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Abstract—Web page classification is useful in many domains—
including ad targeting, traffic modeling, and intrusion detection.
In this paper, we investigate whether learning-based techniques
can be used to classify web pages based only on anonymized
TCP/IP headers of traffic generated when a web page is visited.
We do this in three steps. First, we select informative TCP/IP
features for a given downloaded web page, and study which
of these remain stable over time and are also consistent across
client browser platforms. Second, we use the selected features
to evaluate four different labeling schemes and learning-based
classification methods for web page classification. Lastly, we
empirically study the effectiveness of the classification methods
for real-world applications.

Index Terms—Traffic Classification, Web Page Measurement

I. INTRODUCTION

Why Classify Web Pages? The World Wide Web is the most
popular application on the Internet and HTTP accounts for
80% of Internet traffic [1], [2]. Studying what types of web
pages are being downloaded by clients has tremendous utility
in several domains—we give four specific examples below.

• Profiling the content type of a web page: The content
of web pages can typically be classified/categorized into
genres such as Finance, Shopping, News, Education,
Automobiles, etc [3], [4]. Knowledge of the genre of
web pages downloaded by a given user can be used for
gauging user interest, which is invaluable for delivering
personalized content and targeted advertisements [5]. For
instance, service providers rely on deep packet inspection
to assess what type of content consumers are interested
in, for the purpose of delivering ads [6].

• Profiling the usage of video streaming (application type):
Video streaming is now reported to occupy nearly 50%
of network bandwidth, and consumption is expected
to grow [7], [8]. The ability to distinguish between
bandwidth-hungry video and non-video streams at crit-
ical traffic aggregation points, can help facilitate better
planning and control. For instance, a campus network
manager may be able to prevent network abuse and/or
rate-limit video streams destined for student dorms; re-
searchers may want to build profiles of enterprise video
traffic to facilitate traffic modeling and forecasting stud-
ies; or perhaps Internet service providers may even want
to limit resources per business interests [9].
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• Profiling the usage of mobile devices: The average num-
ber of devices per Internet user is estimated to grow
to 5 by 2017 [10]—most of these are mobile devices.
The ability to identify web page downloads targeted for
mobile devices can help in: (i) building profiles of mobile
web usage within an enterprise (for capacity planning,
modeling, and forecasting purposes), and (ii) delivering
personalized content and advertisements that are cus-
tomized for constrained displays, power, and connectivity.

• Profiling the navigation-style for web browsing: The way
users navigate through web pages can be classified as
accessing either a landing page (home page), clickable
content (non landing pages), or with the increasing use
of search and recommendation engines, search results.
Such a navigation-based classification can be useful for
identifying network misuse. For instance, web crawlers
are misused for purposes of web page scraping [11].
Recent studies have shown that the pattern of web page
navigation from a given end-point can help identify the
corresponding malicious bots [12], [13].

In this paper, we ask the question: can web page downloads
be classified along dimensions such as the above, using only
anonymized TCP/IP headers that appear in the corresponding
network traffic?

Why Consider Only Anonymized TCP/IP Headers? Entities
that do not have direct access to client-side or server-side
end-points—such as Internet service providers or enterprise
network administrators—have to instead monitor access links
and conduct deep-packet inspection of the network traffic gen-
erated by client-server interactions [14], [6], [15]. For instance,
signature- and keyword-based approaches that scan the HTTP
headers and payload, can be used for identifying each of the
above web page types—video streams, navigation patterns,
content types, as well as mobile-targeted web pages [14], [4].

Recent studies have shown, however, that nearly 86%
of traffic today is obfuscated (either encrypted or com-
pressed) [16], which makes deep packet inspection practi-
cally infeasible—this situation is likely to worsen with the
advent of default encryption in HTTP 2.0 [17]. Furthermore,
strong Internet privacy legislation dictates that Internet Service
Providers and network managers may access no more than
anonymized1 TCP/IP headers in the traffic [18]. This is a sig-

1Anonymized headers refer to those in which the IP addresses of the clients
are changed to sequences that can not be traced back to the originals.



nificant challenge because most current monitoring approaches
rely on application-specific information.2 It is, consequently,
imperative to understand: can anonymized TCP/IP headers be
mined to gather information for the purpose of classifying the
corresponding web page downloads? In this paper, we conduct
the first study that relies on learning-based classification to
address the above question, in the context of the four labeling
dimensions mentioned above.

Our Contributions. Prior work on traffic classification pri-
marily focuses on application/protocol classification (e.g., FTP,
HTTP, peer to peer, mail, etc) [19], [20], [21], [22]. However,
classifying traffic based on the type of web pages has never
been considered before—this is a challenging domain due
to the tremendous diversity of web pages and browsers as
well as the significant complexity of multi-flow web page
downloads [23]. More fundamentally, it is not even clear if the
type of a web page would influence the TCP/IP features at all.
We study this issue by making the following key contributions:

1) Data collection: We use five different modern browser
platforms to conduct and analyze downloads of 3345
web pages, all belonging to the top-250 most popular
web sites. Overall, we analyze more than 100,000 web
page downloads. For each download, we process TCP/IP
data as well as collect the ground-truth about the type
of the corresponding web page, based on the four
classification schemes.

2) Feature extraction and selection: We process the TCP/IP
headers to derive 216 features, including temporal and
multi-flow features as well as their statistical derivatives.
We then conduct a systematic analysis of these features
to identify robust and discriminatory features—to the
best of our knowledge, this is the first work that argues
for, and explicitly considers consistency (across differ-
ent browser platforms) and stability (over time) while
selecting robust features.

3) Web page classification: Using the selected robust fea-
tures, we then evaluate how effectively can these help
classify web page downloads according to each of
the four diverse labeling schemes. We find that while
mobile-targeted and video downloads can be KNN-
classified with more than 90% accuracy, the genre-
and navigation-based categories can be classified with
a somewhat lower accuracy.

4) Applicability of classification: We then evaluate the
impact of our work on two application domains. The first
is that of traffic modeling, in which we study the distri-
butions of (i) traffic modeling parameters, as well as (ii)
properties of the generated traffic—we find that these are
statistically indistinguishable from distributions derived
using ground-truth labels.
The second application is that of building user browsing
profiles—we find that the genre-preference of a random

2Note that the content in anonymized TCP/IP headers directly reveals
nothing more about the application, other than the fact that it is using HTTP!
Even the HTTP headers themselves are unavailable!

synthetic Internet user can be reconstructed with more
than 80% accuracy, based on the classified labels.

In the rest of this paper, we present our data collection
methodology in Section II; feature selection, classification,
and applicability study in Sections III-V; related work in
Section VI; and our conclusions in Section VII.

II. DATA COLLECTION METHODOLOGY

Learning-based classification requires correctly-labeled
ground-truth data for training the classifiers. Below we de-
scribe our methodology for selecting, labeling, and download-
ing web pages, as well as extracting TCP/IP features.3

Which Web Pages? We focus on the top 250 web sites
from [3]—studies suggest that nearly 99% of web traffic
originates from just these 250 web sites. We browse each
web site to collect a list of URLs for their landing pages, as
well as non-landing pages, including search results and media
content.4 Overall, we include a list of 3345 web pages.
Ground-truth Labels We also assign labels to each web page
(Table I), according to the four labeling schemes as follows.
AGL: A content-genre based label is assigned to each web
page, using the top-level Alexa genre for the corresponding
web site (the 4 most common labels are listed in Table I).
WNL: A navigation-based label is assigned based on whether
the web page was the landing page, a search-result page
(obtained by entering random keywords in a search box),
or a clickable content page (including news articles, video
content, and social networking pages).5 VSL: The video-
streaming (vs. non-video streaming) label is assigned to web
pages where a video has played—this includes samples from
top video streaming providers like netflix, youtube, and hulu.
The non-video category also includes traffic sources that are
fairly bandwidth-intensive, including radio sites (soundcloud
and pandora), and file transfer sites with large files (dropbox
and thepiratebay). TDL: The final set of labels correspond to
mobile-optimized or traditional pages. We only include mobile
web pages that also have a traditional web page that serves the
same content—e.g., a superbowl article on bleacherreport.com
that also appears on its mobile web site.
Trace Collection The TCP/IP trace generated by the down-
load of a given web page may differ across client browser
platforms [27]. In order to make our classification robust to
the browser platform, we load each of the 3345 pages using
5 different modern browsers, and study the consistency of
each TCP/IP feature across these. The 5 browsers—Internet

3It is important to note that web page classification using TCP/IP traces will
first require us to identify which set of TCP flows correspond to a given web
page download—such web page boundary detection has received prominent
interest in recent literature [24], [25], [26] and is beyond the scope of this
paper. We ask: once web page boundaries have been detected, how effectively
can the anonymized TCP/IP headers be used to classify the type of the web
page?

4Our methodology does not capture the fact that some websites present
different landing pages to users who are logged in (e.g., facebook.com)—
study of such “personalized” web pages is left for future work.

5There may be several homepages per web site—e.g., www.yahoo.com and
www.finance.yahoo.com. We classify each of these as landing pages.



TABLE I
DISTRIBUTION OF CLASS LABELS

Labeling Scheme Class Names # Web Pages
Video Streaming Video page 169 (5.05%)
(2 Classes) Non-Video page 3176 (94.95%)
Targeted Device Traditional page 2481 (74.17%)
(2 Classes) Mobile optimized page 864 (25.83%)
Alexa Genres Computers 821 (24.54%)
(18 Classes) Shopping 375 (11.21%)

Business 363 (10.82%)
News 320 (9.57%)
Other 14 classes 1466 (43.86%)

Web page Clickable content page 1505 (44.99%)
Navigation Search result page 1226 (36.65%)
(3 Classes) Landing page 614 (18.36%)

Explorer (IE) v 9.0.8112.16502, Firefox v 23.0.1, Google
Chrome v 29.01547.66m, Safari v 5.1.7, and Opera v 12.16—
are run on a modern Windows 7 desktop.6

Web pages are also updated over time [25]—in order to
study which TCP/IP features remain stable over time for a
given web page, we also repeat the above 3345×5 downloads
6 times each, over a period of 20 weeks (Mar 10 - July 24,
2014). Overall, this results in 100,350 web downloads. TCP/IP
traces are automatically collected for each download as:

1) Start packet capture tool
2) Start a browser with a web page URL as an argument
3) Close the browser and packet capture tool after 120

seconds
4) Clear the local DNS resolver and browser cache
5) Go to Step 1 using a new URL

Quantitative Feature Extraction Access to the TCP/IP traffic
traces allows us to extract many bidirectional traffic features—
such as the number of PUSH flags or the size of HTTP objects
transmitted in a TCP connection—that are not available from
other sources such as netflow logs.7 Our methodology also
allows us to add multi-flow features that span the multiple TCP
transfers characterizing a given page download—for instance,
the number of TCP connections, number of distinct IP-pairs
used, flow inter-arrival times, and total number of packets
and bytes transmitted. We also include fine-scale temporal
features such as round-trip time (RTT) and inter-epoch (inter-
object) arrival times. We also include statistical derivatives—
such as the minimum, maximum, and several percentiles—of
the occurrence of a given feature. In total, we extract 216
quantitative features for processing (listed in [29]).

III. FEATURE SELECTION

The success of classification models relies critically on
the selection of informative, uncorrelated, and robust fea-
tures [30]. Prior traffic classification studies have focused
on the first two properties by using automated correlation-
based feature selection algorithms (e.g., [19])—robustness of
features has not been considered though. Given the diversity
and dynamism present in the Internet (and especially in the

6Apple does not support Safari on Windows. Thus, the version of Safari
used for this study is outdated compared to the version used on OSX.

7We use the method from [28] to identify application data units in TCP/IP
traces—these generally correspond to objects.

World Wide Web), this is a rather serious issue [31], [32], [33]!
Specific to our goal, it is important to consider the impact of
at least two factors:8

• Time: Modern web pages may change several times
a day [31]. It is important to study how this impacts
the stability over time of the TCP/IP features generated
when the page is downloaded—indeed, classifiers that are
trained on features that are stable over time are more
likely to perform well on unseen data and do not need to
be retrained often.

• Browsers: Client browser platforms differ in their config-
urations and may generate different TCP/IP features when
downloading the same web page (e.g., depending on the
extent to which they use pipelining). It is important to
study which features are consistent (similar) across dif-
ferent browsers—else, classifiers trained on one browser
will not perform well on unseen data that may have been
generated by a different browser.

In order to incorporate the above aspects, we use a 3-step
process for feature selection: (i) identify a set of most infor-
mative features for web page classification; (ii) group the most
informative features into subsets of highly correlated features;
and (iii) select the most stable (over time) and consistent
(across browsers) features from each of the above subsets.

We elaborate on these steps below. In what follows, for each
feature i, let M i

n,b,t represent an N ×B×T matrix populated
with the measurements of feature i across the N (= 3345)
web pages, B (= 5) browsers, and T (= 6) repeated web page
downloads over time.
Identifying and Grouping Informative Features For selecting
informative features, we first minimize noise due to browser
selection or time of measurement by computing the average of
the B×T measurements of a feature for a given web page. We
then use the RELIEF method [30] to rank the 216 averaged
features according to their ability to classify the 3345 web
pages. We select the top 40 (∼ top 20%) most informative
features for each of the four labeling schemes—of the total
160 features, we find that only 63 are unique (many features
were informative for multiple labeling schemes).

We then group the 63 features into correlated subsets. For
this, we use the pearson correlation, ρ, to identify 10 groups of
highly correlated features (listed in [29]). The features within
each group have ρ ≥ 0.75, whereas the correlation between
features from different groups is typically less than 0.3.
Feature Stability Next, we quantify how stable these 63
features are over time. For each feature i, to control for the
effect of different client browsers, we define an N×T matrix:
Si

n,t =
∑

b w(b)M i
n,b,t, where w(b) ∈ [0, 1] represents the

usage fraction for browser b (obtained from [36]), which helps
ensure that our analysis is representative of real-world web

8In this work, we do not consider the impact of client location. Some
recent studies show that location does not significantly impact basic web
page features (for Firefox) [34], or that TCP/IP features that are informative
for application protocol classification do not vary significantly across loca-
tion [35]—we leave a comprehensive evaluation of the impact of this factor
for web page classification for future work.



traces.
We then estimate the stability over time for each feature i

and web page n by computing the average percent deviation
metric defined as:

DSi
n = 100 ·

∑T
t=1

∣∣Si
n,t − µi

n

∣∣
Tµi

n

(1)

where, µi
n =

P
t Si

n,t

T . For each feature i, we then extract the
median, 10- and 90-percentile values of the deviation DSi

n

observed across the 3345 web pages—these values are plotted
in Fig 1(a). The features are first grouped according to the 10
correlated subsets, and then sorted according to the median
value of DSi

n. [29] lists these features in the same order.

10 20 30 40 50 60
0

20

40

60

80

100

TCP/IP Features Index
(a)

A
ve

ra
ge

 P
er

ce
nt

 D
ev

ia
tio

n

 

 

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10

10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

TCP/IP Features Index
(b)

A
ve

ra
ge

 P
er

ce
nt

 D
ev

ia
tio

n

 

 

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10

Fig. 1. Stability (a) and Consistency (b) of Features in Groups 1-10

Feature Consistency We use a similar formulation to esti-
mate the consistency across browsers for each feature i and
web page n by computing a corresponding average percent
deviation as:

DCi
n = 100 ·

∑B
b=1 w(b)

∣∣∣Ci
n,b − νi

n

∣∣∣
νi

n

(2)

where, Ci
n,b =

P
t Mi

n,b,t

T is an N × B matrix, each element
of which represents the average measurement of feature i
when browser b downloads web page n repeatedly; and
νi

n =
∑

b w(b)Ci
n,b. Fig 1(b) plots the median, 10- and

90-percentile values of DCi
n observed across the 3345 web

pages—the x-axis uses the same feature index as Fig 1(a).
Selection of Robust Features We use Fig 1 to select the
most time agnostic and browser agnostic features from each
of the 10 groups of correlated features [29]. By comparing
these two plots we find that the median, 10- and 90-percentile
deviations for nearly all features in the feature consistency plot

are larger than the corresponding values in the feature stability
plot. This clearly implies that the TCP/IP features generated
by the download of a given web page vary more across client
browser platforms than over time. A deeper analysis reveals
that the traffic variation across browsers is primarily caused
by ad and tracking services, which are browser specific [23].

Although most of our selected features vary significantly
across browsers, some features vary much more across
browsers than others. For example, feature 4, Number of
Bidirectional Reset flags, is relatively stable over time like
other features within its group (Group 1). However, this feature
changes much more dramatically across browsers.

Based on the above, we select 10 features (one from each
group) as robust and informative—these are discussed below.
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Fig. 2. Discriminatory Power of Some Non-temporal Features

A. What Features Are Informative?

Number of servers contacted The total number of distinct
servers contacted for downloading a web page is discrim-
inatory for several classes across the two labeling schemes
(Fig 2). We find that mobile optimized web pages contact sig-
nificantly less number of servers—this is presumably because
they are designed for devices with constrained resources.

We also find that video pages contact more servers than
non-video pages—these extra servers correspond to increased
number of ads, images, and comment boxes. This is especially
true for Youtube pages, which establish around 400 TCP
connections (whereas Netflix uses 60 connections). We also
find that search results generally display less content from
multiple servers than do clickable content pages.

In the genre-based category, we find that News pages con-
tact significantly more number of servers than other classes—
this was also previously observed in [34], and is presumably
because News sites tend to summarize on the same page
different types of topics (sports, weather, finance, etc).



Number of PUSH flags per TCP connection The max-
imum number of push packets sent in a TCP connection
for a given web page is also an informative feature for all
labeling schemes. Previous studies show that the PUSH flag
corresponds to a HTTP object[24]—our data also yields a
high correlation between the two. The maximum number of
objects sent in a TCP connection quantifies the prevalence
of HTTP pipelining or connection reuse—we find that this
is more popular for traditional (non-mobile) web pages and
video pages as compared to their counterparts.

The median number of push packets sent by the client per
TCP connection seems to be informative for the genre and
navigation-based labels (Fig 2 confirms this). Clients that view
landing pages use PUSH flags slightly more often than non-
landing or search pages. This is presumably because landing
pages are likely to collect many more objects summarizing
the web site; these objects are co-located on a small number
of servers—this may be done to help reduce the load time
for the “entry page” of the web site by using persistent
connections and by contacting less number of servers. We
have also observed that the distinguishable categories using
this feature (i.e., genre and content) also tend to include more
javascript objects than other pages.
Total number of bytes transferred The number of bidi-
rectional packets is a feature that roughly approximates the
amount of data transferred to render a web page. As expected,
this feature can be used to identify mobile and video pages.
The minimum number of bytes transmitted by the client per
TCP connection is informative for classifying mobile web
pages—this makes sense because mobile sites are designed
to be more efficient than traditional web pages.
Object size in largest TCP connection The object size
distribution for the largest TCP connection (i.e., the TCP with
the most bytes transmitted) is a valuable feature for discerning
video traffic and is not useful for any other labeling scheme. It
is common for video objects to be larger than 200 KB, which
is rare for other types of traffic.
Temporal features Features in Group 8-10 are temporal
features. We find that these are informative mostly for the
video labels. The three selected video features include, the 75
percentile inter-connection arrival time, 75 percentile inter-
object arrival time, and the average RTT. Two of these fea-
tures, the inter-connection arrival time and inter-object arrival
time, make sense for video classification because variable
bit rate algorithms may request objects at irregular times to
reduce transmitting video content that depends on a user’s
interest [37]. The average RTT is a surprising feature—it
perhaps reflects that video servers take longer to respond to
requests than other servers.
Are port numbers and first few packets helpful? Prior
work on traffic classification (identifying the application layer
protocol) has found port numbers and the sizes of the first
few packets to be the most informative features [19]. Our
analysis of web page classification, which also incorporates
features that span multiple flows finds a completely different

TABLE II
WEB PAGE CLASSIFICATION ACCURACY (KNN)

Classification Model VSL TDL AGL WNL
Stable Tcpdump features 99.1% 90.2% 73.0% 82.2%
Unstable Tcpdump features 98.3% 84.1% 62.3% 77.6%
Netflow features 98.4% 87.6% 67.2% 77.7%
Stable Tcpdump: different browsers 98.4% 84.4% 58.1% 72.5%
Stable Tcpdump: different time 99.1% 88.7% 70.4% 79.9%

set of informative features—while port numbers are not even
an applicable feature for web-only traffic, we find that even
the first few packet sizes does not help distinguish between
different types of web downloads. We believe that this is the
case because the first few packets may capture handshaking
mechanisms that are application protocol/application specific,
but do not capture the differences between different types of
web pages which are transmitted over the same application.

IV. WEB PAGE CLASSIFICATION

Evaluation Methodology We use classification methods sim-
ilar to the ones used widely for traffic classification [20].
This includes the non-parametric methods—that do not make
assumptions about the distribution of features—of K-Nearest
Neighbors (KNN) and Classification Trees (CT), as well as
the parametric methods of Naive Bayes (NB) and Linear
Discriminant Analysis (LDA). Our results show that non-
parametric methods perform significantly better—we include
results only for KNN here; more details can be found in [29].

To ensure that the dataset used in this section is consistent
with prior knowledge of browser usage in real-world traces, we
randomly sample our 100,350 captured web page downloads
by browser (using weights from [36]). This data is then used
to evaluate web page classification using the 4 independent
labeling schemes (VSL, TDL, AGL, and WNL). We conduct
10 independent 5-fold cross validation trials (80% of the
dataset is used for training and 20% is used for testing) and
report the mean classification accuracy across these trials.

Classification Results Table II summarizes the mean clas-
sification accuracy of KNN, using our selected features for
each labeling scheme. We find that the accuracy depends on
the labeling scheme—web pages with streamed video can be
identified with 99% accuracy, mobile-targeted pages with 90%,
navigation-based labels with 82%, and genres with 73% accu-
racy. We believe these numbers are highly encouraging—while
the numbers for video and mobile-targeted pages are expected
to be high due to the presence of highly discriminatory features
in these classes, surprisingly, we find that even the content-
genre and the navigation-type of a web page can be inferred
with relatively high accuracy using just information seen in
TCP/IP headers of the corresponding traffic!9

How important is feature stability? We next study whether
the features selected in Section III actually outperform features
that are less robust. Specifically, we compare classification
accuracy when the most unstable (over time) features are
selected from each of the 10 feature groups in Section III,

9Related performance metrics of recall and precision are included in [29].



instead of the most stable ones. Recall that all features in
each group are fairly informative (for classification) and are
highly correlated with each other. The results are summarized
in Table II, which show that accuracy with unstable features
can be up to 10% lower than with stable features. Thus, we
conclude that it is important to include not just informative
features for classification (as most prior work on traffic clas-
sification does), but to also consider the stability of a feature.

Would Netflow-derived features suffice? Our results above
are obtained with classification performed based on fine-
grained features derived from per-packet TCP/IP headers.
Sometimes, access to such packet traces may be infeasible
or costly. We next ask: what accuracy can be achieved if only
coarse-grained features that are obtainable from Netflow logs,
are used for classification? For this, we consider those (stable)
features from each group that can be derived from Netflow
logs. For instance, instead of the maximum number of PUSH
packets sent by the client (Group 2), we include the maximum
number of bytes sent by the client per TCP connection. None
of the features in Group 6 and 7 qualify, though.

Table II shows that while video-streams can still be identi-
fied with high accuracy, Netflow-derived features yield lower
classification accuracy by up to 8% for the other classes. It
is important to note that the performance with even coarse-
grained Netflow features is better than with unstable tcpdump
features—this further underscores the importance of consider-
ing stability in selecting fine-grained features.

Sensitivity to Time and Browser Our dataset includes 6 re-
peated downloads of each web page, using 5 different browsers
for each. While we have explicitly identified features that are
the most robust across time and browsers, it is important to
understand the impact of training on one portion of a dataset
and testing on another. We first consider the impact of time
on classification performance, controlling for browser. Table II
shows that this hardly impacts classification performance at all.
This result is promising, because it implies that classifiers do
not have to be trained on data every day. In fact, our dataset
includes measurements for over a period of nearly 20 weeks!

We next consider the impact of browser on classification
performance, controlling for time. Table II shows that while
video streams can still be identified with the same accuracy, the
accuracy for the mobile-targeted and navigation-labels reduces
by about 6-10%. The most significant impact, however, is
on the genre-based labels, which can be classified only with
58% accuracy! These results imply that traffic classification
performance is much more browser-dependent than time-
dependent—our analysis of repeatability and consistency of
traffic features in Section III supports this observation. We
conclude that it is important to train models on data that is
representative of browser mixes found in real-world traces.

Can classification be done with less packets? Some
applications—such as rate-limiting or intrusion detection—
benefit if a web page can be classified while it is being
downloaded. Since most of our 10 selected features are multi-
flow features, they may not be estimated accurately before a

TABLE III
CLASSIFICATION ACCURACY (KNN) WITH FIRST N PACKETS

Classification Model VSL TDL AGL WNL
10 Packets 75% 75% 35% 50%
100 Packets 94% 79% 42% 60%
500 Packets 97% 83% 63% 67%
1000 Packets 99% 88% 65% 72%

transfer has completed. In order to analyze how many packets
need to be observed before web page classification can be
performed accurately, we next analyze the first N (varied from
10 to 1000) TCP/IP packets in a traffic trace and derive our
stable tcpdump features only from this limited information.

Table III shows that the classification performance is pro-
portional to the number of packets used, N . For our dataset,
the average number of packets transmitted per web page is
2200. We find that while there is a performance hit for using
only 25-50% of the packets downloaded for classification,
classification accuracy is still high for video traffic and mobile-
optimized web pages, and reasonable for navigation-type.
Risks of Our Classification Approach The success of our
classification framework depends on the degree to which web
pages of a particular category yield similar traffic features. Our
evaluation above suggests that this does happen to a surprising
extent on the current Internet. For some labeling schemes, the
association with traffic is to be expected—e.g., mobile web
sites are designed to be more resource concious than traditional
ones; and video streaming transfers large volumes of data. For
other labeling schemes, though, the association seems to result
from similar design decisions by web site designers—e.g.,
modern search engines include similar search options such as
web search, image search, and news search; and most News
web sites have similar templates and layout. The risk with our
approach is that the association of such categories with traffic
features may change as web site designs evolve over time.
In order for our framework to remain effective, it is fairly
important to: (i) strategically sample web sites that are likely
to be included in a real traffic trace (we focus on popular web
sites in this paper), and (ii) periodically retrain our classifiers.

V. HOW APPLICABLE IS OUR WORK?

In Section I, we provide several motivating examples for
web page classification using TCP/IP headers. Here, we focus
on two of these and quantify the impact of our work.

A. Application: Building Traffic Models for Forecasting

We first consider the application of forecasting traffic
growth, which can help with better capacity planning. Specifi-
cally, in this section we study the trend in the growth in mobile
web usage. Our aim is to study whether traffic predictions
based on this trend, look any different when they rely on
classified labels instead of ground-truth labels.
Do feature distributions for classified and ground-truth
labels match? We first study if our classification results are
useful in extracting the true distributions of traffic features
within a given class—such distributions can then be used
for traffic modeling and simulation studies. To quantify this,
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we statistically compare the distributions of several features
obtained from traffic with ground-truth labels to those resulting
from traffic with classified labels.10 We rely on two hypoth-
esis testing approaches—the Wilcoxin sum ranked test and
Kolmogorov-Smirnov test. We find that with the KNN clas-
sifier, both of these tests yield favorable p-values, larger than
0.05 for all classes for each feature tested—this is true even
for the genre-based classes, that yielded a somewhat lower
classification accuracy. We conclude that both the median
value as well as the empirical distributions of these features
are statistically the same across classes identified using either
classified labels or ground truth labels. Detailed tabulations of
the p-values can be found in [29].

Traffic Generation Methodology We next compare traffic
generated by relying on ground-truth versus classified labels.
We use the ns-2 network simulator to simulate the behavior of
400 active web users—all to/from traffic gets aggregated on
a 1Gbps link. Each user behaves independently and randomly
visits a web page. The inter-arrival time for web page down-
loads by a given user is gaussian distributed with a mean of 30
s and standard deviation of 15 s—this distribution is chosen
for simplicity (and is adequate for our purpose of comparing
the impact of classified and ground-truth labels).

The download of each web page itself is simulated using
TMIX, which provides a source-level traffic generation in-
terface in ns-2 [28]. Specifically, we provide this tool with
the TCP/IP trace of a web page download (selected randomly
from the 100,350 downloads we collect in Section II). TMIX
then derives from the trace, application-level descriptors of
the corresponding traffic sources—including request sizes,
response sizes, user think times, and server processing times.
It then generates a corresponding traffic in ns-2 by reproducing
these source-level events. Thus, this tool allows us to faithfully
produce realistic source-level behavior for each web page
download. We use this traffic generation methodology in the
context of the forecasting application below.

Modeling Growth in Mobile Web Usage We first construct a
baseline model, in which each user visits a mobile-optimized
web page 20% of the time and a traditional page 80% of
the time—nearly 20% of current web traffic is considered
mobile [38]. The TMIX input for each is obtained by randomly

10Examples of features we test for, include number of servers contacted for
downloading a web page, number of bytes transmitted, etc. Plots comparing
the distributions can be found in [29].

selecting a mobile (or traditional) page download from our set
of 100,350 downloads—we conduct two experiments, in which
the mobile or traditional pages are selected based on either
ground-truth (GT) labels or KNN labels (ML). The throughput
on the 1 Gbps aggregated link is observed every 1ms, and its
distribution is plotted in Fig 3.

We next conduct two sets of experiments that incorporate
growth in mobile traffic. In the first set, referred to as alternate
model 1, we envision the scenario in which all users start
abandoning their desktop and laptops, in favor of mobile
devices—specifically, in this model, each user visits a mobile-
optimized web page 50% of the time (labeled using either GT
or ML). In the second set of experiments, we envision growth
in the number of users that rely solely on mobile devices. In
this model, referred to as alternate model 2, we retain the
behavior of the 400 baseline users, but simulate an additional
200 users that browse only (GT or ML-identified) mobile-
optimized web pages (100% of the time). The distribution
of the aggregate throughput for each of these forecasting
experiments is also plotted in Fig 3. We find that:

• First and foremost, the distributions yielded by the
ground-truth (GT) and the classified (ML) labels are quite
similar to each other. In fact, we run the hypothesis
testing approaches mentioned earlier to confirm that the
distributions are, in fact, statistically equivalent. This
is true for the baseline traffic, as well as each of the
forecasted alternative models. This confirms that web
page classification, based only on anonymized TCP/IP
headers, can be used to effectively conduct traffic mod-
eling studies involving mobile web traffic.

• The distributions suggest that an enterprise that expects
an increase in next-generation users that spend most
of their time on mobile devices (alternate model 2), is
likely to face capacity issues earlier than one in which
most users simply choose to spend more time on mobile
devices (alternate model 1).

We emphasize that our intention is not to make forecasting
claims, but simply to illustrate that our classification work can
very well facilitate such traffic modeling applications.

B. Application: Building User Browsing Profiles
Applications such as behavioral-ad targeting and clickbot

detection rely heavily on building user browsing profiles [24],
[11]. The ability to classify web page downloads according to
their content-genres, for instance, can be used to profile users
according to their interests, and target relevant ads towards
them, without the need for deep packet inspection. A similar
approach, that classifies based on navigation-type, can be
helpful in detecting clickbots or automated webcrawlers as
well as in determining their intent in security applications,
such as web page scraping or search engine abuse [11]. In
this section, we generate synthetic user browsing “sessions” to
evaluate the efficacy of our work in recovering user browsing
profiles based on these two labeling schemes.
Generating Synthetic User Browsing Sessions A user typi-
cally views several web pages in any given browsing “session”.



TABLE IV
ACCURACY IN IDENTIFYING MOST-VISITED GENRES

No. of Top Genres N = 20 N = 50 N = 200
K = 1 86.0% 85.2% 89.2%
K = 2 89.2% 89.2% 89.2%
K = 3 83.2% 86.8% 86.8%
K = 4 84.8% 81.2% 81.6%
K = 5 80.4% 82.0% 92.0%

Alexa [3] includes statistics on the frequency of visiting a
particular web site after being on a given (different) web site.
We use this data to develop a simple Markovian model of user
browsing sessions as follows [39]. Each of the 3345 web pages
in our data set, is represented by a state, Si. The transition
probability between state Si and Sj is assigned based on
the transition frequency from Alexa (for the corresponding
web sites). This simple model is used to generate 1000 user
browsing sessions, of N clicks each—the starting state for
each user session is selected randomly from the 3345 states.
It is important to note that users who start browsing a particular
genre (shopping, for instance), are likely to keep browsing in
that genre, and the Alexa statistics used here will reflect that.

How accurate are classification-based browsing profiles?
Applications such as behavioral ad targeting use browsing
profiles to infer what the user is likely to be most interested in.
For instance, if the user has been recently visiting car-listing
sites, it may be a good idea to pop up automobile ads for
him/her. Our goal here is to analyze the accuracy with which
our classified labels can help build a useful browsing profile for
the user browsing sessions we simulate above. We do that, by
collecting statistics on the top-K (in terms of frequency) AGL
genres that a user visits in a browsing session—we collect two
sets of statistics, one based on ground-truth genre labels, and
the other based on classified genre labels.

In Table IV, we list the percent of users for which the set of
top-K genres based on classified-labels matches perfectly with
that based on ground-truth labels. We find that even the top-5
genres that a user is interested in, can be estimated perfectly
for more than 80% of the users! Further, the length (N ) of
the browsing sessions has little impact on the estimation ac-
curacy. These numbers are highly encouraging and suggest that
targeted ad delivery can significantly benefit from web page
classification based on just anonymized TCP/IP headers.11
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11It is important to note that even though the classification accuracy for the

AGL class was only around 75% in Section IV, the user browsing profiles
being constructed here are simply relying on a comparison of the sets of top-
K genres (and not correct classification of each of the N web-page visited).

Another piece of useful information that may be needed
from a user browsing profile is the fraction of time a user
chooses to visit a particular genre. For instance, if a user
visits the top genre 95% of the time, he/she is unlikely to
be interested in ads related to any of the other top genres.
We collect statistics on the fraction of time a user visits each
of their respective top-5 genres (both based on ground-truth
labels as well as classified labels). Fig 4 plots the median and
95% confidence intervals of these per-user fractions, for their
top-5 genres. We find that the top-genre browsing frequencies
yielded by classified labels align extremely well with those
based on ground-truth labels. We conclude that web page
classification is fairly well suited for building frequency-based
user browsing profiles, even for content-genre based labels.12

VI. RELATED WORK

Traffic classification using just TCP/IP headers has received
some attention and success recently—[19], [20] present an
extensive summary of traffic classification methodology and
applications including feature selection, and comparisons of
different learning algorithms. Prior work focuses mostly on
identifying the application and its protocol using features
derived from a single flow [21]—web page classification, on
the other hand, is a problem where the features must include
information derived from multiple flows. [22] addresses a
different HTTPS webmail classification problem by using
Netflow data—however, it relies on features that include
server IDs and server co-location which are not available in
anonymized TCP/IP headers. The prime focus of this body of
work, has been to map the headers to the application and/or
its protocol, including HTTP, Mail (SMTP), Chat, etc.

[40], [41] also addressed the problem of web page classi-
fication, but used a rather small dataset (∼ 50 web pages)
to test their methods and focused on the problem of web
page deanonymization, which focuses on identifying potential
limitations of deanonymization techniques rather than the
research and business potential of traffic classification. [24]
attempts to go further than our goal, and even identify the
exact web pages downloaded—their methodology, however,
relies on comparing signatures of known web pages with those
in traces. This is not scalable to traces collected in the wild.

VII. CONCLUSIONS

This paper advances the state of the art in traffic classifica-
tion both methodologically as well as by offering new insights.
Methodologically, we (i) establish the need for (and present
metrics for) finding consistent (across browsers) and stable
(over time) informative features, (ii) use features that span
multiple TCP/IP flows, and (iii) use a statistical framework to
study the applicability of classification results in the context of
real-world applications. Our analysis leads to new insights on
which multi-flow TCP/IP features are robust and informative

12It is important to note that identifying individual users via traffic analysis
may be difficult due to network proxies and other technology. However,
previous work shows that other methods for identifying malicious users behind
proxies are still effective despite this limitation [11].



for web page classification, as well as what type of web page
classes that can be successfully identified using these.

We are planning future work along several directions. First,
we will need to address the problem of “web page boundary
detection” before these results can be applied to real-world
traces. Second, we will consider the impact of other factors
(such as client location) on classification performance.
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