
Empirical Evaluation of Techniques for Measuring
Available Bandwidth

Alok Shriram and Jasleen Kaur
Department of Computer Science

University of North Carolina at Chapel Hill
Email:

�
alok,jasleen � @cs.unc.edu

Abstract— The ability to measure end-to-end Available Band-
width (AB) on a network path is useful in several domains, in-
cluding overlay-routing infrastructure, network monitoring, and
design of transport protocols. Several tools have, consequently,
been proposed to estimate end-to-end AB. Unfortunately, existing
evaluations of these tools are either not comprehensive or are
biased by the current state of implementation technology. In
this paper, we conduct a comprehensive empirical evaluation of
algorithmic techniques for measuring AB. In order to eliminate
implementation-related biases, we rely on a simulated network
environment and develop a generic implementation framework
for instantiating different tools. We implement our framework
in NS-2 and reproduce traffic from real Internet links in order
to evaluate tools under different conditions of (i) traffic load, (ii)
sampling intensities, (iii) measurement timescales, (iv) number of
bottleneck links, and (iv) location of bottleneck. We evaluate the
tools for their accuracy, run-time, overhead, intrusiveness, and
impact on responsive traffic. Our results contradict some of those
in prior work that does not eliminate implementation biases.

I. INTRODUCTION
The ability to measure the end-to-end available bandwidth

(AB) of a path has applications in several domains, including
(i) the design of a quick ramp-up phase for transport protocols
like TCP [1], (ii) in selecting the best of several Internet
paths between two communicating end-hosts [2], and (iii)
in detecting highly-congested bottlenecks while monitoring
a network [3]. The problem of measuring end-to-end AB
has, consequently, received considerable attention in the re-
cent literature and several AB estimation tools—henceforth,
referred to as ABETs—have been designed and implemented
for this [4], [5], [6], [7], [8], [9].

While the design of ABETs has received considerable focus,
the evaluation of these has not been addressed adequately. In
Section II, we illustrate that existing evaluations are either non-
comprehensive and biased, or are affected by implementation
issues. In this paper, we address this limitation by conducting
an extensive experimental study of existing techniques for
measuring AB.1 In order to study these in a manner inde-
pendent of implementation concerns, we rely on a simulated
network environment and a common reference implementation
of the different algorithmic techniques used to measure AB.
This approach proves useful as some of our findings contradict
those in past work that instead evaluates publicly-available
implementations of ABETs.

1This research was supported in part by NSF CAREER grant CNS-0347814
and NSF RI grant EIA-0303590.

In the rest of this paper, we discuss related work in
Section II and our experimental methodology in Section III.
We present our experimental results in Sections IV–VI and
our conclusions in Section VII.

II. STATE OF THE ART

Tool Probe Stream Inference Metric
Pathload [5] Equi-Spaced Train One-way Delay

PathChirp [6] Exponential spacing Dispersion
Spruce [7] Packet-Pair Dispersion

IGI [4] Packet Train Dispersion
Iperf TCP-Stream Throughput

Cprobe Packet Train Receiving Rate

TABLE I

AVAILABLE BANDWIDTH ESTIMATION TOOLS

A. Tool Design
Several tools (ABETs) have been proposed recently for

actively probing for the end-to-end AB on a given network
path [4], [5], [6], [7], [10], [11], [12]. These tools typically
operate by injecting specially-designed streams of probe pack-
ets onto the path, observing the end-to-end delays experienced
by the probe packets, and then estimating the end-to-end AB
from the observations. Existing literature focuses primarily on
two aspects of tool design:

� Algorithmic techniques for inferring end-to-end AB:
ABETs differ most significantly in the design choices
they make along two dimensions: (i) the structure of
a probe stream—for instance, while Abing [12] and
Spruce [7] rely on using a packet-pair as a probe stream,
Pathload [5] and PathChirp [6] rely on sending a packet
train (uniformly and exponentially-spaced, respectively)
in each probe stream—and (ii) the inference logic used
for estimating AB from the observed end-to-end delays.
Table I summarizes these for popular ABETs.
Given the myriad of tools available and the diversity in
the algorithmic techniques they use, it is natural to ask:
which algorithmic technique performs the best?� Implementation techniques for achieving high time-
stamping accuracy: In current high-speed networks,
variations in end-to-end delays may have an order of mag-
nitude in the sub-millisecond range. Since most ABETs
rely on measuring delay variations, high resolution and
accuracy in time-stamping probe packets is crucial for
ensuring the accuracy of the inferred AB. Current PC
platforms, however, are incapable of guaranteeing these

due to multi-tasking and the use of mechanisms such as
interrupt coalescence [5]. Most tool implementors work
around this limitation using two techniques [5], [6], [7]:
(i) they rely on OS support for detecting and discarding
probe streams that appear to not have been time-stamped
accurately; and (ii) they collect observations from several
probe streams before converging on a robust estimate of
AB. While such techniques do not differ much across
current ABETs, these do impact tool performance signifi-
cantly [13], [14]. It is important to note that as technology
improves [15], the need for and the impact of these
techniques on ABET performance is likely to diminish.
It is, therefore, natural to ask: to what extent does current
implementation technology limit tool performance? In
particular, how well would tools perform if technology
advances in the future?

The questions raised above have been partly addressed in the
literature, as discussed next.

B. Tool Evaluation

Several tool proponents compare the performance of their
tools against that of others under controlled lab settings as well
as in Internet-wide experiments [4], [6], [7]. Robeiro et. al. [6]
compare the performance of PathChirp to that of Pathload [5]
and TOPP [11] in an emulated lab setting. They find that
PathChirp is more accurate than TOPP and less intrusive than
Pathload. Hu et. al. [4] compare the performance of IGI/PTR
to that of Pathload and Iperf on 13 Internet paths of capacity
within 100 Mbps. They observe that while the readings of the
three tools match on some paths, they fluctuate on other. Since
the actual AB of these paths were not known, tool accuracy
was not verified. Strauss et. al. [7] compare the performance
of Spruce to that of Pathload and IGI. They use SNMP data
collected at five minute intervals to evaluate the accuracy
of these tools on two 100 Mbps paths. They also compare
the sensitivity of the tools to changes in AB by performing
several experiments on the RON testbed. They find that IGI
is inaccurate at high loads, and Spruce is more accurate and
less intrusive than Pathload.

Unfortunately, such studies are not comprehensive in either
the tools or the settings evaluated. All of the studies described
above evaluate only a small (and different) sub-set of ABETs,
depending on which ones were popular when the correspond-
ing tool was proposed. Furthermore, these evaluations include
only simple network and traffic scenarios—for instance, none
of the above evaluate tool performance against responsive
cross-traffic, in high-speed networks, or when the tight and
narrow links are different.2 As a result of these practices,
the results are often not comprehensive and get inadvertently
biased toward highlighting the salient features of the proposed
tool.

2The tight link of a path is one with the least amount of available bandwidth,
while the narrow link is the one with the least transmission capacity [5]. The
tight link of a path may not be the same as the narrow link if it carries
significant amount of traffic load.

A recent work [16] addresses the above limitation by eval-
uating in a controlled high-speed lab setting, several publicly-
available implementations of existing tools.3 It treats each
implementation as a black-box and observes its accuracy,
timeliness, and overhead. While this study provides a com-
prehensive and unbiased evaluation of the implementations,
it suffers from two key limitations. First, since it relies on
a black-box approach, it does not provide insight into the
performance of each tool as a function of its configurable
parameters. Second, the observations are affected by the tool
implementation efficiencies—such as dealing effectively with
interrupt coalescence, context switches, and outliers—as well
as the time-stamping precision of existing PC technology.
It provides little insight into the relative performance of
the algorithmic components of ABETs. For instance, [16]
concludes that Pathload and PathChirp are the most accurate
tools and packet-pair based tools such as Spruce and Abing
do not perform well—it is not clear, however, if this result is
fundamental to the packet-pair based inference logic, or is an
artifact of the fact that these are less robust to time-stamping
inaccuracies. In particular, as technology evolves and time-
stamping resolutions improve, would such techniques continue
to perform poorly? In this paper, we address the question—in
the absence of implementation-related limitations, how well
do existing AB estimation techniques perform?4

In [19], the authors analyze at large time-scales, the perfor-
mance of several bandwidth estimators that can be represented
mathematically. Unfortunately, their evaluation can not model
several iterative estimators and is limited to low-bandwidth
paths with a single bottleneck link.

Another significant limitation of all previous ABET eval-
uations is that these ignore the impact of two key probing-
related quantities on the performance of ABETs. The first is
the measurement timescale (MT), defined as the time-scale
at which AB is observed. Practically, the MT used by an
ABET corresponds to the duration of a single probe stream.
The second is the sampling intensity (SI), which refers to the
duration for which the AB is sampled per unit time. Practically,
this is the product of the MT and the number of probe streams
sent per unit time. It has been shown in [20] that both MT and
SI impact the accuracy and variability of the AB sampled by
any ABET. Unfortunately, none of the existing ABETs allow
the choice of MT, and only some allow the choice of SI. Given
the observations made in [20], it is important to redesign the
ABET interfaces to allow the choice of MT and SI, and study
the impact of these on ABET performance.

To summarize, existing ABET evaluations are either biased
by limitations of current implementation technology and/or are

3Coccetti et. al. [17] evaluate early ABETs, including Iperf and Pathload,
on a low speed (less than 4 Mbps) 4-5 hop topology with and without cross-
traffic. They conclude that tool results strongly depend on configuration of the
router queues and that a considerable amount of care would need to be taken
while interpreting the results from any ABET, especially if QoS features were
present in the network.

4The need for an implementation-independent evaluation of ABETs has
also been highlighted in [18]—however, no experimental results have been
made available to date.

not comprehensive in evaluating tools against diverse network
and probing conditions.

C. Our Approach

We address the above-mentioned limitations in ABET
evaluation using a two-pronged approach:

a) Evaluation independent of current implementation
technology: We use a simulation environment to implement
and evaluate the performance of prominent ABETs. By doing
so, we ensure that the only variables that impact the perfor-
mance of an ABET are the algorithmic design of its probe-
stream and inference logic. Specifically, issues related to time-
stamping accuracy, timer granularity, CPU load, and interrupt-
processing are taken out of the equation—a simulator allows
for perfect time-stamping and spacing of probe packets.

b) Evaluation against diverse probing and network con-
ditions: We consider gigabit network paths and simulate
diverse network conditions (specifically, RTT, traffic load,
and number and location of bottleneck links). Additionally,
we redesign the specification of existing ABETs to allow us
to control and vary, whenever possible, probing parameters
(specifically, MT and SI). We study the impact of all of the
above parameters on the estimation accuracy and costs of each
tool.

We incorporate realism in our evaluations by recreating
the AB process from real Internet links (by replaying traf-
fic traces captured from these links). We also evaluate the
impact of ABETs on responsive cross-traffic by emulating
at the application-level, the transmission behavior of end-
applications that generate traffic in these link traces. In what
follows, we describe our methodology and results in detail.

III. EXPERIMENTAL FRAMEWORK

A. ABET implementation

We select several prominent ABETs—namely, Pathload [5],
PathChirp [6], Spruce [7], IGI [4], Fast-IGI [4], and
Cprobe [8]—that represent existing diversity in the algorithmic
techniques used for inferring end-to-end AB. We implement
each of these tools in the NS-2 [21] network simulation envi-
ronment. We rely on published literature as well as publicly-
available implementations (whenever available) to extract de-
tails of each tool.

Recall that one of our objectives is to study the impact of
the probing parameters, MT and SI. Unfortunately, most tool
designs do not allow for the choice of either of these two prob-
ing parameters. We address this limitation by redesigning the
interfaces (and sometimes the specifications) of the ABETs, in
order to allow us to select their MT and SI. We briefly describe
this redesign for each ABET below—due to space constraints,
we discuss only relevant aspects of each tool design; we refer
the reader to the respective publications for details.

1) Incorporating MT: It is useful to observe that the MT
of a tool is effectively given by the duration of individual
probe streams—this is the duration for which the probe packets
interact with the cross-traffic on the bottleneck link(s) and

observe the AB process. In order to allow us to control the
MT, we modify the tool interface designs as follows:

a) Cprobe/IGI/Fast-IGI: All three of these tools send
several probe streams, each at a uniform rate, in order to
estimate the AB—while Cprobe sends all streams at a high
bit-rate, IGI/Fast-IGI iteratively change the bit-rate of each
stream in order to converge on the AB. The number of packets
sent within each probe stream is typically fixed. In order
to incorporate MT, we make the number of packets (�)
a configurable value that is set such that when the stream
is sent at the desired bit-rate (�) and default packet size
(�) (of 1500 Bytes), the stream duration is equal to MT:
�������	��

������� .

b) Pathload: Like IGI, Pathload also iteratively sends
several probe streams at different bit-rates. However, the
Pathload AB inference logic requires that the number of
packets sent in each probe stream be a perfect square. In order
to incorporate MT, we first compute a rough estimate of �
using the relation: ����������

������� . If this is not a perfect
square, we decrease � by the least amount required to ensure
that it is.5

c) Spruce: Spruce relies on a packet-pair based AB
inference technique, which sends two packets back-to-back in
each probe stream. Unfortunately, this fixes the MT to a small
value. However, due to the small probes and open-loop nature
of Spruce, its run-time is fairly small; often smaller than the
values of MT that may be of interest to us. We exploit this
property to redesign Spruce’s interface—given a desired MT,
we continuously run Spruce several times and then compute
the average of all AB estimations made within a duration of
MT, in order to estimate the AB at that MT.

d) PathChirp: In PathChirp, each probe-stream—also
referred to as a chirp—is an exponentially-spaced stream of �
packets. The inter-packet spacing and � are determined using
three parameters: the lower rate, � , the upper rate, � , and
the spread-factor, � . Specifically, the spacing between packet�

and
���
�

is given by: ���! ����"�$#�%'&), and � is computed
using the relation: �(�)�*�+�$, . In order to incorporate MT,
we first compute the length of a chirp as the following sum
of a geometric series: �����-�� �/. &02143 �5 �/. &063 . Given � and
� , we then select the pair (�/78�) such that the above chirp
length is close to the desired MT.

2) Incorporating SI: The SI of a tool is effectively the
fraction per unit time that is occupied by the probe streams it
sends. If 9 is the gap between successive probe-streams, SI
is given by: :<;:=;?>A@ . This relation can be used to control SI
in open-loop tools such as Cprobe, Spruce,and PathChirp—
specifically, given an SI, the gap is set to: 9B�)

��� &C% 0ED02D .

In closed-loop tools such as Pathload/IGI/Fast-IGI, however,
the construction of a probe-stream is determined by the delays
experienced by the previous probe-stream—these tools, there-
fore, can not send more than one probe-stream per RTT. Thus,
the SI can not be set to a value higher than

���F

� � �G��� ,

5This convoluted way of controlling the MT in Pathload (and in PathChirp,
as described later) highlights the limitation of existing ABET designs.

which is a fairly low value for typical Internet paths. Thus, for
all practical purposes, SI can not be controlled in closed-loop
tools. It is interesting to note, however, that the path RTT is
likely to impact the feedback-loop and, hence, the performance
(especially the run-time) of such tools.

B. Performance Metrics

We characterize the performance of each ABET using two
types of metrics:

� Accuracy-related: Each run of an ABET should yield a
good estimate of the end-to-end AB. In order to quantify
the accuracy of an ABET estimate, we compute its AB
estimation error as the difference between the estimated
AB and the actual AB. The actual AB of a link is
computed as the ratio of the number of bits that traverse
the link during the tool run, to the tool run-time.� Cost-related: We quantify the cost of using an ABET
with several metrics. The run-time is defined as the time
taken by a tool to return an estimate. The faster a tool
runs, the better and valid its AB estimates are. Since
we are relying on a simulation environment, this time
is primarily governed by the number and sizes of probe-
streams and the convergence logic used to estimate AB.
For closed-loop tools, the run-time is also affected by
the path RTT. The probing overhead is defined as the
total amount of network probe traffic sent by the tool
in order to arrive at a single estimate of AB. For large-
scale deployment and use of ABETs, it is important that
they use low amount of probe traffic. The intrusiveness
is defined as the average bit-rate of a tool—this is given
by the ratio of the overhead to the run-time. Since the
run-times of ABETs can differ by orders of magnitude,
it is important to compare the rate at which they inject
probe traffic.
In addition, we study the impact of probe traffic on the
response time of ongoing TCP connections.

We conduct several types of experiments in order to study the
above metrics—we describe these next.

IV. VALIDATION
N2

N1
N0

N3

Tool Traffic
Cross Traffic

Fig. 1. Topology with a Single Bottleneck Link

The accuracy of most ABETs is typically established by
their proponents by running them on links shared by cross-
traffic with a constant bit-rate (CBR). We validate our NS-2
implementations of the selected ABETs by using the network
topology depicted in Figure 1.6 We run CBR cross-traffic
between nodes N2 and N3, and instances of ABETs between
nodes N0 and N1. We vary the cross-traffic load from 100

6Unless stated otherwise, all link capacities and link delays in all of our
topologies are set to ��������� and �
	��
� , respectively, and sufficient buffers
are provisioned to avoid packet losses.

Mbps to 900 Mbps and for each load, we record the AB
estimates from several back-to-back runs of each tool. It is
important to note that all of our evaluations are conducted in
high-speed gigabit networks—most ABET designs have not
been evaluated in such a setting previously.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

M
ea

su
re

d
A

B
 (

M
bp

s)

Actual AB (Mbps)

Fast-IGI
Cprobe

IGI
R-IGI

Pathload
Pathchirp

Spruce

Fig. 2. Validation of ABET Implementations

Figure 2 plots the average of the estimated AB against the
actual AB. We find that Pathload and Spruce are quite accurate
in reporting the AB. PathChirp estimates deviate slightly at
higher values of AB—we run the same set of experiments
using a publicly-available NS-2 implementation of PathChirp
and find that the AB estimates are quite similar to our
implementation. CProbe, IGI, and Fast-IGI do a poor job of
estimating the AB in the high-speed setting simulated. Cprobe
works on the simple logic of sending a stream of packets at
a fairly high rate (given by the bottleneck capacity)—the rate
at which the probe-stream arrives at the receiver is taken as
the estimate of the end-to-end AB. It has been shown in [22]
that the receiving rate in such cases is not a good estimate
of AB. Due to its inaccuracy, we do not use Cprobe for our
subsequent evaluations.

We next investigated the reasons for the poor performance
of IGI. Note that IGI always over-estimates the AB. On
careful examination of the IGI design and implementation,
we discovered a key design factor that was leading to over-
estimation on high-speed network paths: The equation used for
estimating the cross-traffic load (Eq. 3 in [23]) uses the link
capacity as the multiplier—in our understanding, it should be
using the current sending rate as the multiplier. We change
our IGI implementation accordingly to create a new version,
henceforth referred to as R-IGI. Figure 2 also plots the results
of R-IGI validation—we find that R-IGI performs quite well.
In our subsequent experiments, we use R-IGI.

Our implementation of Fast-IGI (validated in Fig 2) also
incorporates the above-mentioned changes. However, it still
leads to high estimation errors when the traffic load is higher
than 500 Mbps. Since most of our subsequent evaluations are
not conducted at such high loads, we include Fast-IGI in our
subsequent evaluations.

V. EVALUATING THE ACCURACY OF ABETS IN DYNAMIC

TRAFFIC CONDITIONS

The validation experiments presented in Section IV also
confirm the high accuracy of several prominent ABETs when
the network traffic load does not change. In reality, this is

seldom the case with loaded Internet links. In order to repro-
duce in our simulations, the dynamic traffic conditions that
characterize real Internet links, we rely on replaying packet-
level traces collected from several Internet links. Specifically,
we collect five 1-hour packet traces (from four different
Internet links) which are summarized in Table II—the traffic
load of these traces ranges from

�����
����	� to
�� �
����	� .
We then use the replay trace module in NS-2 for creating
an exact replica of the link-level packet-arrival process (and
consequently, the AB process) for each trace. In this section,
we evaluate ABET accuracy against this type of cross-traffic.

Trace Traffic Type Average Load
Ibiblio Web server access link 160 Mbps
UNC05 University access link 230 Mbps
UNC28 University access link 358 Mbps

IPLS-CLEV Internet2 backbone link 410 Mbps
IPLS-KSCY Internet2 backbone link 530 Mbps

TABLE II

TRACES USED FOR EVALUATIONS

A. Single Bottleneck Scenario

We first evaluate the tools using the topology of Fig 1, but
with the traces replayed (instead of CBR traffic) as cross-traffic
between nodes N2 and N3. This topology represents paths on
which an ABET is likely to encounter only a single congested
link. We use this setup to study the impact of traffic load, MT,
SI, and RTT on the AB estimation accuracy of different tools.

 0

 50

 100

 150

 200

 250

 300

 350

Ibiblio UNC05 UNC28 IP-CLEV IP-KSCY

E
rr

or
 (

M
bp

s)

Traces

Fast-IGI
R-IGI

Pathload
Spruce

pathChirp

Fig. 3. Tool errors with default parameters

1) Default Tool Configuration: We first run each ABET
against all five traces, using the default configuration of tool
parameters, which dictate the implicit choices of MT and SI—
the default MT for Pathload, PathChirp, R-IGI, Fast-IGI, and
Spruce are roughly: 10 ms, 10 ms, 1 ms, 1 ms, 0.5 ms,
respectively, and the default SI for both Spruce and PathChirp
is 0.1. Each tool is run back-to-back for 300 seconds and the
AB estimation error of each run is computed. Fig 3 plots the
average, and the 5- and 95-percentiles (as error bars), of this
estimation error for each tool and trace used. We observe that:

� The average estimation errors of ABETs are higher
with dynamic cross-traffic than with CBR cross-traffic
(Section IV), and range from 20 - 120 Mbps. Pathload,
PathChirp, and Fast-IGI have similar average estimation
errors, while R-IGI has lower and Spruce has higher
errors.� The estimation errors vary widely around the average.
The variability is least for Pathload and quite high for

Spruce and PathChirp—estimation errors sometimes ex-
ceed 300 Mbps.� For each tool, the AB estimation errors are similar across
the five traces, even though the traffic load in these traces
are quite different. However, it is important to remember
that the highest link utilization represented by these traces
is only 53%—it is not clear if higher loads would impact
estimation errors.

2) Impact of MT, SI, and RTT: The default choices of MT
and SI vary widely across existing ABETs [20]. In order to
compare tool performance in an unbiased manner, we next
systematically control MT, SI, and RTT, and study the impact
on the AB estimation error of each ABET. Specifically, we
select MT from (1, 10, 50, 100 ms), SI from (0.1, 0.3, 0.5)
for open-loop tools, and RTT from 60-300 ms for closed-loop
tools—these values are representative of the diversity found
in existing ABETs and Internet paths [20], [24].

Fig 4 plots the average and 5- and 95- percentiles of the
AB estimation error with the IPLS-CLEV trace—the trends
are quite similar for the other traces and are omitted due to
space constraints. We observe that:

� Increasing the MT improves the accuracy of all ABETs.
This is to be expected—larger MTs imply that a larger
number of probe packets interact with the cross-traffic
and are able to better sample the AB process. However,
the gain in accuracy is most significant at fine time-scales.
The gains are negligible beyond an MT of 50 ms.
The impact of MT on PathChirp is lower than on the
other tools. This is due to the exponential inter-packet
spacing in the probe streams—the number of probes sent
does not increase proportionally with MT.� More importantly, by keeping the MT the same across dif-
ferent tools, the relative performance difference between
the tools changes! Most significantly, Spruce now is the
most accurate, while it was the least accurate with the
default settings of MT.� SI has a negligible impact on the AB estimation accuracy
of the open-loop tools, Spruce and PathChirp. This result
may seem contrary to the observations made in [20] that
high values of SI lead to better sampling accuracy—it
is important to note, however, that the AB estimation
accuracy is also limited by the accuracy of the inference
logic used by the respective tools. Our observations
indicate that increasing the rate of probing the AB process
is not likely to help improve the accuracy of current tools.� Similar to SI, RTT has no impact on the AB estimation
accuracy of the closed-loop tools, Pathload and R-IGI—
we omit the detailed plots due to space constraints.

B. Multiple Bottlenecks

1) Bottleneck Location—Different Tight and Narrow Links:
The inference logic of several ABETs—including IGI and
Spruce—is based on the premise that on the path for which
AB is to be estimated, the tight as well as narrow link are the
same. In practice, this may not be the case with many Internet
paths—indeed, an ISP access link that is shared among a

 0

 50

 100

 150

 200

 250

 300

1 10 50 100

E
rr

or
 (

M
bp

s)

Measurement Time Scale (msec)

Fast-IGI
R-IGI

pathChirp
Spruce

Pathload

 0

 50

 100

 150

 200

 250

 300

0.1 0.3 0.5 60 msec

E
rr

or
 (

M
bp

s)

 Sampling Intensity Round Trip Time

Fast-IGI
R-IGI

pathChirp
Spruce

Pathload

(a)IPLS-CLEV: Impact of MT (SI=0.1, RTT=60 ms) (b)IPLS-CLEV: Impact of SI (MT=10 ms)
Fig. 4. Impact of MT, SI, and RTT

N2

N1
N0

N3

666 Mbps

Tool Traffic

TCP−Replay Cross Traffic

R1 R3R2

Fig. 5. Different tight and narrow links

 0

 50

 100

 150

 200

 250

 300

IPLS-CLEV IPLS-KSCY Two Tight Links

E
rr

or
 (

M
bp

s)

Traces

Fast-IGI
R-IGI

Pathload
Pathchirp

Spruce

Fig. 6. Performance with multiple bottleneck links (MT=50ms, SI=0.1)

large user population may have a lower AB than the last-
mile narrow link for many broadband users. In order to study
ABET performance on such paths, we simulate the topology
of Fig 5. The 666 Mbps link between the routers R2 and R3 is
the narrow link (all other links have a 1 Gbps capacity). The
ABETs run between the nodes N0 and N1. We replay traces
between nodes N2 and N3 in order to ensure that link R1-R2 is
the tight link for the tool traffic—for this, we use two traces:
IPLS-CLEV (410 Mbps) and IPLS-KSCY (530 Mbps). We
compute the actual end-to-end AB in any given time interval
as the minimum of the AB on links R1-R2 and R2-R3. We
use this to compute the AB estimation error for each tool run.
Fig 6 plots the average and the 5- and 95-percentiles of the
AB estimation errors observed from several back-to-back tool
runs, with MT of 50 ms, and SI of 0.1. We observe that the
error of PathChirp and Spruce increases by a factor of 2-3,
compared to the scenario of Fig 1, while the performance of
other ABETs is not impacted much. With this change, the
relative rankings of Spruce and PathChirp changes and these
now have the highest estimation errors.

N2

N0

N3

Tool Traffic

TCP−Replay Cross Traffic

N5

N1

666 Mbps

N4

R1 R3 R4R2

Fig. 7. Single narrow link; two tight links

2) Multiple Bottleneck—Two Potential Tight Links: Most
ABET designers implicitly (and often, explicitly) assume the
existence of only a single congested (bottleneck) link on the
concerned path. It is conjectured that current ABETs might
underestimate end-to-end AB in the presence of multiple
bottleneck links [25]. In order to study this scenario, we
simulate the topology of Fig 7. We replay the IPLS-CLEV
trace between N2 and N3, and the IPLS-KSCY trace between
nodes N4 and N5. The ABETs are run between nodes N0 and
N1. With this setup, the tools encounter one narrow link (R2-
R3), and two potential tight links (R1-R2 and R3-R4)—on an
average, the latter is the “tighter” link; however, the tool traffic
experiences queuing at both links.

We compute the actual end-to-end AB as the minimum of
the AB on links R1-R2 and R3-R4. We run each ABET several
times with MT of 50 ms and SI of 0.1. Fig 6 plots the average
and the 5- and 95-percentiles of the AB estimation errors
of different tools. On comparison to the other plots on the
same figure, we observe that the accuracy of Pathload, R-IGI,
and Fast-IGI is not significantly impacted by the presence of
multiple tight links. However, the accuracy of PathChirp and
Spruce further degrades and these are the most inaccurate.

VI. EVALUATING THE COSTS OF ABETS

A. Quantifying tool costs

Our evaluation so far considers only the AB estimation
accuracy of ABETs. We next quantify the cost of measuring
AB by computing the overhead, run-time, and intrusiveness
(defined in Section III) of each tool run for all experiments
described so far. In the interest of space, we present results
only for the topology of Fig 1—the trends are similar for the
other topologies and traces.

a) Overhead: Fig 8 (a), (b) plot the average and the 5-
and 95-percentiles of the overhead for each tool at different
SI and with MT of 1 and 50 ms. We observe that:

 10000

 100000

 1e+06

 1e+07

0.1 0.3 0.5

O
ve

rh
ea

d
(B

yt
es

)

Sampling Intensity

 0.001

 0.01

 0.1

 1

 10

0.1 0.3 0.5

T
im

e
(s

ec
)

Sampling Intensity

 0.1

 1

 10

 100

 1000

0.1 0.3 0.5

In
tr

us
iv

en
es

s
(M

bp
s)

Sampling Intensity

pathChirp(1)
pathChirp(50)

Spruce(1)
Spruce(50)

(a) Overhead of open-loop tools (c) Run-time of open-loop tools (e) Intrusiveness of open-loop tools

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

240 120 60

O
ve

rh
ea

d
(B

yt
es

)

Round Trip Time (msec)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

240 120 60

T
im

e
(s

ec
)

Round Trip Time (msec)

 10

 100

 1000

240 120 60

In
tr

us
iv

en
es

s
(M

bp
s)

Round Trip Time (msec)

R-IGI(1)
R-IGI(50)

Fast-IGI(1)
Fast-IGI(50)
Pathload(1)

Pathload(50)

(b) Overhead of closed-loop tools (d) Run-time of closed-loop tools (f) Intrusiveness of closed-loop tools

Fig. 8. Costs of ABETs with the Ibiblio trace — refer to (e) and (f) for legends (numbers in parenthesis indicate the MT in ms).

� For any given MT, PathChirp, R-IGI, and Fast-IGI have
the least overhead. The overhead of each run of Pathload
is larger by more than an order of magnitude and can be
as high as a giga-byte.� Tool overhead increases with MT. While the increase is
linear for most tools, it is not for PathChirp. This is
because PathChirp uses an exponentially-spaced packet
stream—increasing the stream duration, therefore, in-
creases the number of packets only sub-linearly. Con-
sequently, while the overhead of Pathload increases from
50 MB to 2.5 GB as the MT increases from 1 to 50 ms,
the overhead of PathChirp increases from 0.5 MB to only
0.75 MB.� SI and RTT have no impact on the overhead of most tools.
The overhead is dictated by the size and number of probe
streams sent—the same number of probe-streams are
needed to arrive at an AB estimate, irrespective of these
quantities. For Spruce, however, the overhead increases
with SI—this is an artifact of the fact that we are using a
large number of tool runs in order to incorporate SI into
its AB estimates.
b) Run-time: Fig 8 (c), (d) plot the average and the 5-

and 95-percentiles of the run-time for each tool at different SI
and with MT of 1 and 50 ms. We observe that:

� Spruce is the fastest tool; this is true in spite of the fact
that we aggregate several tool-runs in order to get an
estimate at the desired MT.
Pathload is the slowest tool, taking 10-100 seconds to
return an AB estimate. R-IGI takes 1-10 seconds and
PathChirp takes a few seconds (with its typically config-
ured MT). Fast-IGI is roughly 5 times faster than R-IGI.� Increasing the MT results in a proportional increase in
the run-time of all tools. For Spruce, however, this is an

artifact of the way we are incorporating MT into the AB
estimates yielded by it.� The run-time of closed-loop tools is proportional to the
path RTT, which characterizes the feedback delay of these
tools.� As SI increases, the run-time for PathChirp decreases.
This is because open-loop tools such as PathChirp rely on
sending and observing a fixed number of probe streams—
larger is the SI, faster would these streams be sent.
SI has no impact on the run-time for Spruce—this is,
however, an artifact of the way we incorporate MT into
the Spruce estimates.� The run-times of most tools are predictable—they do not
vary significantly around the average.
c) Intrusiveness: Fig 8 (e), (f) plot the average and the 5-

and 95-percentiles of the intrusiveness for each tool at different
SI and with MT of 1 and 50 ms. Recall that intrusiveness is
given by the ratio of the overhead to run-time of a tool. We
observe that:

� All closed-loop tools are quite intrusive and can temporar-
ily congested high-speed links. The run-times suggest that
tools like Pathload can induce such congestion for several
seconds.
Spruce is also quite intrusive—it sends back-to-back
probe packets at the line rate. However, since its run-
time is small, it is unlikely to induce congestion for long
durations (unless it is run several times). PathChirp is the
most non-intrusive tool.� The closed-loop tools—Pathload, R-IGI, and Fast-IGI—
have very similar intrusiveness. This may seem surprising
given that both the run-times and overheads of these tools
vary by nearly two orders of magnitude. However, it is
important to note that all of these tools rely on a feedback

loop and iteratively search for the AB—consequently,
these operate at time-units that are RTT long. Both R-
IGI and Pathload use the concept of self-loading streams
and, consequently, their per-RTT overhead (which is the
intrusiveness) is similar.� As MT increases, the intrusiveness of closed-loop tools
increases proportionally. This is to be expected; the per-
RTT overhead of these tools is given by the size of each
probe-stream, which is proportional to the MT.
Increasing MT decreases the intrusiveness of PathChirp.
As mentioned before, while the run-time of PathChirp
increases linearly with MT , its overhead increases only
sub-linearly due to the exponential nature of the probe
stream. The intrusiveness, consequently, decreases.
MT has no impact on Spruce—however, this is also
an artifact of the way we incorporate MT into its AB
estimates.� Increasing SI increases the intrusiveness of open-loop
tools. This is to be expected, as a larger number of probe
streams are sent per unit time as a result of increasing
SI.� Intrusiveness of closed-loop tools increases as the RTT
decreases. This is to be expected as the per-RTT overhead
remains the same.

We conclude that in terms of the cost metrics, the tool that
is likely to run quickly, while not perturbing ongoing traffic
much seems to be PathChirp; the cost of Pathload, R-IGI, and
Fast-IGI seems to be the highest.

B. Impact on Responsive Cross-Traffic

TCP is the dominant transport protocol used by most
Internet applications [26]. TCP uses congestion-control mech-
anisms to reduce the data sending rate on detecting network
congestion. A key issue in the wide-scale deployment of
ABETs is that of how adversely do these tools impact the
performance of applications that rely on such responsive
transport protocols. In this section, we study this issue.

Unfortunately, the trace replay methodology used in Sec-
tions V and VI-A is not suitable for studying this issue—it
recreates only the link-level packet-arrival process and does
not incorporate TCP behavior. In particular, it does not model
the impact of queuing delays and losses on the subsequent
packet transmission behavior of a TCP connection. Recent
efforts have focused on developing traffic-generation tools that
also incorporate the responsive behavior of TCP—Tmix [27]
is one such tool. It takes as input a link-level packet trace
(such as those summarized in Table II), and for each TCP
connections that appears in the trace, it derives the RTT and
the application-level data generation behavior (including user
think times). Recently, an NS-2 version of Tmix has been
developed [28], which takes this derived connection descriptor
as input and emulates per-connection application bots with
similar RTTs and data-generation behaviors.

We use this version of Tmix in the topology of Fig 1, in
which the nodes N2 and N3 now each emulate a cloud of
servers and clients that instantiate connections between these

two nodes. Different per-connection RTTs are simulated using
the delay-box environment [29] of NS-2 and the router buffer
sizes are limited to 100 MSS-sized packets to help emulate
packet losses (even without the ABETs). The connections to
be simulated are derived from a real Internet access link and
have an average traffic load of 300 Mbps.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

C
D

F

Response Time (sec)

No Tools
Fast-IGI

Pathload
pathChirp

Spruce
R-IGI

Fig. 9. CDF of response times with default parameters

Tmix measures and reports the per-connection response
time—the time taken for the connection to transfer all data
between the two end-points. In order to assess the impact
of ABETs on the simulated TCP connections, we run the
tools continuously between nodes N0 and N1 and observe the
impact on the distribution of connection response times. Each
tool has an SI of 0.1, an MT of 50ms, and an RTT of 240 ms.
Fig 9 plots this distribution for experiments conducted with
each tool and without any tools. We find that:

� PathChirp has no noticeable impact on connection re-
sponse times. As seen in Section VI-A, PathChirp has a
fairly low intrusiveness—it does not cause much queue
build-up on the bottleneck link.� All of the other tools can significantly impact the response
times of TCP connections. Of these, Spruce and R-IGI
increase the connection response times for long connec-
tions by a factor of 2-3. For instance, the 75-percentile
response time without any tool is a little over 1 s, while
with Spruce and R-IGI , the 75-percentile response times
are 1.7 s and 2.5 s, respectively.
Note that while Spruce had one of the highest measures
of intrusiveness, it does not fare among the worst in
impacting connection response times. Its packet steams
are too small (two packets) to sustain congestion long
enough to inflict packet losses.� Pathload and Fast-IGI can significantly impact the re-
sponse times of all connections. While 75% of connec-
tions have a response time less than 1 s in the absence
of any tool, nearly 65% and 80% of connections have a
response time larger than 1 s in the presence of Pathload
and Fast-IGI, respectively.

We conclude that is an application needs to run an ABET
repeatedly on a given Internet path, it should use PathChirp.

Such an application should never use Pathload or Fast-IGI as
these are likely to significantly impact connection response
times.

VII. CONCLUDING REMARKS

In this paper, we conduct a comprehensive empirical evalu-
ation of existing algorithmic techniques used for measuring
end-to-end AB. We study both the accuracy and costs of
deploying ABETs. Our study reveals several insights into the
relative performance of ABETs, in the absence of limitations
of implementation technology. A salient feature of our study is
that we incorporate the impact of two key probing parameters,
the measurement timescale and the sampling intensity.

Some of our key observations are:
� Modifying existing ABETs to allow the choice of MT

and SI is not straightforward (and is sometimes not even
possible). Given the impact of these quantities on AB
estimation, it is important for new ABETs to explicitly
incorporate these.� The accuracy of most ABETs can be improved by using
an MT of 50 ms. In particular, Spruce uses a fairly small
MT by default—the ranking of Spruce changed from the
least accurate tool to the most accurate tool when its MT
was made comparable to that of other tools.
SI and path RTT have negligible impact on the accuracy
of existing tools.� While Spruce is the among the most accurate ABETs for
paths with a single bottleneck link, its accuracy worsens
for paths with multiple bottleneck links.� PathChirp has the lowest overhead among existing
ABETs, especially for large values of MT. Even when
PathChirp is run continuously on a path, it has virtually
no impact on the response times of TCP connections
sharing the same path.
Spruce is the fastest tool, but has the highest value
of intrusiveness. But it does not adversely impact of
the response times of responsive TCP connections to
the same extent as the other tools. Pathload and Fast-
IGI can significantly worsen the response times of TCP
connections, if these are run repeatedly on a path.

REFERENCES

[1] C. Dovrolis, R. Prasad, and M. Jain, “Socket Buffer Auto-Sizing for
High-Performance Data Transfers,” Journal of Grid Computing, vol.
1(4), 2004.

[2] R. L. Carter and M. E. Crovella, “On the network impact of dynamic
server selection,” Computer Networks, vol. 31, no. 23-24, pp. 2529–
2558, 1999.

[3] A. Shriram and J. Kaur, “Identifying bottleneck links using distributed
end-to-end available bandwidth measurements,” First ISMA Bandwidth
Estimation Workshop, December 2003.

[4] N. Hu and P. Steenkiste, “Evaluation and Characterization of Available
Bandwidth Probing Techniques,” IEEE JSAC Internet and WWW Mea-
surement, Mapping, and Modeling, 2003.

[5] M. Jain and C. Dovrolis, “Pathload: an available bandwidth estimation
tool,” in PAM, 2002.

[6] V. Ribeiro, “pathChirp: Efficient Available Bandwidth Estimation for
Network Path,” in PAM, 2003.

[7] J. Strauss, D. Katabi, and F. Kaashoek, “A Measurement Study of
Available Bandwidth Estimation Tools,” in Proceedings of the ACM
SIGCOMM Internet Measurement Conference ’03, Miami, Florida,
October 2003.

[8] R. Carter and M. Crovella, “Measuring bottleneck link speed in
packet-switched networks, Tech. Rep. 1996-006, 15, 1996. [Online].
Available: citeseer.ist.psu.edu/carter96measuring.html

[9] N. Hu and P. Steenkiste, “Estimating available bandwidth using
packet pair probing,” 2002. [Online]. Available: citeseer.ist.psu.edu/
hu02estimating.html

[10] G. Jin, “netest-2,” 2004, http://www-didc.lbl.gov/NCS/netest.html.
[11] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end

probing and analysis method for estimating bandwidth bottlenecks,” in
Global Internet Symposium, November 2000.

[12] J. Navratil, “ABwE: A Practical Approach to Available Bandwidth,” in
PAM, 2003.

[13] J. Alberi, A. McIntosh, M. Pucci, and T. Raleigh, “Overcoming precision
limitations in adaptive bandwidth measurements,” in 3rd New York Metro
Area Networking Workshop (NYMAN), September 2003.

[14] G. Jin and B. Tierney, “System capability effects on algorithms for net-
work bandwidth measurement,” in Proceedings of the ACM SIGCOMM
Internet Measurement Conference, October 2003.

[15] A. Pasztor and D. Veitch, “Pc based precision timing without gps,”
in SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems. New York, NY, USA: ACM Press, 2002, pp. 1–10.

[16] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido,
M. Fomenkov, and K. C. Claffy, “Comparison of public end-to-end
bandwidth estimation tools on high-speed links.” in PAM, 2005, pp.
306–320.

[17] F. Coccetti and R. Percacci, “Bandwidth measurements and router
queues,” Instituto Nazionale Di Fisica Nucleare, Trieste, Italy, Tech. Rep.
INFN/Code-20 settembre 2002, 2002, http://ipm.mib.infn.it/bandwidth-
measurements-and-router-queues.pdf.

[18] F. Monetesino-Pouzols, “Comparative analysis of active bandwidth
estimation tools,” in Proceedings of Passive and Active Measurement
Workshop (PAM), April 2004.

[19] X. Liu, K. Ravindran, and D. Loguinov, “Evaluating the potential
of bandwidth estimators,” in 4th New York Metro Area Networking
Workshop (NYMAN), September 2004.

[20] A. Shriram and J. Kaur, “Empirical study of the impact of sampling
timescales and strategies on measurement of available bandwidth,”
in Proceedings of Passive and Active Measurement Workshop (PAM),
March 2006.

[21] “Network simulator-2 ns2 (http://www.isi.edu/nsnam/ns/).”
[22] M. Jain and C. Dovrolis, “Ten fallacies and pitfalls on end-to-end avail-

able bandwidth estimation,” in Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, October 2004.

[23] N. Hu and P. Steenkiste, “ Evaluation and characterization of available
bandwidth probing techniques,” in IEEE Journal on Selected Areas in
Communications, Aug 2003.

[24] J. Aikat, J. Kaur, D. Smith, and K. Jeffay, “Variability in TCP round-trip
times,” in Proceedings of the ACM SIGCOMM Internet Measurement
Conference, October 2003.

[25] M. Jain and C. Dovrolis, “Pathload: A measurement tool for end-to-end
available bandwidth,” 2002. [Online]. Available: citeseer.ist.psu.edu/
jain02pathload.html

[26] K. Thompson, G. J. Miller, and R. Wilder, “Wide-area internet traffic
patterns and characteristics,” IEEE Networks, vol. November/December,
1997.

[27] F. Hernandez-Campos, F. D. Smith, and K. Jeffay, “Generating realistic
tcp workloads,” Proceedings of CMG, pp. 273–284, December 2004.

[28] M. Weigle, P. Adurthi, F. Hernandez-Campos, K. Jeffay, and F. Smith,
“Tmix: A tool for generating realistic application workloads in ns-2,”
ACM SIGCOMM Computer Communication Review, vol. 26, no. 3, pp.
67–76, 2006.

[29] “Per-flow delay and loss in ns-2 with delaybox,”
http://dirt.cs.unc.edu/delaybox/.

