(b), we illustrate how
after applying buffering-aware spike removal, the smoothed
receive gaps match the inter-packet gaps experienced by each
probe immediately after the bottleneck link. This shows that
our smoothing technique effectively mitigates the impact of
interrupt coalescence and reveals the time-varying throughput
signature of the cross traffic. The smoothed stream, however,
still fails to reveal a robust signature of persistent queuing
delays because the cross traffic itself is bursty. The remaining
(shorter) spikes and dips will lead to considerable estimation

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Relative Estimation Error

E
m

p
ir
ic

a
l
C

u
m

u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

single−pass
multi−pass

Fig. 14: Multi-pass Spike Removal Reduces Over Estimation

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Relative Estimation Error

E
m

p
ir
ic

a
l
C

u
m

u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

multi−pass spike removal
PRC−MT multi−rate DP1
PRC−MT multi−rate DP2

Fig. 15: Multi-pass Spike Removal VS PRC-MT Multi-rate Evalua-
tion

errors. It is natural to ask: will further buffering-aware smooth-
ing of this stream help?

Based on this idea, we develop a multi-pass spike smoothing
routine which continues to smooth the probe streams until a ro-
bust signature of queuing delays is observed. Additionally, we
finally apply a sliding window averaging across all smoothed
observations with window of size 16. Fig 13 demonstrates
the impact of multi-pass spike removal on the same probe
stream depicted in Fig 12. The smoothed receive gaps become
consistently larger than send gaps after index 145, yielding a
clear (and correct) available bandwidth estimate of 6.8 Gbps.

In Fig 14, we plot the distribution of relative estimation
error observed across all probe streams. If Bg is the ground
truth available bandwidth, and Be is a an estimate of it, then
the relative error in bandwidth estimation is given by: Be−Bg

Bg
.

Fig 14 compares the relative estimation error for single-pass
and multi-pass spike smoothing for all probe streams generated
in the experiment using the parameters given above. It shows
that multi-pass spike removal effectively eliminates much of
the severe over-estimation that can result from using only
single-pass spike smoothing.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Relative Estimation Error

E
m

p
ir
ic

a
l
C

u
m

u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

Range=30% Nr=3
Range=30% Nr=5
Range=50% Nr=3
Range=50% Nr=5

(a) Np = 64

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Relative Estimation Error

E
m

p
ir
ic

a
l
C

u
m

u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

Range=30% Nr=3
Range=30% Nr=5
Range=50% Nr=3
Range=50% Nr=5

(b) Np = 32

Fig. 16: Multi-pass Spike Removal Estimation Error

C. Sensitivity to Parameters

We performed additional experiments to evaluate the sen-
sitivity of multi-pass spike removal to the parameters of our
multi-rate probing framework.

Fig 16(a) plots the estimation error across all probe streams
for different probing ranges and number of rates per stream.
When Range=30%, 95% error is within plus or minus 10%
with the median relative error around 0%. Increasing Range
to 50% allows for a wider range of errors, but 80% of them
are still within plus or minus 10%.

To further reduce the probe-traffic overhead, we shrink
probe stream length further by decreasing Np from 64 to 32.
From Fig 16(b), we observe that the estimation accuracy is
not significantly impacted by probing with fewer packets per
rate.

D. Comparison With Multi-rate PRC-MT

In Section V, we showed that, as long as the (single rate)
probe stream is no shorter than 64, PRC-MT can be made
highly accurate by first smoothing the gaps using BASS. In
this section we explore how well PRC-MT + BASS could
perform in a multi-rate probing framework.

Within a multi-rate probe stream, those probes sent at the
same rate can be treated as a single sub-stream. For each
sub-stream, we apply the improved PRC-MT algorithm to
produce a binary answer: whether or not the sub-stream rate
exceeds avail-bw. Finally the Nr binary answers are evaluated
(described below) to pick a probing rate as the bandwidth
estimation. We refer to this algorithm as Multi-rate PRC-MT.

Notice that cross traffic can be bursty and queues may form
and drain completely even within a single sub-stream. If this
happens, the estimation decision for Multi-rate PRC-MT will
be ambiguous. From the probe stream in Fig 12(b), the PRC-
MT evaluations for individual rates indicate that the 1st and
3rd rates are below avail-bw, but the 2nd rate exceeds avail-
bw. Although the evaluation for each sub-stream is correct,
deciding which rate to pick as the better estimation for the
whole stream becomes difficult. We investigated two simple
decision policies: (DP1) pick the last rate before the first rate
above avail-bw (the first rate in this example), or (DP2) pick
the last rate below avail-bw (the last rate in the example).

We evaluate these decision methods in experiments with
Np = 64, Nr = 5, Range = 30%. Fig 15 compares
estimation accuracy among DP1 and DP2 policies of Multi-
rate PRC-MT and Multi-pass Spike Smoothing. We observed
that the two decision methods produce quite different results
for most of the probe streams. DP1 results in consistent under-
estimation while DP2 results in consistent over-estimation.
Multi-pass spike removal outperforms both PRC-MT multi-
rate mechanisms. It shrinks the range of estimation error and
is more accurate because of finer granularity in the estimation
process.

In this section, we showed how to tailor the buffering-aware
smoothing for a multi-rate probing framework. We developed
multi-pass spike removal, that automatically smooths the noise
caused by interrupt coalescence and bursty cross traffic. We
evaluated our de-noising technique with highly bursty cross
traffic, showing that a multi-rate probing framework can be
successfully scaled to ultra-high speeds.

VII. APPLICATION: ULTRA-HIGH SPEED CONGESTION
CONTROL

Finally, we evaluate the efficacy of our proposed noise-
reduction strategy in the context of congestion control for
high throughput in long duration flows. A congestion-control
protocol aims to probe for the highest sending rate that can
be adopted for a sender without causing network congestion.
Bandwidth estimation mechanisms have been used in several
interesting ways in recent protocols [34], [10]. Of these,
TCP Rapid is the one that adopts bandwidth estimation to
continuously adapt its sending rate to the available bandwidth
along the path to the receiver [10]. It is important to note
that past proposals of congestion control protocols that rely on
queuing delay estimation have been deprecated because packet
delays are often compromised by many sources of noise. In
this section, we evaluate whether BASS can help TCP Rapid
perform better on real ultra-high speed networks.

f) TCP Rapid: Congestion control in TCP Rapid uses a
multi-rate probing framework to continuously perform band-
width estimation. A TCP Rapid sender transmits all normal
outbound data segments organized into logical probe streams
of N segments each. The N segments are transmitted in
multiple fixed-size sub-streams forming a multi-rate probe
stream with exponentially increasing rates in order to probe
for several rates within a single probe stream. On receiving
ACKs carrying receiver timestamps for each stream of N
packets, the sender estimates the available bandwidth for this
probe stream. The sender then sets the sending rate (average
probing rate) for the next set of data segments transmitted as a
probe stream. (Note: our Linux implementation of TCP Rapid
extends TCP timestamps to microsecond resolution). The TCP
Rapid design aims to ensure that the average load on the path
does not exceed its available bandwidth, while also shrinking
the congestion control response time.

g) TCP Rapid vs. CUBIC: We first compare the through-
put performance of TCP Rapid with that of TCP Cubic, which
is widely used in Linux distributions. [10] reports the result
of simulation studies, that Rapid significantly outperforms
CUBIC under similar traffic conditions—in this section, we
first study if the performance gains also hold in a real network
environment, in the presence of noise.

These experiments are conducted in the same laboratory
testbed described earlier. We use netem (for Cubic) or a locally
developed Qdisc based on netem (for Rapid) to emulate RTT
by delaying ACKs returned from receiver to the sender. We
use a single iperf flow lasting 90 seconds sharing the 10 Gbs
link with either the B-CT or S-CT cross traffic and with the
RTT for the iperf flow set to 5 milliseconds or 30 milliseconds.
For Rapid bandwidth estimation mechanism, we used Range
= 50%, Np = 32 and Nr=4. Because TCP delayed-ACKs are
on by default, only 64 timestamped segments are available to
evaluate available bandwidth for each multi-rate probe stream.

Fig 17 and Fig 18 plot the throughput, observed in 500
millisecond intervals, of the iperf flows using different con-
gestion control mechanisms. The plots seem to suggest that,
in general, TCP Rapid achieves higher throughput than CUBIC
in the presence of burst cross-traffic B-CT; whereas CUBIC
outperforms Rapid in the presence of the smoother S-CT
traffic. This is the case for both the small RTT (5 ms) and large
RTT (30 ms) scenarios. Upon careful inspection, however,
it can be seen that the throughput achieved by Rapid for a
given RTT, does not depend at all on the burstiness of the
cross-traffic. Furthermore, with both B-CT and S-CT traffic,
Rapid throughput is much lower than the network available
bandwidth. This suggests that Rapid is unable to estimate
well the available bandwidth, and hence, is unable to achieve
performance that is even close to that observed in simulation
environments [10].

It is also important to note that CUBIC is unable to attain
throughput close to the available bandwidth—this is especially
true with bursty cross-traffic and on long-RTT paths.

h) BASS + TCP Rapid vs. CUBIC: Next, we use the
multi-rate spike smoother, developed in Section VI, as a pre-

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10

Time (s)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Cubic

Rapid w/0 BASS

Rapid with BASS

(a) with B-CT

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10

Time (s)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Cubic
Rapid w/0 BASS
Rapid with BASS

(b) with S-CT

Fig. 17: iperf Throughpput with RTT=5ms

cursor to the bandwidth estimator in our Linux implementa-
tion of TCP Rapid. The results are included in Fig 17 and
Fig 18. We find that in all cases, TCP Rapid yields higher
throughput than Cubic. The ratio of throughput improvement
(Rapid/Cubic) ranges from 1.35 for the smoothed traffic and 5
millisecond RTT to 3.9 for the bursty traffic and 30 millisecond
RTT. While Rapid in some cases has a somewhat higher loss
rate than Cubic, it is able to quickly utilize available band-
width immediately after loss recovery while Cubic requires
many RTTs to return to fully utilizing available bandwidth.
This is especially noticeable when RTT is 30 milliseconds,
and even when the cross traffic is relatively smooth. Most
importantly, BASS + TCP Rapid has considerably improved
the performance of TCP on 10 Gbps networks.

This is an especially enabling result, since bandwidth-based
and delay-based approaches to congestion-control are readily
shunned in the research community due to the distrust of
packet delays that are corrupted by noise. We believe that
our work opens new doors in the area of ultra-high speed
bandwidth estimation as well as congestion-control.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10

Time (s)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Cubic
Rapid w/0 BASS
Rapid with BASS

(a) with B-CT

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10

Time (s)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Cubic
Rapid w/0 BASS
Rapid with BASS

(b) with S-CT

Fig. 18: iperf Throughput with RTT=30ms

VIII. RELATED WORK

The literature is quite rich in the design of bandwidth
estimation techniques–we summarize only the most prominent
ones here. Probing Rate Model is based on the concept of self-
induced congestion as described in Section II. Pathload and
Pathchirp are the most well known tools using this model.
Pathload [12] sends all packets in a probe stream at the same
rate. Each probing rate is evaluated by detecting increasing
trends in the one-way delays experienced by probes using two
tests (PCT and PDT). It then adopts successive rates in an
iterative binary-search manner in order to probe for avail-
bw. Another tool, Pathchirp [13], probes avail-bw within a
single stream by sending probes at exponentially-increasing
rates. Such deliberately designed probing streams help make
the tool considerably light-weight [26]. Probing Rate Model
is believed to be more robust in the presence of multiple
congested links [26], [18].

Although these tools have been shown to perform well
in simulation or on low-speed links, their performance in
practice on gigabit networks is unpromising [18]. Even on
100Mbps links, noise has been commonly recognized as a

potential issue for bandwidth estimation in practice. [33], [35],
[20], [21], [23] all identify timestamping inaccuracy caused
by interrupt coalescence as the main challenge to achieving
accurate estimation. [35] also points out timer resolution and
context-switching overhead as other sources of noise that are
limited by system capability. Besides, [36] mentions that
ignoring cross traffic burstiness is a major pitfall for existing
tools.

Several attempts have been made to deal with noise. In
the presence of interrupt coalescence, PathChirp sends a
group of packets at each probing rate, and only use the last
packet in that group for bandwidth estimation [33]. Pathload
adopts a similar strategy as mentioned in Section IV. These
strategies are shown to be inaccurate in [20], [21]. IMR-
Pathload first applies signal de-noising techniques (window-
based smoothing and wavelet transformation) to smooth the
noise. Similarly, [22] evaluates the ability of various filters
and show that different network scenarios requires different
filters.

[23] follows a different track to deal with noise—instead
of software-based bandwidth estimation, it seeks hardware
assistance. It develops a hardware assistant NIC to precisely
control probing gaps and timestamp packet arrivals. The
implementation is shown to achieve excellent performance on
10Gbps networks.

In the recent decades, bandwidth estimation mechanisms
have been used in several interesting ways in transport pro-
tocols. BA-TCP [37] relies on intermediate routers to take
measurements of avail-bw and compute the fair share for the
satellite TCP connections. Westwood[34] and UDT [11] use
avail-bw estimation as guidelines to set congestion window
size. Westwood measures avail-bw by tracking ACK receiving
rates. UDT sends a probe pair in every N packets and bases its
estimation on PGM model. PCT [9] sends small probe streams
and estimates avail-bw based on Pathload in slow-start phase
and after packet loss in order to better utilize link capacity.
TCP Rapid [38] is the only protocol that continuously probes
for avail-bw and completely driven by rate-based control.

IX. CONCLUDING REMARKS

Bandwidth estimation in high-speed networks has been
rejected by many as an infeasible idea due to its sensitivity
to noise. In this work, we pursue the ambitious goal of
tackling noise even at ultra-high speeds. For this, we use a
10 Gbps testbed to systematically evaluate prior strategies for
noise-removal—we showed that some of these work, but only
by relying on very long probe streams. We present a new
buffering-aware spike removal strategy, which works well even
with short probe streams and significantly reduces estimation
error in a single-rate probing framework. We then extend this
basic mechanism to a multi-pass spike removal strategy and
integrate it into a multi-rate probing framework. We show that
the combined framework produces accurate estimations with
much less network probing overhead. Finally, we illustrate
how this enhanced multi-rate probing mechanism is effective
in achieving higher throughputs than Cubic when used as the

basis for TCP Rapid congestion control, especially on paths
with large RTTs.

In future work, we will evaluate our noise-reduction strategy
on multi-hop testbeds, and on wide-area high-speed networks.
We also plan on evaluating the impact of our strategy in
other application domains, in addition to ultra-high speed
congestion-control.

REFERENCES

[1] R.L. Carter and M.E. Crovella. Dynamic server selection using band-
width probing in wide-area networks. Technical report, Boston, MA,
USA, 1996.

[2] R.L. Carter and M.E. Crovella. Server selection using dynamic path
characterization in wide-area networks. In Proceedings of IEEE INFO-
COM, volume 3, pages 1014 –1021 vol.3, April 1997.

[3] S.G. Dykes, K.A. Robbins, and C.L. Jeffery. An empirical evaluation
of client-side server selection algorithms. In Proceedings of IEEE
INFOCOM, volume 3, pages 1361 –1370 vol.3, March 2000.

[4] Y. Zhu, C. Dovrolis, and M. Ammar. Dynamic overlay routing based on
available bandwidth estimation: A simulation study. Computer Networks,
50:2006, 2006.

[5] X. Zhang, W. Ye, and Y. Jin. Dynamic overlay routing based on active
probing measurements: An emulation study. In Communications and
Photonics Conference and Exhibition (ACP), pages 1 –2, 2009.

[6] Ren Wang, Giovanni Pau, Kenshin Yamada, M. Y. Sanadidi, and Mario
Gerla. Tcp startup performance in large bandwidth delay networks. In
In Proceedings of IEEE INFOCOM, pages 796–805. Press, 2004.

[7] A. Tripathi and M. Claypool. Improving multimedia streaming with
content-aware video scaling. In Proceedings of IMMCN, March 2002.

[8] N. Aboobaker, D. Chanady, M. Gerla, and M. Sanadidi. Streaming
media congestion control using bandwidth estimation. In Management of
Multimedia on the Internet, volume 2496 of Lecture Notes in Computer
Science, pages 89–100. 2002.

[9] T. Anderson, A. Collins, A. Krishnamurthy, and J. Zoharjan. PCP:
Efficient endpoint congestion control. In Proceedings of the 3rd
Symposium on Networked Systems Design and Implementation (NSDI),
May 2006.

[10] V. Konda and J. Kaur. RAPID: Shrinking the Congestion-control
Timescale. In Proceedings of the IEEE INFOCOM, April 2009.

[11] Yunhong Gu. UDT: A High Performance Data Transport Protocol. PhD
thesis, Chicago, IL, USA, 2005. Chairperson-Robert L. Grossman.

[12] Manish Jain and Constantinos Dovrolis. Pathload: A measurement tool
for end-to-end available bandwidth. In In Proceedings of Passive and
Active Measurements (PAM) Workshop. Citeseer, 2002.

[13] Vinay Ribeiro, Rudolf Riedi, Richard Baraniuk, Jiri Navratil, and Les
Cottrell. pathchirp: Efficient available bandwidth estimation for network
paths. In Passive and active measurement workshop, volume 4, 2003.

[14] J. Navratil. ABwE: A Practical Approach to Available Bandwidth. In
Proceedings of PAM, 2003.

[15] C. Dovrolis and M. Jain. End-to-End Available Bandwidth: Measure-
ment Methodology, Dynamics, and Relation with TCP Throughput.
IEEE/ACM Transactions in Networking, August 2003.

[16] Albert Cabellos-Aparicio, Francisco J Garcia, and Jordi Domingo-
Pascual. A novel available bandwidth estimation and tracking algorithm.
In Network Operations and Management Symposium Workshops, 2008.
NOMS Workshops 2008. IEEE, pages 87–94. IEEE, 2008.

[17] Google fiber project. https://fiber.google.com/.
[18] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido,

M. Fomenkov, and K.C. Claffy. Comparison of public end-to-end
bandwidth estimation tools on high-speed links. In PAM, pages 306–320,
2005.

[19] Qianwen Yin, Jasleen Kaur, and F Donelson Smith. Scaling bandwidth
estimation to high speed networks. In Passive and Active Measurement,
pages 258–261. Springer, 2014.

[20] Seong-Ryong Kang and Dmitri Loguinov. Imr-pathload: Robust avail-
able bandwidth estimation under end-host interrupt delay. In Passive
and Active Network Measurement, pages 172–181. Springer, 2008.

[21] Seong-Ryong Kang and Dmitri Loguinov. Characterizing tight-link
bandwidth of multi-hop paths using probing response curves. In Quality
of Service (IWQoS), 2010 18th International Workshop on, pages 1–9.
IEEE, 2010.

[22] Uyen C Nguyen, Dung T Tran, and Giang V Nguyen. A taxonomy
of applying filter techniques to improve the available bandwidth estima-
tions. In Proceedings of the 8th International Conference on Ubiquitous
Information Management and Communication, page 18. ACM, 2014.

[23] Akeo Masuda, Akinori Isogai, Kohei Shiomoto, Yoshihiro Nakajima,
Tetsuo Kawano, and Mitsuru Maruyama. Application-network collabo-
rative bandwidth on-demand for uncompressed hdtv transmission in ip-
optical networks. In Network Operations and Management Symposium
Workshops (NOMS Wksps), 2010 IEEE/IFIP, pages 177–180. IEEE,
2010.

[24] N. Hu and P. Steenkiste. Evaluation and Characterization of Available
Bandwidth Probing Techniques. IEEE JSAC Internet and WWW Mea-
surement, Mapping, and Modeling, 2003.

[25] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A Measurement
Study of Available Bandwidth Estimation Tools. In Proceedings of the
ACM SIGCOMM Internet Measurement Conference ’03, Miami, Florida,
October 2003.

[26] A. Shriram and J. Kaur. Empirical evaluations of techniques for
measuring available bandwidth. In Proceedings of IEEE INFOCOM
2007, May 2007.

[27] M. Jain and C. Dovrolis. Pathload: an available bandwidth estimation
tool. In PAM, 2002.

[28] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell. pathChirp:
Efficient available bandwidth estimation for network paths. In Passive
and Active Measurement Workshop , April 2003.

[29] B. Melander, M. Bjorkman, and P. Gunningberg. A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks. In
Global Internet Symposium, November 2000.

[30] Paul Barford and Mark Crovella. Generating representative web work-
loads for network and server performance evaluation. ACM SIGMET-
RICS Performance Evaluation Review, 26(1):151–160, 1998.

[31] Aaron Turner and Matt Bing. Tcpreplay, 2005.
[32] Jeffrey S Chase, Andrew J Gallatin, and Kenneth G Yocum. End system

optimizations for high-speed tcp. Communications Magazine, IEEE,
39(4):68–74, 2001.

[33] Ravi Prasad, Manish Jain, and Constantinos Dovrolis. Effects of
interrupt coalescence on network measurements. Passive and active
network measurement, pages 247–256, 2004.

[34] Saverio Mascolo, Claudio Casetti, Mario Gerla, Medy Y Sanadidi, and
Ren Wang. Tcp westwood: Bandwidth estimation for enhanced transport
over wireless links. In Proceedings of the 7th annual international
conference on Mobile computing and networking, pages 287–297. ACM,
2001.

[35] Guojun Jin and Brian L Tierney. System capability effects on algorithms
for network bandwidth measurement. In Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, pages 27–38. ACM,
2003.

[36] Manish Jain and Constantinos Dovrolis. Ten fallacies and pitfalls on
end-to-end available bandwidth estimation. In Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, pages 272–277.
ACM, 2004.

[37] Mario Gerla, Wenjie Weng, and R Lo Cigno. Ba-tcp: A bandwidth aware
tcp for satellite networks. In Computer Communications and Networks,
1999. Proceedings. Eight International Conference on, pages 204–207.
IEEE, 1999.

[38] Vishnu Konda and Jasleen Kaur. Rapid: Shrinking the congestion-control
timescale. In INFOCOM 2009, IEEE, pages 1–9. IEEE, 2009.

APPENDIX A
EXPERIMENTAL TESTBED

a) Testbed Hosts: The core of the network illustrated
in Fig 1 consists of two HP 2900 switches with multiple 1
Gbps and 10 Gbps ports, both copper and fiber. The switch-
to-switch path is a 10 Gbps fiber path. The host that is used
to generate probe streams is a Dell PowerEdge R720 with
four cores (hyperthreads for 8 logical processors) running at
3.3 GHz. The 10 Gbps Ethernet adapter is a PCI Express
x8 Myricom 10 Gbps copper NIC with the myri10ge driver.
The Endace DAG monitor NICs are hosted on high-end Dell
servers with very large memory buffers. It provide line-rate

capture of all frames traversing the switch-to-switch path along
with timestamps of nanosecond precision and 10 nanosecond
accuracy.

The host used to receive the probe-streams is also a Dell
PowerEdge R720 running at 3.3 GHz. The 10 Gbps Ethernet
adapter is a PCI Express x8 Intel X520 fiber NIC with the
ixgbe driver. The ethtool program was used to turn off segment
and receive offload functions on all the NICs used to send and
receive probe streams. Experiments were run with the default
receive coalesce interval any adaptive capability.

The network includes an additional 10 pairs of hosts (sender
and receiver) that are used to generate cross traffic sharing the
switch-to-switch link. The CPU speeds of these hosts range
from 1.8 GHz to 3.3 GHz, all have 1 Gbps copper NICs. All
hosts in the network run recent release of RedHat Enterprise
Linux 6 with the Linux kernel 2.6.32.

b) Send-gap Creation: Within each probe stream, the
Qdisc computes the intended departure time (in nanoseconds)
for each frame in a probe stream and runs a scheduling
algorithm that ensures that the frame is dequeued to the device
driver no earlier than the intended departure time. A log was
generated by the kernel module (with printk) with sufficient
information to determine the sequence number and intended
send gap for all frames in a probe stream.

In order to eliminate most of the uncontrolled noise in the
send gaps, the frame-to-frame gaps are enforced in the sending
NIC queues by inserting one or more Ethernet PAUSE frames
with appropriate sizes between frames in a probe stream.
These control frames are specified as part of the IEEE 802.3x
for flow control between two ends of a link. PAUSE frames are
discarded by a receiving switch and thus consume bandwidth
only on the NIC to switch link. As a result, the intended inter-
packet gaps are preserved between successive frames arriving
at the first outbound queue. We evaluate the inter-packet gaps
generated this way by comparing against those recorded at the
DAG monitor when the path is free of cross traffic, showing
that 90% of them are within 1µs difference with the intended
gaps.

c) Receiver-side Timestamping: Ideally, gaps between
frames arriving at the receiver would be computed from
timestamps taken in hardware by the NIC at the arrival of
each frame using a high-resolution clock local to the adapter.
Unfortunately the vast majority of 10 Gbps adapters currently
available only do hardware timestamping for PTP frames (if
they do timestamping at all). This means that timestamps used
for measuring receiver gaps must be done in software.

Existing bandwidth estimation tools timestamp packets for
measuring receiver gaps in software at the application layer.
In order to record software timestamps with the best-possible
accuracy, we implement a kernel loadable module attached as
an ingress Qdisc to the adapter that is receiving frames from
the switch. The position of this ingress Qdisc in the Linux
networking stack is logically between the device driver and
the bottom of IP. The function of this module is basically
to record and log a kernel-generated (ktime get()) timestamp
with microsecond precision.

