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Abstract—TCP congestion-control is fairly inefficient in achiev-
ing high throughput in high-speed and dynamic-bandwidth
environments. The main culprit is the slow bandwidth-search
process used by TCP, which may take up to several thousands
of round-trip times (RTTs) in searching for and acquiring the
end-to-end spare bandwidth. Even the recently-proposed “high-
speed” transport protocols may take hundreds of RTTs for this.

In this paper, we design a new approach for congestion-control
that allows TCP connections to boldly search for, and adapt to,
the available bandwidth within a single RTT. Our approach relies
on carefully orchestrated packet sending times and estimates
the available bandwidth based on the delays experienced by
these. We instantiate our new protocol, referred to as RAPID,
using mechanisms that promote efficiency, queue-friendliness,
and fairness. Our experimental evaluations on gigabit networks
indicate that RAPID: (i) converges to an updated value of
bandwidth within 1-4 RTTs; (ii) helps maintain fairly small
queues; (iii) has negligible impact on regular TCP traffic; and
(iv) exhibits excellent intra-protocol fairness among co-existing
RAPID transfers. The rate-based design allows RAPID to be
truly RTT-fair.

I. INTRODUCTION

“Congestion Control” can be easily listed among the top-
10 networking problems of the past two decades. And indeed,
why not? A congestion-control protocol has no simple task—
it has to adaptively discover the end-to-end spare bandwidth
available to a transfer in a quick and non-intrusive manner.
Simultaneously achieving these properties turns out to be
a significant challenge, especially for an end-to-end proto-
col that receives no explicit feedback from routers/switches.
Indeed, the dominant end-to-end transport protocol, TCP
NewReno [1], has been shown to be abysmally slow in
discovering the spare bandwidth, especially in high-speed
networks and on paths that experience dynamic bandwidth.

Several alternate protocols have been proposed to address
this limitation. However, as discussed in Section II, most
of these protocols struggle to remain non-intrusive to other
network traffic while achieving speed—consequently, these
designs are still quite sluggish in probing for spare bandwidth.
In particular, we show that even the so-called “high-speed”
protocols may take hundreds-to-thousands of round-trip times
(RTTs) to converge to a stable sending rate in gigabit networks.

In this paper, inspired by recent advances in the field of
bandwidth estimation, we propose the idea that the slug-
gishness of transport protocols can be eliminated, without
overloading the network, if we limit the impact of probing
for spare bandwidth. In particular, we rely on carefully or-
chestrated packet sending times and use the relative delays
experienced by the packets, to probe for an exponentially-wide
range of rates within a single RTT—the impact of probing
is limited by ensuring that the average sending rate is not
high. We use this idea to design a novel approach, referred
to as RAPID Congestion Control (RAPID), that exhibits three

avail-bw, AB available bandwidth
ABest the AB estimate returned by the receiver
p-stream multi-rate probe stream

N the number of packets in a p-stream
P packet size

ravg the average sending rate of a p-stream
ri the sending rate of the (i + 1)th packet in a p-stream
m the ratio of ri+1

ri
for all i ∈ [1, N − 1]

τ the duration over which an increase in AB is adopted

TABLE I
NOTATIONS USED IN THE PAPER

significantly desirable characteristics. Most notably, it reduces
the time it takes a transport protocol to acquire freshly-
available bandwidth by more than an order of magnitude.
Equally significantly, by relying on a delay-based congestion-
detection strategy, the protocol ensures (i) that it is friendly to
transfers that use regular loss-based TCP, and (ii) that packet
queues at bottleneck links are small and transient. Finally,
due to its speed, RAPID also exhibits excellent intra-protocol
fairness properties at small-to-medium timescales, even in
network environments with heterogeneous RTTs.

Table I summarizes several notations used throughout the
paper—we use the terms “packets” and “segments” inter-
changeably. In the rest of this paper, we describe the slug-
gishness of existing protocols and present our key insight
in Section II. We describe the RAPID protocol mechanisms
in Section III and present performance evaluation results in
Section IV. We conclude in Section V.

II. PROBLEM FORMULATION

A. The Problem: Long Feedback Loop

To understand the sluggishness issue, consider an end-to-
end congestion-control protocol in steady-state—the protocol
continuously operates a 2-step AB-search cycle: in the search-
step, it successively probes for (by sending at) larger data
sending rates. For each rate probed at, it examines performance
feedback such as packet loss and high end-to-end delays that
arrives after an RTT-worth of delay—this helps it estimate
when the most recent sending rate was higher than the avail-
bw.1 When a higher rate is reached, the reduction-step of the
protocol reduces the sending rate to a lower value and switches
back to the search-step. The speed with which a single loop
of this 2-step cycle is executed fundamentally determines how
quickly a protocol can acquire and adapt to changes in the
avail-bw.

Note that the search-step can not be executed at a timescale
smaller than an RTT—performance feedback can arrive no
earlier than this time. Unfortunately, most existing protocols

1Different protocols differ in how the successive probing rates relate to the
current rate, as well as in the performance measures they use as feedback.
Table II summarizes these differences for some prominent protocols.
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Protocol Search-step Feedback-metric Experimentally-observed time for acquiring:
(per-RTT increase in probe-rate) AB = 1 Gbps AB = 2.5 Gbps AB = 8 Gbps

NewReno Additive Increase Packet Loss ∼ 12,000 RTTs ∼ 29,900 RTTs ∼ 95,580 RTTs
HighSpeed [2] Multiplicative Increase Packet Loss ∼ 250 RTTs ∼ 600 RTTs ∼ 1,610 RTTs
CUBIC [3], [4] Additive/Binary-search Increase Packet Loss ∼ 100 RTTs - ∼ 693 RTTs

FAST [5] Additive Increase Packet Delays (& Loss) ∼ 30 RTTs ∼ 42 RTTs ∼ 70 RTTs
RAPID Exponential Increase Delays (& Loss) ∼ 4 RTTs ∼ 4 RTTs ∼ 4 RTTs

TABLE II
TIME TAKEN TO ACQUIRE A MULTI-GIGABIT AB BY DIFFERENT PROTOCOLS (SEE SECTION IV-A)

execute this step at timescales much larger than this. This is
because, primarily driven by the goal of not overloading the
network, all previously-proposed protocols adopt two limiting
design features:

1) Only a single (larger) sending rate is probed for over a
round-trip time.
The protocol probes for a candidate sending rate and
then waits for performance feedback, which arrives after
an RTT-worth of delay. A new and larger sending rate
(probeRate) is then probed for only during the next RTT
time interval. This is true for all previous protocols,
including recent ones, such as HighSpeed TCP, FAST,
Scalable, CUBIC, and PCP [2], [3], [4], [5], [6], [7], [8].
This legacy design decision is perhaps motivated by the
fact that unless the single rate is deemed acceptable (not
too high), other rates should not be probed for.

2) The new rate probed for (probeRate) is not significantly
larger than the previous sending rate (prevRate).
This feature is adopted primarily to prevent a single
transfer from overloading the network, in case the pre-
vious rate was quite close to the avail-bw. Existing
protocols differ in how the new probing rate relates
to the previous rate—for most protocols, the ratio of
probeRate/prevRate is only slightly larger than 1 in
high-speed networks. For instance, these two quantities
are additively related in NewReno and FAST, as in:
probeRate = prevRate + α*MSS/RTT, where MSS is
the maximum segment size allowed on the path, and
α is set by default to 1 and 200 in the two protocols,
respectively. Scalable, HighSpeed, and CUBIC rely on
a multiplicative relation as in: probeRate = γ*prevRate;
however, γ is again restricted to small values.2

In addition to these two limitations, protocols that rely only
on packet losses as an indicator of congestion suffer from yet
another problem—these protocols may have to reach a sending
rate much higher than the avail-bw (and oscillate several times
around it) before stabilizing to it. This is because a loss-based
protocol would need to fill up buffers in the bottleneck routers
and suffer a loss before it can detect that it has acquired (and
surpassed) the avail-bw.

As a result of these design limitations, most protocols—even
the recent ones designed for high-speed networks [2], [7], [5],
[8], [3], [4]—take a fairly long time for converging to the avail-
bw. Table II lists, for different protocols, the experimentally-

2BIC [4] relies on a combination of additive-increase and a binary search
based method after the AB is discovered for the first time—here, the ratio
probeRate/prevRate depends on the past probing history.

observed times taken by a single transfer for acquiring a spare
capacity of 1 Gbps or higher (say, after experiencing a packet
loss).3 We find that even the fastest of high-speed protocols
can take hundreds of RTTs for converging to the avail-bw.

B. Key Insight: Limit Probing Volume
We believe that all of the above design limitations can be

done away with, without overloading a network or inducing
buffer overflow, if one limits the volume (and impact) of
probing for a larger sending rate. In fact, we claim that a
protocol can boldly probe for an exponentially-wide range
of candidate sending rates within a single RTT, if it: (i)
uses carefully-orchestrated inter-packet gaps, and (ii) relies on
relative packet delays for estimating avail-bw. Any associated
overloading impact can be avoided by using the following
guidelines:

1) Achieve a rapid AB search: Probe for an exponentially-
wide range of candidate sending rates within a single
RTT. However, send extremely small probes (of one
packet each) at each candidate rate in order to limit to
very small timescales the overloading impact of the large
rates.

2) Avoid persistently overloading the network path: Ensure
that the average rate of packet transmission does not
exceed the most-recently discovered estimate of avail-
bw. This implies that some of the rates in the above-
suggested exponential range will be smaller than this
estimate, and some will be larger.

We use these ideas to design a new protocol, referred to
as RAPID Congestion Control (RAPID), and show that it
can adapt to fairly large changes in AB within 1-4 RTTs.
Furthermore, RAPID can avoid persistently large router queues
due to its primary focus on avoiding network overload. The
benefits of the protocol are especially significant in dynamic
bandwidth environments and high-speed networks.

It is important to note that several protocols such as Vegas,
FAST, and PCP also rely on packet delays (instead of packet
losses) for detecting congestion; however, none of these pro-
tocols exploit inter-packet gaps to probe for a wide range of
rates within a single RTT.4

We next present the basic mechanisms used in RAPID.

3These experiments were run on the ns-2 simulator, and a packet size of
1040 B was used—see Section IV-A for details. The ns-2 implementation of
CUBIC failed to run at 2.5 Gbps.

4The rate-based PCP protocol [6] also adopts the idea of “limiting the
probe volume”. However, it probes for only a single larger rate per RTT and
has an AB-search speed similar in magnitude to that of existing protocols. In
all fairness, the protocol primarily focusses on minimizing response times in
under-utilized networks—it has not even been evaluated for large transfers in
high-speed networks.
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Fig. 1. Illustration of a p-stream (here, ti = P
ri

and tavg = P
ravg

)

III. RAPID CONGESTION CONTROL

Unlike many congestion-control protocols, RAPID em-
ploys a multi-rate based transmission policy and relies on
relative packet delays for estimating avail-bw. While the
RAPID design is motivated by the primary goal of shrinking
the timescales at which congestion-control operates, several
equally-important goals are given due consideration in the
design process [9]. Most significantly, a RAPID network
strives to (i) maintain a low buffer occupancy at congested
router links, (ii) achieve a fair sending rate when several
RAPID transfers co-exist, and (iii) remain friendly to regu-
lar low-speed TCP transfers. Below, we describe the basic
mechanisms used for achieving each of these.

A. Acquiring AB Within a Few RTTs

1) Rate-based packet transmission at the sender: When
there is sufficient data to send, a RAPID sender continuously
transmits data in logical groups of N packets each, referred
to as a multi-rate probe stream (p-stream).5 The i-th packet in
a p-stream is sent at a rate of ri−1; this also implies that
the sending times of packets i and i − 1 differ by P

ri−1
,

where P is the size of packet i (see Figure 1). The sender
explicitly controls/manages the average sending rate of a p-
stream, referred to as ravg , which is given by:

ravg =
N − 1

1
r1

+ 1
r2

+ . . . + 1
rN−1

(1)

Further, for all i > 1, ri > ri−1.6

2) AB-estimation analysis at the receiver: We observe the
inter-packet gaps in a p-stream at the receiver, and use these
for estimating avail-bw in the same manner as the PathChirp
bandwidth estimation tool [10]. Recent evaluations have shown
that PathChirp estimates avail-bw with good accuracy in multi-
hop settings, while incurring the least overhead among existing
tools [11].

Like PathChirp, when a RAPID receiver receives all packets
of a p-stream, it computes the AB by looking for increasing
trends in the intended inter-packet spacings. This analysis
relies on the concept of self-induced congestion. Intuitively,
if qi is the queuing delay experienced at a bottleneck link by

5Unlike window-based protocols, the sender does not stall, waiting for
acknowledgments. Also, if data for only k < N packets is available, a p-
stream of k packets is sent instead. Note that if k ≤ 2, the sender sends these
packets at a uniform rate of ravg .

6The gap between the first packet of a p-stream and the last packet of the
previous p-stream is set to ravg . This can also be stated as: r0 = ravg .
Typically, r0 > r1.

the i-th packet in a p-stream, then:

qk = 0, if rk ≤ AB (2)
qk > qk−1, otherwise (3)

Thus, if i∗ is the first packet in a p-stream such that ri∗−1 ≥
AB, then each of the packets [i∗, . . . , N ] will queue up behind
its previous packet at the bottleneck link (since ri > ri−1,
for all i > 1)—due to this “self-congestion”, each of these
packets will experience a larger one-way delay (and a larger
increase in the pre-set inter-packet gap) than its predecessor.
Thus, the smallest rate ri∗−1 at which the receiver observes
an increasing trend in the inter-packet gaps can be used to
compute an estimate of the current avail-bw as: ABest =
ri∗−1.7 The actual analysis uses several heuristics to account
for bursty cross-traffic—we refer the reader to [10] for details
and the precise formulation.

The receiver encodes the value of ABest obtained from
the most recent p-stream in the acknowledgments sent to the
sender.

3) Transmitting in a non-overloading, responsive manner:
When the sender receives an ABest value, it updates the ravg

of the next p-stream as: ravg = ABest. Thus, the transfer
acquires an average sending rate equal to the estimated avail-
bw within an RTT. The sender then selects an appropriate
set of rates, r1, . . . , rN−1, for the next p-stream such that the
average of these is equal to ravg , as computed in Eqn (1).

The above mechanism helps simultaneously achieve two de-
sirable properties. First, by setting ravg equal to the estimated
avail-bw, RAPID helps to ensure that the average load on the
bottleneck link does not exceed its capacity—this is crucial
for maintaining small and transient queues at the bottleneck
links. Second, by selecting a set of rates which includes values
larger (rN−1) as well as smaller (r1) than ravg , a p-stream is
able to simultaneously probe for both increase and decrease in
the current end-to-end avail-bw—this greatly helps the RAPID
sender in quickly detecting and adapting to changes in AB.

4) Setting [r1, . . . , rN−1] (speeding up the search process):
Each p-stream probes for the range of sending rates given by:
[r1, . . . , rN−1]. Note that for a given ravg and N , there are
infinite choices for this set of rates, such that they satisfy Eqn
(1). However, the larger is the ratio rN−1

r1
, the faster would be

the AB-search process—this is because a single p-stream now
probes for a wider range of rates.

So for instance, while these rates could be additively-related,
a faster search will be obtained by using a multiplicative-
relation as in:

ri = mi−1 ∗ r1, 1 < i < N (4)

RAPID adopts the above relation. Given ravg , Eqns (1) and
(4) can be used to compute r1 as:

r1 =
mN−1 − 1

(N − 1)(m− 1)mN−2
ravg (5)

7If no increasing trend is detected in a p-stream, rN−1 is taken as the
AB estimate. Also, if the increasing trends starts at the first or second packet
(i∗ ≤ 2), r1

2
is returned as the AB estimate.
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# of RTTs ravg Rates that can be probed for
RTT 0 x0 0.45x0 − 3.22x0
RTT 1 3.22x0 1.5x0 − 10.7x0
RTT 2 10.7x0 4.7x0 − 33.4x0
RTT 3 33.4x0 15x0 − 108x0
RTT 4 108x0 48x0 − 346x0
RTT 5 346x0 156x0 − 1115x0

TABLE III
AB-ACQUIRING SPEED BY A RAPID SENDER

r2, . . . , rN−1 can then be computed from Eqns (4) and (5).
a) Selecting m and N : For a given N , two conflicting

considerations guide the choice of m. A larger value of m
would also result in a larger ratio of rN−1

r1
, and would improve

the speed as well as adaptivity of the AB-search process. A
smaller m, on the other hand, would result in a smaller ratio
of ri+1

ri
—this would result in a finer rate granularity with

which the avail-bw is probed. A coarse-granularity estimate of
avail-bw would prevent a collection of RAPID senders from
efficiently utilizing the bottleneck link.

The selection of N is also faced by two opposing consider-
ations. For a given m, a larger value of N would improve the
AB-search range ( rN−1

r1
). However, a larger p-stream would

also be more intrusive to cross-traffic (more packets would be
sent at a rate larger than ravg) at bottleneck links.

RAPID adopts the default values of N = 30 and m =
1.07 (7% granularity in rates probed for). These values have
been selected after controlled experimentation under diverse
topology and traffic settings—we do not present this sensitivity
analysis here due to space constraints. Details can be found
in [12].

The above choices of m and N yield: r1 ≈ 0.45 ∗ ravg and
rN−1 ≈ 3.22 ∗ ravg . This enables a RAPID sender to probe
for freshly-available spare bandwidth spanning several orders
of magnitude within a few RTTs (see Table III).

5) Achieving a Quick-yet-Slow Start: RAPID faces a simi-
lar dilemma as all congestion-control protocols—how to obtain
the initial ABest (or the initial ravg) for a new transfer? The
main concern here is that the initial choice of ravg may be
too high for a given network path. We address this issue by
being only as aggressive as the TCP Slow-Start mechanism
(which is also adopted by most other protocols). Specifically,
in slow-start, a RAPID sender sends only as many packets in
an RTT as would a TCP transfer—fortunately, the ability of a
p-stream to probe for multiple rates within an RTT makes the
RAPID slow-start terminate much earlier than other protocols.

In the slow-start phase, a RAPID sender sends only a
single p-stream over an RTT. Further, we initialize N = 2,
and double the value of N over successive RTTs, up to a
maximum value of 16.8 For constructing the p-streams, we use
a multiplicative factor of m = 2 throughout slow-start—thus,
the granularity with which a RAPID sender probes for avail-
bw during slow-start is coarse, but is the same as all existing

8Note that this process is no more aggressive than the slow-start adopted by
most protocols, which multiplicatively increases the number of packets sent
over an RTT in exactly the same manner (and start with an initial value of
1 or 2 segments). Also note that the slow-start threshold is usually set to a
much higher value than 16 segments.

# of RTTs N Range of rates probed for
RTT 1 2 0 - 100 Kbps
RTT 2 4 100 - 800 Kbps
RTT 3 8 800 Kbps - 102 Mbps
RTT 4 16 102 Mbps - 3342 Gbps

TABLE IV
SPEED OF RAPID SLOW-START

protocols (that double their window size every RTT) [1], [13].
Unlike most protocols, however, the AB-search speed is quite
high—since it relies on an AB-estimation analysis, a RAPID
transfer in slow-start discovers avail-bw much earlier than any
other protocol.

For a new RAPID transfer, we initialize ravg to a small
value (100Kbps)—this implies that, in the first RTT, the
transfer sends N = 2 packets at a rate of r1 = 100Kbps.
If the receiver returns ABest < rN−1, we exit slow-start; if
not (which implies, ABest = rN−1), we double the value of
N , set r1 = ABest, and send the next p-stream.9 This process
is repeated till the receiver returns an ABest value less than
rN−1. Following this, we switch to the steady-state RAPID
mode, in which m = 1.07 and N = 30.

Table IV illustrates the number of RTTs that a single RAPID
transfer would take to probe for different amounts of avail-bw
in slow-start—an RAPID sender can probe for more than 1
Tbps in just 4 RTTs, while being no more aggressive than TCP
slow-start! In Section IV, we show that existing protocols take
much longer.

6) Dealing With Packet Losses: Like in NewReno, packet
losses are recovered using the Retransmission Timeout and
Fast Retransmit/Recovery mechanisms. After loss recovery,
the sender reduces ravg by a multiple of 0.5 and resumes
sending of p-streams.

B. Achieving Fairness Among Co-existing RAPID Transfers

The RAPID design should justifiably raise fairness concerns
when multiple RAPID transfers share a bottleneck link: how
do the p-streams of different transfers interact—do the trans-
fers obtain a fair share of the avail-bw? In this section, we
address two sources of unfairness that have been identified in
the literature [14], [15].

1) RTT-unfairness: Most window-based congestion control
protocols have been shown, both experimentally and analyt-
ically, to suffer from RTT-unfairness—transfers with a long
RTT get a lower throughput than short-RTT transfers [14],
[15], [5]. This happens because window-based protocols up-
date their sending rates once per RTT—in heterogeneous RTT
environments, this RTT-dependence results in differences in
the rate updating frequency as well as rate increments, and
results in a bias against long RTT transfers [15].

Fortunately, the rate-based design of RAPID is not influ-
enced by the value of RTT—a RAPID sender continuously
send p-streams, for both long and short RTT transfers. The
rate-updating frequency (once per p-stream) as well as rate
increment (determined by ABest) are independent of the
RTT—consequently, and by design, RAPID truly does not

9Note that in slow-start, RAPID sets r1 (and not ravg) equal to ABest.



5

suffer from RTT-unfairness. Our experiments in Section IV-B
confirm this.

2) Bias due to rate-proportional feedback frequency: As
described so far, however, the RAPID design is likely to be
unfair for a different reason. The rate at which a RAPID
sender receives ABest values (once per p-stream), is directly
proportional to the current value of ravg and is given by:
ravg

N∗P , where P is the packet size. Consequently, a RAPID
transfer that has achieved a larger sending rate will receive
more frequent notifications of any spare capacity that becomes
available, than a co-existing transfer with a lower ravg—
thus, the former is likely to attain an even higher sending
rate than the latter. In fact, such differences in the rate at
which feedback arrives have been shown to result in unfair
throughput allocations even in window-based protocols [15].

To ensure that co-existing RAPID transfers achieve a fair-
share of the avail-bw, we explicitly equalize the rate at
which RAPID senders converge to the ABest values they
receive. For this, we select a parameter τ that represents the
common (large) time interval over which any RAPID sender,
independent of its sending rate, would converge to an increase
in avail-bw. Specifically, when a sender receives an ABest
that is larger than its current ravg , it updates ravg as:

ravg = ravg +
l

τ
(ABest− ravg) (6)

where l is the duration of the most-recent p-stream, which
is given by: l = N∗P

ravg
. The above filter is used to repeatedly

update ravg for all subsequent p-streams, till ravg converges to
ABest. The effect of this filtering mechanism is that it would
take a RAPID sender roughly τ time units (or τ

l p-streams)
for converging to an updated value of ABest—for a transfer
with a small value of ravg , l

τ will be close to 1 and the sender
will immediately adopt the ABest as its new ravg . Thus, even
though the feedback frequency depends on the sending rate of
a RAPID transfer, the rate-increment frequency does not.10

Our experiments in Section IV-B show that this mechanism
helps achieve excellent fairness among RAPID transfers. τ is
set by default to 200 ms.

C. Remaining TCP-Friendly

RAPID, like FAST, is quite non-intrusive to regular low-
speed TCP NewReno transfers. The prime reason for this is
that these protocols rely on increased packet delays for detect-
ing network congestion, whereas TCP reduces its sending rate
only on witnessing packet losses. When a router carrying both
TCP and RAPID transfers gets congested, the RAPID transfers
would respond to the congestion (and reduce their sending
rates) much earlier than the TCP transfers would. This would
ensure that the performance of the low-speed TCP transfers is
not significantly impacted due to the presence of high-speed
RAPID transfers.

We next experimentally evaluate how well the above mech-
anisms achieve the stated goals for RAPID.

10For stability reasons, we do not use the above filter when the avail-bw
decreases—details are provided in [12].

Fig. 2. Experimental Topology

IV. EXPERIMENTAL EVALUATION

There are at least three types of concerns that the RAPID
design is likely to raise in the minds of a reader: does a
short p-stream really help RAPID in accurately estimating
avail-bw, especially in high-speed networks? RAPID seems
aggressive in the rates it probes for—is it really friendly to
router queues and competing low-speed TCP traffic? And, how
do the AB-estimation processes of co-existing RAPID transfers
interact—don’t they interfere with each other (and do they get
a fair share of the avail-bw)? In this section, we address these
concerns by experimentally evaluating RAPID. We have also
experimentally studied: (i) sensitivity of RAPID to parameter
settings, (ii) fairness among multiple high-speed protocols, and
(iii) RAPID performance in multi-hop settings [12]; for space
constraints, however, these are omitted from this paper.

We use the ns-2 simulator [16] for our evaluations. We
have implemented RAPID in ns-2.33 and have re-used the
NewReno code base for dealing with loss detection and re-
covery. We also use publicly-available ns-2 implementations of
three other protocols for comparison, namely HighSpeed TCP,
CUBIC, and FAST TCP [17]—the first two are loss-based
protocols with fairly different window-growth functions; FAST
is a high-speed version of the delay-based Vegas protocol.11

For several of our simulations, we rely on a simple dumbbell
topology in which multiple sources are aggregated at a single
bottleneck link (R1–R2 in Fig 2)—this bottleneck link is the
only link shared by co-existing transfers. All links other than
the bottleneck link have a transmission capacity of 10 Gbps—
the bottleneck link capacity is set by default to 1 Gbps, but is
reduced for some experiments. All links are provisioned with
a delay-bandwidth product (DBP) worth of buffers, where the
delay is the average end-to-end propagation delay for transfers
(specified for each experiment), and the bandwidth is that of
the bottleneck link (also specified). We set the maximum size
of each network-layer packet to 1040 B.

The main performance statistics we are interested in are
throughput obtained by transfers instantiated between the
sender and receiver nodes as well as the queue build-up
on the bottleneck link. We sample each of these statistics
periodically at regular intervals of 50 ms each. In what follows,
we summarize our experiments and observations.

11We rely on the default parameter settings configuration for all protocols,
other than for FAST. FAST exhibited severe oscillations for the experiments
of Section IV-A when run with default ns-2 parameters—for the evaluations
presented here, we have instead relied on bottleneck capacity-specific param-
eters used in sample test scripts supplied along with the implementation [17]
(experiments with other parameter settings are included in [12]).
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Fig. 3. Performance of Slow Start on a 1 Gbps Network

A. Speed of Acquiring Spare Bandwidth

There are at least two types of scenarios in a high-speed
network where the ability of a congestion-control protocol
to acquire spare bandwidth quickly is crucial. The first is
during slow-start, when a transfer begins without any advance
knowledge of the avail-bw, and the second is when the avail-
bw suddenly changes by a large amount (perhaps due to the
arrival of additional traffic). In our first set of experiments,
we compare the performance of RAPID with that of other
protocols by simulating examples of both of the above sce-
narios. For all of the experiments in this section, we simulate
a 1Gbps bottleneck link (R1–R2 in Fig 2) and set the end-to-
end propagation delay to 100ms.

1) Slow-start in High-speed Networks: In the first set of
experiments, we simulate a single transfer from a sender node
to a receiver node (see Fig 2). Each experiment uses a different
underlying congestion-control protocol. Fig 3(a) plots as a
function of time, the throughput obtained by the transfer with
different protocols. Fig 3(b) plots the queue buildup observed
over time at the bottleneck router. We find that:

• HighSpeed TCP takes the longest time (250 RTTs) for
acquiring a sending rate of 1 Gbps. And once it acquires
that sending rate, being a loss-based protocol, it starts
filling up the bottleneck queues.12

CUBIC is faster, initially acquiring 1 Gbps after merely
10 RTTs—but it also fills up the bottleneck buffers as

12We also ran this experiment with the NewReno protocol, which took
around 12000 RTTs to acquire the 1 Gbps avail-bw.

quickly, later leading to packet losses and a drop in
throughput. It eventually stabilizes to 1 Gbps after 110
RTTs. Being a loss-based protocol, it also maintains
nearly full buffers at the bottleneck link.

• FAST TCP is less aggressive in filling up router queues
and is able to acquire avail-bw faster—within 30 RTTs.

• RAPID is significantly faster than all other protocols,
acquiring the 1 Gbps bandwidth in just 4 RTTs—this is
exactly as was predicted by the design in Section III-A5.
Furthermore, the single RAPID transfer induces very low
queuing (less than 20 packets) on the bottleneck router.

Table II summarizes the slow-start delays of these protocols
for bottleneck link (R1–R2) capacities of 1Gbps, 2.5Gbps, and
8Gbps—the performance of most protocols worsens at higher
speeds, while RAPID scales as expected.

2) High-speed Networks with Dynamic AB: In the second
set of experiments, we simulate a network for 500 seconds,
and introduce 4 constant-bit-rate (cbr) traffic streams on the
bottleneck link according to the following schedule: cbr-
1 exists from 50-400 seconds, cbr-2 exists from 100-150
seconds, cbr-3 exists from 250-350 seconds, and cbr-4 exists
for a small duration from 460-462 seconds. Each cbr stream
has a bit-rate of 200 Mbps. The spare bandwidth left on the
network is plotted in the top-row plots of Figs 4(a)-(d) using
a faint dotted line.

We use this setup to run a set of experiments in which
we introduce a single long-lived transfer at time 1 second,
and respectively, run it over CUBIC, HighSpeed, FAST, and
RAPID. The throughput obtained by the transfers and the
router queue sizes are plotted, respectively, in the top and
bottom rows of Fig 4. We find that:

1) HighSpeed and CUBIC, which are both loss-based pro-
tocols, experience heavy packet losses when the avail-bw
reduces suddenly (and even when it does not change).
This is because a loss-based protocol induces persistent
queuing in the bottleneck buffers—any sudden decrease
in AB overflows the buffers causing multiple packet
losses. When this happens, the throughput of the transfer
drops significantly and each protocol then takes tens-to-
hundreds of RTTs for regaining throughput.
HighSpeed and CUBIC are also slow in acquiring spare
bandwidth when the avail-bw increase suddenly (for
example, at 150s, 250s, and 350s)—this is simply due
to the slow AB-search speed of these protocols. Note
that if these protocols already have a large number of
packets in the router buffers, they may be able to utilize
spare bandwidth immediately—loss-based protocols are
known to trade-off low latency for high throughput
performance.

2) Delay-based FAST maintains smaller router queues in
steady-state. However, when the avail-bw decreases sud-
denly, FAST is unable to react quickly and causes buffer
overflow.

3) The RAPID transfer maintains very low queuing and
is able to avoid packet losses, even when the avail-
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Fig. 5. Intra-protocol Fairness

bw decreases suddenly. More importantly, though, the
protocol is able to very quickly acquire additional spare
bandwidth that becomes available—and it does so with-
out maintaining large queues in routers!

B. Intra-protocol Fairness

We next evaluate fairness when multiple RAPID transfers
share the bottleneck link. Our objective is to specifically
evaluate fairness in heterogeneous RTT environments.

1) Dynamics Among Co-existing Transfers: Our first set
of experiments is inspired by a similar experiment presented
in [5], which evaluates the ability of a new transfer to acquire
fair share of bandwidth from a pre-existing transfer—in that
paper, FAST was shown to be better than other protocols
in achieving fairness (when compared against HighSpeed as
well as BIC). A bottleneck capacity of 800Mbps was used in
that experiment—we use the same by setting the transmission
capacity of R1–R2 in Fig 2 to 800Mbps.

For the experiment, we simulate three transfers—the first
lasts from 0-900s and has an RTT of 200ms, the second lasts
from 180-720s and has an RTT of 100 ms, and the third
lasts from 360-540s and has an RTT of 150ms. Fig 5 plots
the throughput obtained by the three transfers with different
underlying protocols.

We find that both HighSpeed and CUBIC (latter not plotted

here to improve visualization of Fig 5) can be quite unfair
in the throughput allocated among the three transfers—the
second transfer (which has the smallest RTT) dominates over
the other two transfers. Although FAST significantly improves
upon this behavior, it still exhibits unfairness. This has also
been observed in [5].

Fig 5(c) shows that RAPID allocates similar throughput to
all transfers, irrespective of their RTTs—RAPID thus does not
suffer from RTT-unfairness. Furthermore, the second transfer
is able to acquire a fair share even though the pre-existing
first transfer had a high throughput of 1 Gbps; this illustrates
that the filter mechanism added in Section III-B successfully
eliminates from RAPID any bias due to rate-proportional
feedback frequency.

Fig 5(c) also illustrates that the convergence of the transfers
to a fair share occurs at a fairly small timescale—we study the
fairness timescale in more detail below.

2) Fairness Among Large Number of RAPID Transfers:
We next evaluate how well the RAPID intra-protocol fairness
scales when a larger number of connections are aggregated.
For this, we conduct experiments in which a 1Gbps bottleneck
link is shared by n long-lived RAPID transfers for 600
seconds—we vary n from 2 to 100 across experiments. The
RTTs of the n transfers are selected uniformly randomly from
two ranges: 60-80 ms and 135-165 ms. The start-times of the
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connections are selected uniformly randomly between 0-20s.
Starting at 20 seconds, the time-series of throughput

obtained by each transfer are logged at several different
timescales ranging from 500ms–128s. For each timescale,
and for each logging instance of the associated time-series,
we compute the Jain Fairness Index [18] of the throughput
achieved by the n transfers. Fig 6 plots the median, 10th, and
90th percentiles (latter plotted as error bars) of the distribution
of the fairness index, as a function of the timescale at which
the throughput data is observed (for n = 2, 24, 50, 100).

We find that RAPID ensures excellent fairness (median fair-
ness index > 0.8) among a large number of co-existing trans-
fers with heterogeneous RTTs—this is true even at timescales
as small as 500ms. Further, even the 10-percentile values of
the indices are fairly high, indicating that it is quite rare for
even transient “unfair” episodes—in which some connections
obtain much less throughput than others—to occur.

C. Co-existence with Low-speed TCP Traffic

Finally, we evaluate the impact of high-throughput RAPID
transfers on a realistic mix of regular TCP transfers that co-
exist on a bottleneck link. For this, we use the publicly-
available TMIX traffic generator code for ns-2, which gener-
ates an empirically-derived TCP traffic mix that is representa-
tive of TCP traffic aggregates observed on production Internet
links [19]. TMIX simulates application-level socket-writing
behavior and runs over the TCP protocol—it, consequently,
generates response TCP traffic. Our objectives are to study: (i)
how a high-throughput transfer might impact the performance
of connections in such a traffic mix, and (ii) how effectively
can a high-throughput transfer utilize the avail-bw with such
dynamic (and realistic) cross-traffic.

We use TMIX to generate TCP traffic at an average offered
load of 70Mbps for 30 minutes and drive it through a bot-
tleneck link (R1–R2 in Fig 2) of 100 Mbps—the bottleneck
buffers are set to 750 packets (based on the RTT of the L
transfer described below). For the set of TCP connections
simulated in our TMIX experiment, Fig 7(a) plots the distri-
butions of per-connection RTTs—we find that these are fairly
diverse (ranging from 10ms LANs to long-distance transfers).
Fig 7(b) plots the (complementary) distribution of the number
of bytes transferred in each connection—the traffic mix is
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typical of that found on the Internet (a majority of small
mice connections, but a few heavy elephants). All statistics
presented below are collected from roughly the middle 20
minutes of the experiments (to exclude the ramp-up and ramp-
down behavior of the traffic generator).

We first simulate only the TMIX traffic and observe the
aggregate throughput and queue sizes at the bottleneck router
at a timescale of 1s—these are plotted respectively in Fig 8(a)
and 8(b). We find that although the average offered load of
the TMIX aggregate is 70Mbps, the traffic is fairly bursty;
the short-term load can vary from 50-100Mbps. This causes
the router queues to vary rapidly from 0∼80 packets (and
occasionally to larger amounts). Thus, the TMIX aggregate
represents bursty cross-traffic that causes the avail-bw on the
bottleneck router link to vary dynamically.

We then re-run the TMIX experiment and add a single
bulk transfer (henceforth, referred to as L) that shares the
bottleneck link and has an RTT of 60ms—we repeat this
experiment three times with L running over HighSpeed, FAST,
and RAPID, respectively. In each of these experiments, we
also log the throughput observed by L, the queue sizes at
the bottleneck router, as well as the aggregate throughput
of the bottleneck router. Figs 8(c), 8(e), and 8(g) plot the
throughput of L observed with HighSpeed, FAST, and RAPID,
respectively. Figs 8(d), 8(f), and 8(h) plot the router queue
sizes, respectively. We find that:

1) Fig 8(d) shows that the loss-based HighSpeed transfer
fills up (and overflows) the router queues at a frequent
rate—consequently, the responsive TCP connections in
the TMIX cross-traffic suffer packet losses and reduce
their sending rates. The HighSpeed L transfer is, thus,
able to obtain a throughput much higher than the spare
bandwidth available in the TMIX-only experiment.

2) The L transfer using FAST TCP maintains an almost
constant throughput of around 13 Mbps, when run-
ning along with TMIX cross-traffic. This suggests that
FAST is unable to adjust to and effectively utilize the
dynamically-varying avail-bw on the bottleneck link.
Fig 8(f) shows that router queues in this experiment,
although much smaller than with HighSpeed, are large.

3) The RAPID-based L transfer is able to utilize the spare
bandwidth fairly effectively—the fast AB-search speed
of RAPID is crucial in achieving this behavior. Fig 8(h)
shows that RAPID does do while increasing the router
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Fig. 8. Performance with TMIX Cross-traffic

queue buildup by only a small amount. The bottleneck
link is nearly-100% utilized throughout this experiment.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we propose a novel protocol, RAPID, that
reduces the timescales at which congestion-control operates by
orders of magnitude—this enables the protocol to efficiently
utilize spare bandwidth in high-speed and dynamic bandwidth
environments. RAPID does so while: (i) providing excellent
intra-protocol fairness in heterogeneous RTT environments,
and (ii) ensuring friendly co-existence with regular TCP trans-
fers and router queues.

Perhaps one of the key challenges to deploying RAPID in
multi-gigabit networks is related to the high-precision packet
time-stamping and packet-spacing (of the order of a few
microseconds) that it would need to rely on. However, note
that the RAPID receiver does not directly use packet receive

times, but simply relies on detecting increasing trends in the
inter-packet gaps—thus requirements on the accuracy of time-
stamping at the receiver are somewhat relaxed. Furthermore,
the inter-packet gaps at the sender can be better controlled by
limiting buffering in the network interface card. Consequently,
we believe that existing high-end PC platforms should be
able to support RAPID for up to 1 Gbps speeds. We are
also exploring the use of FPGA-based network cards to
enable a RAPID implementation to scale up to multi-gigabit
capabilities.

We are currently also conducting a formal analysis of
protocol properties such as fairness, efficiency, and stability,
especially in scenarios where multiple RAPID senders probe
the network concurrently. In addition, we are designing mech-
anisms to help auto-tune RAPID as it scales up to multi-gigabit
and multi-hop networks.
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