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Abstract

The TCP NewReno congestion control protocol relies
only on packet losses for detecting congestion—this causes
long NewReno transfers to build up large packet queues in
router buffers. High buffer occupancy hinders performance
of real-time applications as well as the development of high-
speed routers. Several alternate congestion-control strate-
gies have been proposed in the literature to help maintain
low buffer occupancy. In this paper, we experimentally eval-
uate prominent proposals by emulating empirically-derived
traffic mixes on a Linux-based lab testbed. We show that
when existing proposals are used with such representative
traffic mixes, they are unable to simultaneously ensure small
router queues and high TCP throughput. Further analysis
shows that the common practice of using TCP round-trip
times for estimating queuing delays (as in TCP Vegas) fails
in a highly-aggregated environment that contains short as
well as long transfers—such environments would need to
rely on explicit router feedback. We also find that proposals
that rely on router feedback in the form of link utilization (as
recently proposed in VCP) are not effective in maintaining
high transfer throughput. Instead, we argue that a conges-
tion control algorithm which uses queuing delay feedback
from routers can reduce the buffer occupancy of routers
without sacrificing response time performance of connec-
tions. We use this idea to design two new protocols—EDN
and PEDN—and show that these two protocols can help
manage the trade-off between maintaining low buffer oc-
cupancy and providing high TCP throughput.

1 Introduction

TCP is the dominant transport protocol used in the In-
ternet. Given its wide-spread usage, the data transmis-
sion behavior of TCP congestion control algorithms fun-
damentally impacts Internet traffic dynamics. TCP senders
widely employ the NewReno algorithm (or one of its sev-
eral variants) [2, 9, 11, 18]. By design, NewReno uses a
loss-based congestion-avoidance policy that tends to fill up
router buffers at bottleneck links and suffers losses before
it detects network congestion. This approach is undesirable

for two reasons:

1. Large buffers in high-speed routers are expensive. A
popular rule-of-thumb for provisioning router buffers
is to set these equal to the bandwidth-delay product
(BDP) of the network [23]. The basic goal is to main-
tain high link utilization with TCP. However, the BDP
for high-speed Internet routers can be quite large and
provisioning routers with such large buffers is expen-
sive both in terms of design and manufacturing [3].

2. Large queuing delays hinder real-time and interactive
applications. The performance of end-to-end proto-
cols for interactive and real-time applications such as
voice-over-IP [22] and network games is quite sen-
sitive to large network delays [4, 25]. Large router
queues result in large queuing delays and do not sup-
port such applications well.

Several backbone ISPs take the approach of over provi-
sioning their link capacities to avoid queue buildups [19]—
many have been reported to run their networks at less than
50% utilization. However, given the rapid increase in ap-
plication data rates as well as the capacities of edge net-
works, it is not clear if ISPs can continue to do so in the
future.! Moreover, networks of regional and local ISPs are
seldom significantly over-provisioned. Given the rapid rise
in capacities of edge networks and application data rates,
we believe it is desirable to design a network architecture
in which ISPs are able to run their networks at high levels
of utilization without adversely impacting customer perfor-
mance. This can be realized with the help of queue-friendly
congestion-control protocols.

Several queue-friendly designs for congestion-control
have been proposed in the literature—including end-to-
end delay-based congestion avoidance protocols (e.g., Ve-
gas [6]) as well as protocols that rely on explicit router feed-
back (eg. AQM+ECN and VCP [24]). In this work, we first
experimentally evaluate prominent congestion control pro-
posals to see how well they support both low queuing ac-
tivity in routers and high throughput in TCP transfers. For

'In fact, one major national provider has acknowledged operating their
current links with even up to 90% utilization. This information has been
obtained through a personal communication with the provider. Non-
disclosure agreements prevent us from revealing its identity.



this, we rely on a lab testbed that emulates an empirically-
derived traffic mix. Specifically, we use the Tmix traffic
generator that faithfully reproduces in a testbed setting, the
path round-trip times, connection-arrival processes, trans-
fer sizes, as well as the application-level socket writing be-
havior, as observed in traffic carried by production Internet
links. We run the transfers emulated by Tmix over several
different congestion-control protocols and observe the be-
havior of router queues as well as per-transfer throughput.

We find that existing designs either do not succeed in
maintaining small router queues, or do so at the expense
of throughput of individual transfers. Our analysis leads
to several important guidelines—including the need for ex-
plicit router feedback, as well as the appropriateness of
queuing delay as a feedback metric—for ensuring a design
that is simultaneously queue-friendly as well as throughput-
sustaining. Based on these guidelines, we design two new
congestion-avoidance protocols, referred to as Explicit De-
lay Notification (EDN) and Per-flow EDN (PEDN), both of
which help provision small router buffers by successfully
maintaining fairly small bottleneck queues. The two de-
signs let the adopter choose between the ability to main-
tain small router queues independent of the load or de-
gree of traffic aggregation, versus the ability to ensure
NewReno-like throughput for individual transfers but with
queue buildups that grow moderately at very high loads.

The rest of this paper is organized as follows: we de-
scribe related work in Section 2 and our methodology in
Section 3. We present evaluation results for existing proto-
cols in Section 4. We motivate, describe, and present evalu-
ation results for EDN/PEDN in Section 5. Finally, we con-
clude in Section 6.

2 Related Work

Router buffer provisioning Network operators and
router manufacturers must address the issue of deciding
how many packet buffers to provision in the routers. A pop-
ular rule-of-thumb recommends using the bandwidth-delay
product (BDP) to calculate the size of router buffers [23],
where the bandwidth is the transmission capacity of the out-
going router link, and delay is the average round-trip propa-
gation delay experienced by connections going through the
router. The intuition is that such buffers are needed to main-
tain a high link utilization in the presence of the saw-tooth
behavior of TCP congestion-control [23].

Recently, there has been considerable interest in the
performance of loss detection based congestion control
(mainly NewReno) with small router buffers [3, 12]. These
studies argue that as the number of long NewReno trans-
fers aggregated on a router link increases, the amount of
buffers needed to ensure high link utilization decreases.
There are two main problems with this approach: (i) it is
difficult to estimate the number of “long lived” connections

going through a router on average (for calculating the size
of buffers needed) [12], and (ii) the NewReno transfers suf-
fer high loss rates (and a corresponding degradation in re-
sponse times) if the load on the router is more bursty than
what the provisioned buffers can handle [8, 7, 20].

In this work, we tackle bursty network dynamics by
adopting congestion control algorithms that reduce router
buffer occupancy, which in turn helps reduce demands on
router buffer provisioning. In fact, we propose two vari-
ants that represent the two ends of a trade-off; EDN: which
moderately sacrifices response times at high loads to main-
tain consistently low queue build-ups, and Per-flow EDN
(PEDN): which allows moderately higher queuing activ-
ity but also maintains NewReno-like connection response
times, even at fairly high loads. We revisit this trade-off in
Section 5.1.

Delay based end-to-end congestion control The idea of
using high delays, rather than only losses, as indicators of
network congestion has been explored in the past—the most
popular proposal is that of TCP Vegas [6]. Since such pro-
tocols do not need to fill up buffers (and experience losses)
before they reduce their sending rates, these are good candi-
dates for maintaining low buffer occupancy. However, our
experimental evaluation in Section 4 shows that Vegas does
not significantly reduce queue buildups in an aggregated
network environment. We subsequently show that this is
because of the inability of Vegas to accurately detect trends
in router queuing delays from just the end-to-end RTTs. In
EDN/PEDN, routers explicitly send the queuing delays as
feedback to TCP senders—this helps maintain small router
queues.

Router feedback based congestion control The use of
explicit router feedback for guiding TCP congestion con-
trol has been proposed by several others [21, 17, 24, 16].
ECN [21, 17] is the most extensively deployed mechanism
that can be used by routers for sending congestion-related
feedback to TCP senders. ECN is intended to be used
in conjunction with Active Queue Management (AQM)
schemes [10, 5, 14] that predict the onset of congestion
by monitoring router queue lengths, and use ECN to notify
senders of early congestion.

XCP and VCP are recently-proposed schemes that use
more sophisticated feedback than simply an ECN bit—
these have been shown to perform better than AQM+ECN
schemes in reducing packet loss rates and average queue
buildups [16, 24]. XCP [16] targets high-speed networks;
routers in an XCP network indulge directly in TCP con-
gestion control and use link utilization, queue sizes, and
a computation of per-connection fair share of bandwidth,
to inform the sender of how to update the congestion win-
dow. VCP [24] is a simpler form of XCP and has been
shown to perform as well. It uses link utilization as an in-
dicator of congestion and proposes making ECN a two-bit
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notification. It also modifies the TCP congestion control
to increase congestion-windows more aggressively—a VCP
sender does not exit the multiplicative Slow Start phase un-
til the router explicitly indicates that the utilization is more
than 80%; it does not exit additive increase until the router
is 100% utilized or a packet is lost.

In Section 4.2 we show that, despite being an explicitly
guided protocol, VCP fails to maintain small queue sizes
with aggregate traffic mixes—our analysis traces the cause
as its aggressive congestion control algorithm. In all fair-
ness, VCP is designed for high-speed networks; maintain-
ing small router queues is not a primary design goal. We
then remove the aggressiveness from VCP congestion con-
trol and show that when routers guide non-aggressive TCP
congestion control using link utilization as the feedback
metric, they are unable to maintain high link utilization.
Based on these observations, we propose to use queuing de-
lay as the feedback metric with a non-aggressive congestion
control algorithm—our experimental evaluations show that
this helps maintain small router queues without limiting link
utilization or per-transfer throughput.

3 Experimental Methodology

In this paper, our main objective is to study the inter-
action between TCP congestion control and router buffer
occupancy. Several traffic characteristics like offered load,
degree of aggregation (number of transfers sharing a router
link), round-trip times (RTTs), and application data transfer
patterns are likely to impact the nature of this interaction
as well. Our experimental evaluation methodology in this
paper is guided by the goal of ensuring that these charac-
teristics are incorporated in a manner that is representative
of how they occur in the Internet. For this we rely on the
Tmix traffic generator [13] that empirically derives distri-
butions of several of these characteristics from traces col-
lected on production Internet links, and reproduces them in
a controlled lab setting.

We generate thousands of TCP connections using Tmix
and evaluate their performance in a controlled lab setting
(as against relying on simulations). Below, we describe our
testbed, instrumentation, and Tmix.

Testbed Figure 1 illustrates our experimental testbed that
sets up a dumbbell topology using two routers (IBM dual
Xeon 1.8Ghz, 1.2GB RAM), 2 1-Gbps switches, and 12

end-hosts (IBM Pentium III 800Mhz - 1Ghz, 1GB RAM).
All links are 1Gbps, other than the 100Mbps link connect-
ing the two routers—this is the bottleneck link of our topol-
ogy. All nodes and routers run Linux 2.6.20 (released Feb
4th, 2007). Unless otherwise stated, the router is configured
with a 1.3MB software byte-FIFO queue. This corresponds
to the delay-bandwidth product of the bottleneck link (the
median RTTs of the emulated TCP connections is around
100ms).

Instrumentation To study queuing activity we tap into
the software byte-FIFO queue implementation in Linux. We
time-stamp every packet arrival and departure in a “queue
log”. To time-stamp packets accurately, we rely on the pro-
cessor time-stamp counter (TSC) [15] which is an accurate
low overhead clock. The device driver’s packet queue size
was reduced to 2 so that we could see almost all the queuing
in the IP layer’s byte-FIFO queue.

We also modified Linux to report back the average RTT
(from the same samples which TCP uses for its RTO esti-
mation) on a per connection basis using getsockopt().

Tmix Traffic Generator Tmix [I3] is a recently-
developed application-level traffic generator that helps us
control the TCP congestion control algorithm and traffic
load while keeping the rest of the traffic characteristics in-
variant and representative across experiments. Tmix can
read in a trace of packet headers collected from real In-
ternet links and derive from it: (i) the exact sequence in
which data units are transmitted in either direction of each
TCP connection (including the “pauses” or user think times
during which no data flows in either direction), (ii) the per-
connection minimum RTT, (iii) the per-connection limits on
socket buffer sizes, and (iv) the exact start times and sizes
of TCP connections. The first feature implies that Tmix is
able to infer for each TCP connection, the socket-level data
transmission activity of the corresponding connection. This
connection level meta-data is referred to as a “tcvec”.

Once these per-connection characteristics are derived,
Tmix can be configured to generate traffic on a given testbed
according to a tcvec-set. For each tcvec (connection) in a
tcvec-set, Tmix then generates a real TCP connection be-
tween a pair of the testbed machines, that accurately re-
produces each of the above characteristics. Since, Tmix
operates above TCP sockets, it gives us complete freedom
to modify the underlying TCP protocol and router mech-
anisms. To reproduce per-connection RTTs, Tmix uses a
kernel-level module that artificially delays packets using a
specified per-connection delay.

Tmix lets us control the “offered load” for the gener-
ated traffic. The offered load refers to the average traffic
rate generated by a tcvec set on an uncongested network.’

2For our testbed, this would be the traffic load on the network if the
bottleneck link had a capacity of 1Gbps or higher.
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Tmix derives from a tcvec-set a new tcvec-set with a dif-
ferent offered load by randomly sampling connections from
the original tcvec-set—it does so while preserving the short-
term connection-arrival patterns of co-existing connections.
Tmix has been exhaustively validated in [13].

Tcvee Set To generate tcvec-sets, we used 3 different
types of packet traces: (i) one collected on a 1Gbps link
connecting a major US university campus to the Internet,
(ii) a web trace collected on a 1Gbps access link of a clus-
ter of high-traffic web-servers (ibiblio.org), and (iii) an ISP
trace collected from a 2.5Gbps peering link of a major US
ISP. Our observations are qualitatively similar for each of
the above traces, even though the traces themselves exhibit
fairly different connection size distributions and number of
simultaneous connections—for brevity, we include results
only for the first trace in this paper.’

Figure 2 plots the distributions of connection sizes
and per-connection RTTs observed for connections in this
trace—as can be expected from Internet traffic, the connec-
tions in these traces are fairly diverse. The offered load
of the generated tcvec was around 80Mbps. We derived 3
additional tcvec-sets from this at offered loads of 85Mbps,
90Mbps, and 95Mbps each. The reverse-path load is small
for each of these (around 19Mbps).

At the end of an experiment, for each connection we
compute the performance metric of “data response time”—
this is the total time that is spent in transferring data in the
connection. It is computed as the total duration of the con-
nection minus the total user think time.

4 Evaluation of Existing Protocols

‘We begin be studying the queuing activity induced by the
NewReno, Vegas and VCP protocols, when used to carry
the Tmix TCP connections. Figure 3 plots the distribution
of the router queue size (sampled on every enqueue event)
for all the congestion control protocols at 90Mbps offered
load. We first observe that queues can grow quite large
(more than a mega-byte) with NewReno. The large queu-
ing activity is surprising given that our tcvec-set consists

3These tcvec-sets are also available for download at

http://www.cs.unc.edu/~jasleen/research/edn/.
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Figure 3. Queue distribution

mostly of small connections (Figure 2). This indicates that
even when only a small fraction of connections are long-
lived, they are capable of sustaining a high router buffer
occupancy.

We also find that queuing activity is high even with Vegas
and VCP, despite their queue-friendly designs—we explore
the reasons for this in the rest of this section. Figure 5,
which plots the distribution of per-transfer response times,
shows that there is negligible difference in the connection
response times observed with NewReno, Vegas, and VCP.

4.1 Vegas

To understand why Vegas does not reduce queuing activ-
ity, despite using delay based congestion avoidance, let us
take a closer look at its congestion control algorithm. Vegas
uses RTT samples to infer the router queuing delay. A Vegas
connection estimates the current bottleneck queuing delay
as: currRTT — baseRTT, where currRTT is the latest
value of RTT estimated by the connection, and base RTT
is the minimum RTT that the connection has sampled so far
(which it assumes to be close to the round-trip propagation
delay for the connection’s path). The problem with Vegas is
that base RT'T' may be a fairly crude approximation for the
round-trip propagation delay of a connection.

To illustrate this, we plot in figure 4 the CDF of
base RTT /propagation RTT for all connections emulated
in the 90Mbps and 95Mbps Vegas experiments (where
propagation RTT is the round-trip propagation delay for
a given connection, as emulated by Tmix on the testbed).
We see that this ratio can be quite large for a significant
fraction of connections—this shows that base RTT can be
much larger than the actual round-trip propagation delay.
This can happen if a router in the path experiences persistent
queuing in which case the Vegas connection never samples
an empty queue and hence is not able to get a good estimate
for base RTT.

When baseRT'T is much larger than propagation RT'T,
Vegas ends up underestimating its contribution to the queu-
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ing activity and sustains large queue buildups. This sug-
gests that congestion control protocols should rely on ex-
plicit router feedback (as against operating on a purely end-
to-end basis) in order to detect the presence of large queues.

4.2 VCP

Figure 3 shows that even VCP, despite the use of ex-
plicit router feedback, can cause a large buildup in the router
queue. However, it is important to note that other than
the choice of explicit versus implicit feedback, VCP dif-
fers from Vegas in two significant aspects: the performance
metric used for detecting congestion (utilization vs. heuris-
tically inferred queuing delay), and the congestion-control
algorithm. VCP differs significantly from Vegas in the lat-
ter aspect—it targets high-speed networks and is, therefore,
quite aggressive in increasing its congestion window. A
VCP sender multiplicatively increases its send rate when the
link utilization based feedback is smaller than 80%. It uses
additive increase if the feedback is between 80% and 100%
and does a multiplicative decrease only when the feedback
is greater than 100%. This aggressive behavior may con-
tribute to queue buildups.

In order to evaluate if the aggressive congestion control
of VCP is indeed responsible for its large queuing activity,
we isolate and study the choice of router feedback metric
alone. For this, we develop and implement a protocol that
uses the VCP feedback metric based on link utilization, but
employs a Vegas-like congestion-control response—we re-
fer to this congestion control algorithm as UTIL. Specif-
ically, the UTIL sender updates its congestion window
(Cwin) as follows:

if feedback > 0.8,
if feedback < 0.8, Cwin++;
else if feedback > 1.0, Cwin——;

In addition to the above logic, UTIL (like VCP) retains
the semantics of NewReno on experiencing a loss and mul-
tiplicatively reduces Cwin.

exit Slow Start;
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Figure 5. Response time CCDF with UTIL

Experiment Link || Experiment Link

Util. Util.
90Mbps Reno | 90.75% || 90Mbps EDN | 90.85%
90Mbps Vegas | 90.74% | 90Mbps PEDN | 90.73%
90Mbps VCP | 90.71% || 90Mbps UTIL | 89.51%

Table 1. Link Utilization for Experiments

Figure 3 plots the queue occupancy observed with UTIL
under 90Mbps offered load. We find that UTIL success-
fully maintains a fairly low queue buildup—in fact, the oc-
cupancy is lower than that observed with any other conges-
tion control algorithm. This suggests that indeed, VCP’s
MIMD-based congestion control algorithm was responsible
for its queuing activity. In order to be queue-friendly, there-
fore, a congestion control algorithm should adopt a non-
aggressive window-increase policy.

Unfortunately, as argued before in Section 2, the use
of utilization as a metric is likely to reduce the utilization
achieved when the offered load is high. Table 1, that lists
the utilization achieved in each experiment, confirms this.
The reduction in link utilization also impacts the connec-
tion response times. Figure 5 shows that UTIL can increase
the response times of connections by 20-30% (read as hor-
izontal gap between the CCDFs), especially for long lived
connections. Thus, we conclude that in order to maintain
high link utilization and low connection response times, an
explicitly guided congestion control protocol should rely on
queuing delay instead of link utilization as the feedback.

5 EDN

Our evaluations in Section 4 lead to the following in-
sights:

e RTTs do not yield accurate estimates of router queu-
ing delays. A congestion-control protocol that aims at
reducing queue buildups should rely on explicit router



feedback for this.

e An aggressive congestion-control policy tends to cause
large queue buildups—protocols should rely on a non-
aggressive policy, such as additive-increase/additive-
decrease (AIAD).

e Using a link utilization based feedback metric with an
AIAD congestion avoidance algorithm leads to degra-
dation in connection throughput performance and link
utilization—the feedback should be a direct measure
of queuing activity.

‘We use the above insights to design a new congestion con-
trol protocol—referred to as Explicit Delay Notification
(EDN)—that helps reduce queuing activity at routers. EDN
uses an AIAD congestion avoidance algorithm with explicit
router feedback based on queuing delays.

Explicit Router Feedback in EDN Routers in an EDN
network encode two values in the IP packet header for con-
veying queuing delays back to TCP senders. These are Dy,
that encodes the total queuing delay on the forward path of
a packet, and D,., that encodes the total queuing delay on
the reverse path. A TCP sender initializes the Dy field of
each new packet to 0. For each incoming packet, a router
observes the current queue length and uses its link capac-
ity to compute the queuing delay that would be seen by the
packet. It then adds it to the packet’s D before enqueuing
it. This process is repeated at all routers in the path of a
packet.

When the TCP receiver receives the packet, it copies the
Dy field into the D, field of the next ACK packet it sends
to the sender. The Dy field of this new packet is initial-
ized to O and set appropriately by routers on the path to the
sender. When the TCP sender receives this ACK, it obtains
the forward path queuing delay from the D, field and the
reverse path queuing delay from the Dy field. The sender
then adds them up to compute the round-trip queuing delay
on the path. The sender also copies the Dy field into the D,
field of the next packet it transmits.

A big advantage of the above feedback scheme is the
simplicity of its implementation and its low run-time exe-
cution cost, both of which are important considerations in
high speed routers.

Delay-based Congestion Control in EDN EDN’s con-
gestion control algorithm uses ATAD congestion avoidance
like Vegas. However, it uses only two parameters A and
B (instead of Vegas’ three parameters «, 3 and 7). Also,
instead of sampling and using the cur RT'T feedback only
once every RTT, with EDN we sample and use the queu-
ing delay feedback on every packet*. Our EDN conges-
tion avoidance algorithm is a simple modification to New

4VCP/UTIL use per RTT feedback sampling like Vegas.

Reno’s congestion control algorithm as shown below (EDN
additions are in boldface):
if(Cwin < ssthresh)
if(round-trip queuing delay > B) exit slow start
else do slow start
else
if(round-trip queuing delay < A)
Cwin_count++
else
Cwin_count- -
if(Cwin_count > Cwin) Cwin++ ; Cwin_count =0
if(Cwin_count < -Cwin) Cwin- - ; Cwin_count =
where A and B (A < B) are parameters which we set to
be 2ms and 3ms. In addition to the above congestion avoid-
ance algorithm, EDN retains the semantics of NewReno on
experiencing a loss and multiplicatively reduces Cwin.

One of the differences between EDN and most of prior
work involving router feedback is that an EDN-enabled
router does not apply any low-pass filters to the feedback
before sending it to end-systems. We believe that the con-
gestion control algorithm running on the end-systems is the
best judge of how to interpret the router feedback signal
based on its RTT and congestion-control mechanisms. An
EDN sender applies a “smoothing” function to the feedback
by accumulating jitter in the quantity: Cwin_count.

Also note that EDN retains the RTT-clocked window-
updating mechanism of all existing protocols. Thus, it
adopts the fairness properties exhibited by window-based
protocols—Ilong transfers with shorter RTTs attain a higher
throughput than long transfers with long RTTs. Achieving
(RTT) fairness is not the explicit goal of this paper.

Prototype Implementation We have developed a proto-
type implementation of EDN in Linux [1] by modifying its
NewReno implementation. For encoding router feedback,
we rely on 14 bits available in the fragmentation offset of
the IP packet header—since our testbed has the same MTU
on all links, these fields are unused in all packets. We store
Dy in the lower 7 bits and D, in the higher 7 bits. Note that
since the congestion control algorithm relies only on an in-
equality operator (with parameters A and B), we have been
able to manage with only a few bits.

5.1 EDN Performance

Figure 3 shows that EDN is indeed capable of reducing
queue buildups. Also, it does so with little to no differ-
ence in connection throughput performance or link utiliza-
tion. This is illustrated by Figure 5, which shows that EDN,
unlike UTIL, does not adversely impact the connection re-
sponse times, even though it reduces queuing activity. Ta-
ble 1 shows that EDN also maintains high link utilization.
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Figure 6 shows the queue distributions of EDN exper-
iments for loads of 85Mbps and 95Mbps and compares it
with queue distributions for NewReno. The queue distri-
bution with EDN stays remarkably stable even with a sig-
nificant increase in traffic load. This is to be expected as
an EDN network is designed to explicitly maintain small
queues irrespective of load.

Figure 7 shows the connection response times for the
same experiments. The response times for EDN are close
to those of NewReno for reasonably high loads of up to
85Mbps. However, at even higher loads of 95Mbps, the re-
duction in queues with EDN comes at the cost of a moderate
degradation in the response times of long transfers. At such
high loads, the number of simultaneously-active transfers is
very high; consequently the per-transfer share of the router
buffers is fairly small—this limits the ability of long trans-
fers to sustain a reasonably high congestion window. Thus,
EDN is designed to favor low queuing in the well-known
trade-off between queuing delays and TCP throughput.

It is possible to imagine the other end of this trade-off,
where we allow moderately higher queuing activity to get
NewReno like response times even for long transfers. Such
a protocol is certainly desirable from an end user perspec-
tive and only moderately increases costs due to queuing ac-
tivity. To realize the above trade-off, we use as feedback
the queue-contribution on a per connection basis instead of
focusing on the queuing activity caused by the connection
aggregate. Thus, we maintain a low value of the per flow
queue contribution low; the total queue size at the router
may then increase as the number of connections aggregated
increases. This lets long transfers attain good throughput
even under high degrees of aggregation. This leads us to
our EDN variant called Per-flow EDN, which uses per-flow
the queuing delay feedback to drive the EDN congestion
control algorithm.
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Figure 7. Response times (EDN/PEDN)
5.2 Per-flow EDN

The only major difference between PEDN and EDN is
the use of per-flow queuing delay feedback by the former.
With PEDN, only the packets of the same flow are used
for calculating the queuing delay feedback for that flow.
For fast lookup and update, we use a hash-table to store
the per-flow number of packets in the queue using an IP-
address/port 4-tuple based key. This does not guarantee
complete isolation between flows but we found that this
scheme works very well in practise. We use the per-flow
number of packets directly for feedback instead of their
queuing delay.

Note that the number of connections for which packets
are likely to be in the queue at any point in time are much
smaller than the total number of simultaneous connections
going through a router. We hence size our hash-table pro-
portional to the queue size instead of the number of simulta-
neous connections going through our bottleneck link. This
helps us reduce the memory footprint of the hash-table sig-
nificantly.

We retain EDN’s congestion control algorithm but use it
with parameters A and B set to (the transmission times of)
2 and 3 packets, respectively.

5.3 Per-flow EDN Performance

Figure 3 shows that PEDN is better than Vegas at reduc-
ing queuing activity. Very importantly, as shown in figure 5,
there is little to no difference between the connection re-
sponse times seen with PEDN and NewReno/Vegas/VCP.

With different offered loads (85Mbps and 95Mbps),
PEDN again shows response times very close to NewReno
but with significantly lower queuing activity. PEDN causes
higher queue buildups than EDN, but succeeds in maintain-
ing the performance of individual (especially long lived)
connections (Figures 6 and 7). It is important to note that



in these experiments (that see virtually no packet loss),
PEDN can not outperform the response-time performance
of NewReno—this is because it exits slow start earlier
and decreases its congestion window during congestion
avoidance (unlike NewReno). PEDN is able to achieve
NewReno-like response times because besides reducing
Cwin, it also reduces the RTT of the connections (due to
lower queuing delays). By maintaining a few packets in the
queue for every connection, PEDN helps to keep congestion
windows high enough for achieving a good response-time
performance.

6 Conclusions

In this paper, we experimentally show that NewReno,
Vegas and VCP congestion control protocols cause large
queue buildups at routers that carry highly-aggregated and
representative traffic mixes. We also show why these pro-
tocols are not able to achieve low queuing activity despite
having queue-friendly design choices.

‘We propose two new congestion control algorithms EDN
and PEDN and show how EDN and PEDN are at two ends
of a trade-off: EDN moderately sacrifices connection re-
sponse time performance to keep the queuing activity sta-
ble with increase in traffic loads; PEDN incurs moderately
higher queuing activity with increase in traffic loads but
maintains per-connection performance similar to NewReno.

PEDN shows that it is indeed possible to achieve lower
queuing activity than NewReno/Vegas/VCP while main-
taining the same connection throughput performance for
both short-lived and long-lived connections with a repre-
sentative mix of TCP traffic.
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