
Providing Deterministic End-to-end Fairness
Guarantees in Core-stateless Networks1

Jasleen Kaur Harrick Vin
Department of Computer Science Department of Computer Sciences

University of North Carolina at Chapel Hill University of Texas at Austin

Abstract End-to-end fairness guarantee is an important service semantics
that network providers would like to offer to their customers. A network provider
can offer such service semantics by deploying a network where each router em-
ploys a fair packet scheduling algorithm. Unfortunately, these scheduling algo-
rithms require every router to maintain per-flow state and perform per-packet flow
classification; these requirements limit the scalability of the routers. In this paper,
we propose the Core-stateless Guaranteed Fair (CSGF) network architecture—
the first work-conserving architecture that, without maintaining per-flow state
or performing per-packet flow classification in core routers, provides to flows
fairness guarantees similar to those provided by a network of core-stateful fair
routers.

1 Introduction
With the commercialization of the Internet, there is a significant incentive for network
service providers to offer value-added services to customers. An opportunity for adding
value comes with the emergence of wide-area real-time and mission-critical applica-
tions; these applications benefit from network services that provide guarantees, on a per-
flow basis, on the end-to-end delay, jitter, loss, and throughput. Over the past decade,
several link scheduling algorithms that enable networks to provide such guarantees—by
arbitrating access to shared link bandwidth at routers by packets of different flows—
have been proposed [3, 4, 9–11, 19, 23, 24]. In this paper, we address the problem of
designing a work-conserving, core-stateless network architecture that can provide fair-
ness guarantees to flows. In what follows, we first justify the need for fairness as well
as core-stateless and work-conserving network architectures, and then summarize our
contributions.

Why Fairness? Fairness of bandwidth allocation is an important guarantee pro-
vided by link scheduling algorithms. Using a fair scheduling algorithm, routers provide
throughput guarantees to backlogged flows at short time-scales (independent of their
past usage of link bandwidth), and allocate idle link capacity to competing flows in
proportion to their weights (or reserved rates).

The property of providing throughput guarantees at short time-scales independent
of the past bandwidth usage by the flow is important for two reasons. First, in many
applications, sources may not be able to predict precisely their bandwidth requirements
at short time-scales (consider, for instance, the problem of transmitting variable bit-rate

1 This work appeared at the Eleventh International Workshop on Quality of Service
(IWQoS’03), Monterey, CA, June 2003.

encoded live video stream). To support these applications effectively, a network should
allow flows to utilize occasionally more than their reserved bandwidth if such over-
usage does not come at the expense of violating the bandwidth guarantees provided to
other flows. Second, it is in the best interest of a network to allow sources to transmit
data in bursts; bursty transmissions allow a network to benefit from statistical multi-
plexing of the available network bandwidth among competing traffic. If a network were
to penalize a flow for using idle bandwidth, then the source would have no incentive to
transmit bursts into the network; this, in turn, would reduce the statistical multiplexing
gains and thereby reduce the overall utilization of network resources.

The property of fair scheduling algorithms of allocating available bandwidth to
flows in proportion to their reserved rates is desirable from an economic perspective.
Consider, for instance, the case when a network provider charges its customers based
on their reserved bandwidth. In such a network, if a user

�
pays twice as much as user�

, then
�

expects the network to allocate bandwidth in the ratio 2:1 to users
�

and�
; any other allocation would be considered unfair. Fair scheduling algorithms allow a

network to ensure this proportionate allocation property independent of the amount of
available bandwidth.

Why Core-stateless? The design of next-generation networks is faced with the
challenge that link capacities and traffic demands are increasing rapidly [8, 12], whereas
processor speeds are increasing at only about half the rate [1]. This implies that the per-
packet processing and computation performed by next-generation routers must be sim-
plified to enable them to operate at high link speeds. Link scheduling algorithms pro-
posed in the last decade to enable networks to provide fairness guarantees to flows [3, 4,
9–11, 19], on the other hand, require routers to maintain and use per-flow state, and per-
form packet classification to identify the flow to which an incoming packet belongs. The
complexity of these operations grows as the number of flows increase. Thus, routers in
such fair networks may not be able to operate at high link speeds, especially routers in
the core of the network that aggregate a large number of flows originating from different
edges of the network.

In order to alleviate this issue, over the past few years, several core-stateless net-
works have been designed to provide end-to-end service guarantees without maintain-
ing or using any per-flow state at the core routers of a network [6, 7, 13, 16, 18, 20,
21, 25]; this property improves the scalability of the core routers to large number of
flows and high-speed links. Existing proposals for providing fairness in core-stateless
networks, however, only provide approximate fairness in the end-to-end throughput
achieved by flows over large time-scales [6, 7, 18, 20]. In particular, due to the statis-
tical nature of these guarantees, such schemes can not provide fairness guarantees to
short-lived flows or for specific durations of interest in the lifespan of long-lived flows.

Why Work-conserving? Throughput and proportionate allocation guarantees
can be ensured in networks that are non work-conserving, in which flows are allocated
no more than their reserved rates at any time. In fact, the only known core-stateless
networks that guarantee deterministically, that flows would receive throughput in pro-
portion to their reserved rates, are non work-conserving [21]. Non work-conserving net-
works shape the rate of incoming traffic to a maximum of the reserved rate for a flow;
sources are not allowed to achieve larger transmission rates, even if network bandwidth

is idle. This property results in high average delays [22] and limits the ability of the net-
work to utilize resource efficiently. With the predicted growth in traffic demands [12],
this is undesirable. To the best of our knowledge, the only kind of deterministic guar-
antees provided by work-conserving core-stateless networks proposed in the literature,
are on delay and throughput [13, 16, 17, 25].

Research Contributions In this paper, we propose the first work-conserving
core-stateless network that provides deterministic fairness guarantees. We argue that
an end-to-end notion of proportionate allocation in fair networks is meaningful only
when defined across flows that share the same end-to-end network path. We show
that networks that provide throughput guarantees are a crucial building block for net-
works that provide proportionate allocation guarantees. We then use a set of two simple
mechanisms—namely, aggregation and fair-ingress—to enable a core-stateless network
that provides throughput guarantees (previously proposed) to also guarantee propor-
tionate allocation. We show that the resultant network, referred to as a Core-stateless
Guaranteed Fair (CSGF) network, provides deterministic fairness guarantees similar to
those provided by core-stateful networks.

The rest of this paper is organized as follows. In Section 3, we formulate the prob-
lem of end-to-end fairness. In Section 4, we present the key insights and mechanisms
used to design CSGF networks. We derive properties of CSGF networks in Section 4.2.
Deployment considerations are discussed in Section 6. We summarize related work in
Section 7 and our conclusions in Section 8.

2 Notation and Assumptions
Throughout this paper, we use the following symbols and notation.���� : the ���
	 packet of flow ������
 � : arrival time of ���� at node � on its path� ���
 � : departure time of ���� from node �� �� : length of packet ����� � : rate reserved for flow �� � : upper bound on propagation delay of

the link connecting node � and ���������� � : outgoing link capacity at node �� ��
 � �
 "!$#" &%�� : throughput of flow � at server � during ' (!)#* &%,+- ��
 � , . �/
 0"��
 132 , 4 �/
 15
 � : constants associated with service guarantees6
denotes the number of routers along the path of flow � . The source of flow � is

connected to router � and the destination is connected to router
6

. A source is said
to transmit packets at least at its reserved rate � � , if �����
 !87 � ��9 !��
 ! �;: <,=?>@ A @ . The �B�
	
packet, ���� , transmitted from the source, is said to have a sequence number of � . The
throughput,

� ��
 � �
 ! #" % � , received by flow � at server � during a time interval ' ! #" % + ,
is defined as the number of bits of flow � that depart server � during the time interval' ! #* % + . Also, a flow � is said to be continuously backlogged at server � in a time interval' "!C#* &%,+ if, at all instances within this interval, there is at least one packet belonging to
flow � in the server queue. Throughout our analysis, we use the terms server and router

interchangeably; further, we assume that the sum of rates reserved for flows at any
server does not exceed the server capacity (i.e., the link bandwidth).

3 Problem Formulation
Background Networks can provide fairness guarantees by employing fair schedul-
ing algorithms at all routers [3, 4, 9–11, 19]. The fairness guarantee provided by fair
scheduling algorithms at a single node can be formalized2 as follows:

Definition 1. The scheduling algorithm at node � is said to provide a fairness guar-
antee if in any time interval ' /!$#" &%,+ during which two flows � and D are continuously
backlogged, the number of bits of flows � and D transmitted by the server,

� ��
 � �E ! #* % �
and

� 15
 � �E "!)#* &%�� respectively, satisfy:FFFF � ��
 � �E ! #* % �� � G � 15
 � �E ! #* % �� 1 FFFF 7 . �/
 0"��
 132 (1)

where � � and � 1 are the rates reserved for flows � and D respectively, and . �/
 0/��
 1H2
is an unfairness measure—a constant that depends on the scheduling algorithm and
traffic characteristics at server � . Further, if the sum of reserved rates of all flows at
node � does not exceed the outgoing link capacity, then in any time interval ' I!$#" &%,+ ,
during which the source of a flow � transmits packets at least at its reserved rate � � ,
the server guarantees a minimum throughput to flow � :� ��
 � �
 "!$#" &%��KJ � � �E &% G "!I� G � � - ��
 � (2)

where - ��
 � is an error term — a constant that also depends on traffic and server char-
acteristics.

Fair scheduling algorithms are capable of providing a proportionate allocation guar-
antee slightly stronger than given in (1): if flow D is continuously backlogged during' ! #* % + , then the throughput of any other flow � , whether backlogged or not, is given
by [15]: � ��
 � �
 "!C#" &%��� � 7 � 15
 � �
 "!C#" &%��� 1 �L4 �"
 15
 � (3)

where 4 �/
 1M
 � is a constant that also depends on the server and traffic characteristics.
Different fair scheduling algorithms differ in the values of . �"
 0/��
 132 , 4 �/
 1M
 � , and - ��
 � [3,
4, 10, 11, 19]. The smaller is the value of these constants, the better is the corresponding
throughput or proportionate allocation guarantee. Table 1 lists known values for several
algorithms.

The literature contains analyses that extend these single-server guarantees on through-
put and proportionate allocation to end-to-end guarantees provided by a network of
fair scheduling servers [2, 14, 15]. Specifically, a network of fair servers (1) guarantees
a minimum end-to-end throughput to flows with an associated error term, -ONQP ���
 R , and

2 Fairness of a link scheduling algorithm can be defined equivalently in terms of a bound on
its deviation from an idealized fluid model of fairness [3]. In terms of describing network
properties perceivable by end-users, however, Definition 1 is more useful.

Table 1. Unfairness measures for some fair algorithms

SUT"V W&X(V Y[Z \ T"V Y]V X ^QX,V T
GPS 0 0 0

SCFQ _a`Ob*c@ d @fe _a`gb"c` d ` _a`gb"c@ d @he _a`gb"c` d ` -

SFQ _a`Ob*c@ d @ e _a`gb"c` d ` _a`gb"c@ d @ e _a`gb"c` d ` i�j)kCl�m W&XnZ _a`gb"co pQq e _a`gb*c@ d @
WF r Q s Yut,v?w[xd @ e xd ` y

xp{z _a`gb"cd ` e s Yut(vX w]xd @ y xp]z _ `Ob*c@ d @ e}| _ `gb*c m _ `gb*c@�~pQq
(2) guarantees proportionate allocation of end-to-end throughput to flows that share
the same path, with an unfairness measure, . N�P �R{
 0/��
 132 , where these constants are given
by [2, 14, 15]:

- N�P ���
 R�� � 6 ����� � 1H�,�� � � � R 9 !��"� ! � � �
R��"� ! - ��
 � (4)

. N�P �R{
 0/��
 1H2M� . !
 0/��
 132 � R�
	 � % �
4 	

 ��
 1 ��4 	
 15
 � � (5)

Unfortunately, to provide fairness guarantees, fair scheduling algorithms require
routers to maintain per-flow state. It is especially challenging to design networks that
provide fairness without maintaining per-flow state in core routers because unlike delay
guarantees (that can be characterized entirely in terms of the intrinsic properties of
a flow such as its reserved rate), a fairness guarantee is inherently a function of the
state (throughput) of all other flows sharing a resource (Definition 1). Prior attempts at
designing core-stateless fair networks have realized this constraint; hence, prior designs
of core-stateless fair networks provide only statistical (or approximate) fairness over
large time-scales and for long-lived flows [6, 7, 18, 20]. In this paper, we attempt to
design a core-stateless network architecture that can provide deterministic end-to-end
fairness guarantees to flows.

Our Approach To derive a work-conserving, core-stateless network architecture
that can provide deterministic fairness guarantees, we observe that a core-stateful net-
work of fair routers provide to flows two types of guarantees: (1) throughput guarantee,
and (2) a per-link proportionate bandwidth allocation guarantee.

Recently, we have proposed CSGT—a Core-stateless Guaranteed Throughput net-
work architecture—that can provide end-to-end throughput guarantees to flows [16].
CSGT can provide, at all time-scales, a throughput guarantee that is within a constant
of what is provided by a core-stateful network of fair scheduling routers. Thus, CSGT
provides part of the functionality offered by a core-stateful network of fair routers. Un-
fortunately, since core routers in CSGT networks do not maintain any per-flow state,
they can not ensure per-link proportionate allocation of bandwidth to flows.

In what follows, we argue that the per-link proportionate bandwidth allocation of-
fered by fair scheduling algorithms translates to meaningful end-to-end guarantees only
when flows share the entire end-to-end paths. To support this argument, observe that

the end-to-end bandwidth allocated to a flow depends on the flow’s share of the bottle-
neck3 link bandwidth. Flows that share the entire end-to-end network path also share
the bottleneck link; hence, the allocation of bandwidth on the bottleneck link governs
the relative end-to-end bandwidth allocation to these flows. On the other hand, flows
that do not share the entire end-to-end network paths may not share the bottleneck link.
Further, since the bottleneck link for each flow may change continuously with fluctua-
tions in traffic conditions, even when the bottleneck link is shared between such flows,
the sharing is likely to be transient (or short-lived).4 Hence, in networks where each
router employs a fair scheduling algorithm to allocate spare bandwidth proportionally
among competing flows on a per-link basis, it is difficult to relate, in a consistent man-
ner, the end-to-end bandwidth allocated to two flows that do not share the complete
end-to-end path. Consequently, core-stateful networks can not provide any strong con-
sistent guarantees with respect to the relative bandwidth allocated to flows that do not
share complete path.

From the above arguments, we conclude that, from the perspective of a network
provider, an architecture that only supports end-to-end proportionate bandwidth allo-
cation (a weaker guarantee) is likely to be indistinguishable from a core-stateful fair
network architecture that supports proportionate allocation on a per-link basis. Hence,
in this paper, we explore the design of networks that can provide end-to-end through-
put guarantees and proportionate allocation guarantees to flows that share the same
end-to-end path. Our design proceeds in two steps. First, we show that a network that
provides throughput guarantees is a crucial building block for designing one that pro-
vides fairness guarantees. Second, we explore mechanisms that, when integrated with a
work-conserving core-stateless network that provides throughput guarantees, lead to the
design of the Core-stateless Guaranteed Fair (CSGF) network architecture—the first
work-conserving core-stateless architecture that provides deterministic fairness guar-
antees.

4 The Design of Core-stateless Guaranteed Fair Net-
works

4.1 Providing Fairness Guarantees: Key Insights
Our objective is to design a work-conserving, core-stateless network architecture that
can provide fairness guarantees to flows. Specifically, we want to provide two types of
guarantees: (1) an end-to-end throughput guarantee to each flow, and (2) a proportionate
bandwidth allocation guarantee to flows that share the same end-to-end path. In what
follows, we show that by decoupling the objectives of providing these two guarantees,

3 In this paper, the bottleneck link for a flow refers to the link with the least share of available
bandwidth for the flow, rather than the link with the least link capacity. Depending on the cross
traffic load, the link with the least share of available bandwidth for a flow may be different from
the link with the least link capacity.

4 For some flows, such as those that originate from a common source behind a slow modem line,
the access link may be the non-transient bottleneck link due to its limited capacity. However,
such links lie outside the scope of the network provider architectures we consider in this paper.
The edge and core routers that we consider belong to the provider’s network, which does not
include slow access links.

and by using the following two observations, we can design core-stateless networks that
provide both kinds of guarantees.

Observation 1 As the following theorem indicates, providing a throughput guaran-
tee is necessary for providing a proportionate allocation guarantee.
Theorem 1. A work-conserving server that provides proportionate allocation guar-
antees to a continuously-backlogged flow D of the form:5� ��
 � �E ! #* % �� � 7 � 1M
 � �
 ! #" % �� 1 �L4 �"
 15
 � (6)

where � is any other flow, also provides to flow D a throughput guarantee of the
form: � 15
 � �E "!)#* &%��{� � 1 �
 &% G "!n� G � 1�� - 15
 �
where - 1M
 � � : `gb*c� q � i @(�n� A @,� q�� ` � @� q , and

� �
is the total capacity of the server.

Proof: See Appendix A. ��
The converse of the above theorem indicates that a server that does not provide
throughput guarantees can not provide proportionate allocation guarantees. A
core-stateless network that provides throughput guarantees is, therefore, a crucial
building block for the design of one that provides proportionate allocation.

Observation 2 A network that is capable of providing throughput guarantees, can
additionally provide end-to-end proportionate bandwidth allocation to flows that
share the same path, by employing a set of three mechanisms:
1. Treat the aggregate traffic between a pair of edge nodes as a single flow and

provide throughput guarantees to it,
2. Employ a fair scheduling algorithm at the ingress edge node, that allocates a

proportionate share of the aggregate throughput (at the ingress) to individual
flows within the aggregate, and

3. Ensure that the network preserves the order in which packets are transmitted
within the aggregate at the ingress node.

The third mechanism implies that the sequence in which packets depart at the last
node in any time interval ' /!$#" &%,+ —and hence the relative number of packets of two
flows that depart in this time interval—can be equated to the sequence of packet
departures at the ingress node in some other time interval ' "� ! #* &�% + . The end-to-end
proportionate allocation guarantee provided by the network is, therefore, exactly
the same as the one provided by the ingress server. The second mechanism ensures
that the ingress server does provide such a guarantee. The first mechanism ensures
that the aggregate traffic on the end-to-end path is guaranteed a minimum through-
put; since the individual flows are allocated a proportionate share of this aggre-
gate throughput, it follows that individual flows are provided minimum throughput
guarantees as well. A network that employs the above three mechanisms, therefore,
provides throughput as well as proportionate allocation guarantees to individual
flows.

5 Note that this notion of proportionate allocation is slightly different from that in Definition 1,
which requires both flows to be backlogged. It can be shown that fair scheduling algorithms
provide this stronger notion of proportionate allocation as well [15].

Note that any core-stateless network that employs the three mechanisms described
above can provide fairness guarantees. Below, we present one specific instantiation of
such a network, called the Core-stateless Guaranteed Fair (CSGF) network.

4.2 Realization: A CSGF Network
As discussed above, a core-stateless network that provides throughput guarantees is a
crucial building block for the design of one that provides fairness guarantees. In [16],
we have proposed the Core-stateless Guaranteed Throughput (CSGT) network archi-
tecture, a work-conserving core-stateless architecture that enables a network to provide
throughput guarantees. We briefly describe this architecture below.

A CSGT Network
A number of work-conserving core-stateless networks that provide delay guarantees
have been proposed in the literature [13, 17, 25]. These networks, however, do not pro-
vide throughput guarantees to flows at short time-scales. This is a consequence of a
central property of these networks to let packet deadlines grow ahead of current time for
flows that use idle bandwidth to transmit packets at more than their reserved rates. Such
flows may be penalized during a subsequent time interval by being denied throughput
at even their reserved rate. To avoid this, a CSGT network re-uses deadlines of packets
that depart the network much earlier than their deadlines, for new packets within the
same flow. Formally, a CSGT network is defined as follows [16].

The Definition of a CSGT Network A CSGT network consists of two types of
routers: edge routers and core routers (see Figure 1). The ingress edge router, in addition
to maintaining per-flow state, maintains a sorted-list � of re-usable deadline vectors.
On receiving a packet ���� of flow � , the ingress router assigns to it a deadline vector6' ��!)� � �� �,#/�O%?� � �� �I#n������#"� R � � �� ��+ where

6
is the number of servers along the path of flow� , and � � � ���� � is the deadline of packet ���� at server � . The assignment of the deadline

vector to packet ���� proceeds as follows: If ������ , an incoming packet is assigned
the smallest deadline vector from � . Otherwise, a new deadline vector is created as
follows:

��!�� � �� � ���¡ C¢ � � ���
 ! #U£� � � � ���
 ! �*�g� � ��� � (7)

� � � � �� � � ��!)� � �� �g� � 9 !�	 � ! �E¤
��
 	 � � 	 �g�¥��� G ��� �¡ C¢!(¦�§E¦ �

� §�� � #¨�¡J¥� (8)

where ¤ ��
 	 � : `gb*c© � © , � 	 is the propagation latency on the link connecting node � and�ª��� , and £� � �E *� is the maximum deadline at server � assigned to any packet of flow� by time . All servers in the CSGT network transmit packets in the increasing order
of their deadlines at that server. The egress server notifies the ingress server, using
acknowledgment packets, whenever packets depart much earlier than their deadlines.

6 In practice, the ingress router computes only « x wa¬®­X z —the other values are computed at the
respective routers by adding appropriate constants to « x wa¬ ­X z .

...

Customer
Cloud

Customer
Cloud

Router

Ingress
Edge

Router
Core Edge

Router

Egress

Destination
2

Sequencer
1 H

Source

Access Link

Fig. 1. The CSGT Network Architecture

When deadlines get re-used as described above, packets of a flow � may depart
the egress router out-of-order. This is because packets transmitted later by the source
may be assigned smaller deadlines than packets transmitted earlier, and may overtake
the latter inside the network. To provide in-order delivery semantics to applications, a
CSGT network employs an entity, referred to as the sequencer, to buffer packets of a
flow that arrive out-of-sequence at the egress router, and restore packet order before
delivering them to the destination. In order to bound the buffer space occupancy at the
sequencer, the maximum number of deadlines simultaneously in use by packets of a
given flow is maintained within an upper bound,

�
.

The following theorem from [16] derives the throughput guarantee provided by a
CSGT network.

Theorem 2. If the source of flow � transmits packets at least at its reserved rate, and¯ 1H�,�
is an upper bound on the latency after which an acknowledgment packet trans-

mitted by the egress node reaches the ingress node, then a CSGT network guarantees a
minimum throughput in any time interval ' ! #* % + , � ��
 R �E ! #" % � , given by:� ��
 R �E "!$#" &%��{J � � �E &% G "!�� G � �5� ¯ 1H�,� G � � � �

G � �±°² � 6 �³�$� � �� � �
R 9 !��"� ! � � �

R��"� ! ¤ ��
 �n´µ
where ¤ ��
 � is a constant that depends on the server and traffic characteristics at node� .

Recall that fair networks provide two kinds of guarantees: a minimum throughput
guarantee at the reserved rate and a proportionate allocation guarantee. Theorem 1 in-
dicates that networks that guarantee proportionate allocation, also provide throughput
guarantees. A network that provides throughput guarantees, however, need not guaran-
tee proportionate throughput allocation to different flows. For instance, a network may
provide throughput exactly at the reserved rate to one flow, but may allow another flow
to use significantly more than its reserved rate. In fact, it can be shown, through ex-
amples, that a CSGT network does not guarantee proportionate throughput allocation.
Appendix B presents one such example.

A CSGF Network

We use the set of three mechanisms described in Section 4.1 (Observation 2), in con-
junction with a CSGT architecture that provides throughput guarantees, to design a
core-stateless network architecture that provides fairness guarantees. Observe that a
CSGT network already has the third mechanism, namely in-order delivery of packets,
in place — the role of a sequencer is precisely to restore the correct packet order before
packets depart the network. We instantiate the first two mechanisms in a CSGT network
to derive a new architecture—referred to as a Core-stateless Guaranteed Fair (CSGF)
network—which is defined below. Figure 2 depicts the scheduling framework deployed
at the ingress router of a CSGF network.

f1

f2

f3

f4

f5

f6

2F

F1

F3

SFQ

SFQ

SFQ

CSGT

Employs deadline re−use

Micro−flows sharing same end−to−end path

Aggregate flows

Fig. 2. Scheduling in a CSGF Ingress Router

Definition of a CSGF network: The ingress router for � , a set of flows sharing
the same end-to-end path in a CSGF network, has two logical components:

– Deadline Assignment: A packet that belongs to an “aggregate” flow � is assigned
a tag-vector exactly as in a CSGT network; new tag-vectors are computed using a
reserved rate of ¶ � i ��·�¸ � � .

– Packet Selection: The next packet to be assigned a deadline within an aggregate
flow � , is selected according to a fair schedule of transmission across individual
flows in � . Since the bandwidth available to the aggregate � can fluctuate over
time due to variations in cross-traffic, it is desirable to use a scheduler that achieves
fair allocation even with fluctuating capacity. We use the Start-time Fair Queuing

(SFQ) [11] scheduler, which has this property, to determine the next flow to select
a packet from.7

The core routers and the egress router in a CSGF network function in the same manner
as in a CSGT network. At the egress, a sequencer re-orders packets within the “aggre-
gate” before they are split into micro-flows.

Properties of a CSGF network

We now formally derive the proportionate allocation and throughput guarantees pro-
vided to individual flows by a CSGF network. We assume that all flows between the
same pair of edge routers transmit packets of the same size

�
.8

Proportionate Allocation Guarantees Our objective is to compute:¹¨º @ � »½¼ � >
 �E¾"¿A @ G º ` � » ¼ � >
 �E¾*¿A
`

À
, the difference in the normalized number of bits of two

backlogged flows � and D , that depart the sequencer during a time interval ' I!$#* &%I+ .
Let � be the aggregate flow containing packets of micro-flows � and D . Let � ! and� % , respectively, be the first and last bits belonging to the aggregate � , that depart the

sequencer during ' /!$#* &%I+ . Then, since packets belonging to � depart the sequencer in
the same order as their transmission from the SFQ server at the ingress node, all (and
only) bits that are transmitted between � ! and � % at the ingress SFQ server, depart the
sequencer during ' ! #* % + . If � ! and � % are transmitted from the ingress SFQ server at "� !
and �% , respectively, then the throughput of flow � and flow D at the sequencer during' ! #* % + is exactly the same as their throughput at the ingress server during ' /� ! #* &�% + . That
is,
º @ � » ¼ � >
 � ¾ ¿A @ � º @ � > ¼ �EÁ >
 �EÁ¾ ¿A @ , and

º ` � » ¼ � >
 �E¾*¿A
` � º ` � > ¼ �EÁ >
 �EÁ¾ ¿A

` . The unfairness measure
guaranteed to flows for the end-to-end throughput during ' ,!)#* &%I+ in a CSGF network
is, therefore, equal to that of the SFQ server at the ingress node during ' /� ! #* &�% + . For a
backlogged flow D , it follows that:� ��
 R �
 ! #" % �� � 7 � 15
 R �E ! #* % �� 1 �Â.ÄÃ ¸ÆÅ��
 1 (9)

Throughput Guarantees Theorem 2, which states the throughput guarantees of
a CSGT network, indicates that the aggregate traffic between the pair of edge routers in
a CSGF network is guaranteed a minimum throughput characterized by ¶ � i ��·�¸ � � ,
the cumulative reserved rate. Since each flow gets a fair share of this throughput, it
follows (using the same reasoning as used to prove Theorem 1), that each micro-flow
is provided a throughput guarantee as well. We formally derive this guarantee for a
backlogged flow D below.

7 Note that any fair scheduling algorithm that guarantees proportionate allocation despite fluctu-
ating capacity can be used at the ingress. SFQ has one of the best known unfairness measures,SUT"V W*X(V Y[Z

, among such algorithms (see Table 1).
8 If s Yut,v is the maximum allowed packet size, it is reasonable to expect a source that is back-

logged with data to transmit, to use packets of size s Yut(v .

The throughput guarantee of a CSGT network derived in Theorem 2, when applied
to a CSGF network, implies that

� ¸Ç
 R �E "!)#* &%��{JÈ¶É�E &% G "!n� G � � G ¶ °² � 6 ����� �¶ � R 9 !��"� ! � � �
R��"� ! ¤ ��
 � � ¯

1H�,� ´µ(10)

Let � � º ` � »½¼ � >
 � ¾ ¿A
` . From (10) and (9), it follows that:

¶Ê�
 % G ! � G � � � G ¶ °² � 6 ����� �¶ � R 9 !��"� ! � � �
R��"� ! ¤ ��
 � � ¯

1K�I� ´µ
7 ���·�¸ � ��
 R �
 ! #" % �
7 ���·�¸ � � � � � � � � .ÄÃ ¸ÆÅ��
 1
7 � � ¶�� ���·�¸ � � � �� 1 � �� � �
7 � � ¶�� �� 1 ¶�� ���·�¸ �

This implies that a CSGF network provides a per-flow throughput guarantee given by:� 15
 R �E ! #* % �H� � 1 �
 % G ! � G � 1¶ � � �³�$� � G � 1¶ ��)·�¸ �
G � 1 °² � 6 �³�$� �¶ � R 9 !��"� ! � � �

R��"� ! ¤ ��
 � � ¯
1H�,� ´µ (11)

5 Evaluation of a CSGF network
The CSGF is the first work-conserving core-stateless network architecture that provides
deterministic end-to-end throughput and proportionate allocation guarantees. We next
address the question: how do the end-to-end fairness guarantees of a CSGF network
compare to those provided by core-stateful fair networks? We answer these questions
below by comparing the error terms (-ÆN�P ���
 R) and unfairness measures (. N�P �R{
 0/��
 132), as-
sociated with the end-to-end throughput and proportionate allocation guarantees re-
spectively (Section 3), of CSGF and core-stateful networks. For our computations, we
consider example network topologies in which link capacities are ��Ë�Ë?ÌÎÍ ��Ï and the
propagation latency on each link is �nD Ï .
5.1 Proportionate Allocation Guarantees
Observe that the proportionate allocation guarantee in a CSGF network (Inequality (9))
is even better than that provided by a core-stateful network of SFQ servers (see (5)). The
reason for this is that while packets of different flows depart the sequencer in a CSGF

network exactly in the same order as transmitted by the fair ingress server, packets
from different flows that share the same end-to-end path in a core-stateful network
may not depart the network in the same order. The end-to-end fairness guarantee of
a core-stateful network, therefore, can not be equated to that of its ingress server. We
compute the unfairness measures provided by CSGF and a core-stateful networks of
SFQ servers9 for the example topology described above (

� � ��Ë�Ë?ÌÎÍ ��Ï and single-
link propagation latency = ��D Ï).

Observe that the difference in the unfairness measures provided by CSGF and a
core-stateful network of SFQ servers is directly proportional to

6
, the path length, and

inversely proportional to � � , the reserved rates of the concerned flows. Figure 3(a) plots
the unfairness measures provided by both network architectures, as a function of the
reserved rates of individual flows (assuming � � � � 1) and the path length (varied from� to ��Ë). We observe that, for large-scale network topologies, the unfairness measure
in a core-stateful architecture can be an order of magnitude higher than in a CSGF
architecture.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

U
nf

ai
rn

es
s

M
ea

su
re

 (s
ec

)

Reserved Rate (Mbps)

CSGF
SFQ :H=2
SFQ :H=4
SFQ :H=8

SFQ :H=10

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

r *
 (U

nf
ai

rn
es

s
M

ea
su

re
)

 (
K

B
)

H: Path Length

SFQ Network
CSGF Network

(a) Unfairness Measure (b) Maximum Difference in Throughput

Fig. 3. Proportionate Allocation of Throughput in a CSGF Network

Figure 3(a) indicates that the throughput received in a CSGF network by two flows� and D , during any given time interval, may differ by an amount worth playing out
for a few milli-seconds. To put this observation in perspective, we plot the reserved rate
multiplied by the unfairness measure, in Figure 3(b). We observe that, during a given
time interval, a CSGF network may deliver only a few kilo-bytes of more data for one
flow, in comparison to other flows. In large-scale core-stateful networks, on the other
hand, the difference in throughput could be of the order of tens of kilo-bytes.

9 SFQ provides one of the smallest unfairness measures among known stateful fair scheduling
algorithms.

5.2 Throughput Guarantees
We next compute and compare -ÆNQP ���
 R —the minimum timescale at which non-zero through-
put is guaranteed to an application—in a CSGF , CSGT, and core-stateful network of
WF % Q+ [4] servers.10 The smaller is the value of -¨NQP ���
 R for a network, the better is its
throughput guarantee [16]. The difference in -gNQP ���
 R for the three network architectures
is governed mainly by the quantities (see (4), (11), and Theorem 2): � � , the reserved
rate of a flow, ¶ , the aggregate reserved rate between a pair of edge routers,

6
, the

number of hops in the path,
¯ 1H�,�

, the maximum latency experienced by feedback
messages, and ¶ 1H�,� , the maximum rate a flow in a CSGT or CSGF network is allowed
to achieve.11 We use the topology described initially (

� � ��Ë�Ë?ÌÎÍ ��Ï and single-link
propagation latency = ��D Ï), to compute -gN�P ���
 R for different settings of these quantities.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

N
on

-z
er

o
Th

ro
ug

hp
ut

 T
im

es
ca

le
 (m

s)

Reserved Rate (Mbps)

WF2Q+
CSGF: Rmax/R=1.5

CSGF: Rmax/R=2
CSGF: Rmax/R=3

CSGT: Rmax/R=1.5
CSGT: Rmax/R=2
CSGT: Rmax/R=3

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10

N
on

-z
er

o
Th

ro
ug

hp
ut

 T
im

es
ca

le
 (m

s)

H : Path Length

WF2Q+
CSGF:D=pi

CSGF:D=2pi
CSGF:D=3pi
CSGT:D=pi

CSGT:D=2pi
CSGT:D=3pi

(a) Effect of Ð X and Ñ `gb"cÑ (b) Effect of Ò and Ó Yut,v
Fig. 4. Throughput Guarantee in a CSGF Network

Figure 4(a) plots for the three network architectures, the value of -gN�P ���
 R as a function
of � � , the reserved rate for a flow, for different values of ¶ 1H�,�BÔ ¶ , when the flow
traverses a ��Ë -hop path. We assume

¯ 1H�,�
is equal to the sum of link propagation

latencies on the reverse network path. We observe the following:

1. For flows with small reserved rates, the per-flow throughput guarantee provided by
a CSGF network may be better than that of a CSGT network. The reason for this
can be understood by observing that -gN�P ���
 R for a flow � is inversely related to � � , its
reserved rate (see (11) and Theorem 2). The throughput guarantee provided to the
“aggregate” flow (larger reserved rate) in a CSGF network is, therefore, better than
that provided to a micro-flow (smaller reserved rate) in a CSGT network. When

10 A WF r Q+ network guarantees the smallest
^ j�Õ�ÖX(V ×

among known stateful fair scheduling al-
gorithms. For networks with uniform packet sizes, the single-node throughput guarantee of a
WF r Q+ server is characterized by

^?X,V TKØ _d @ [4].
11 Ù Yut,v governs the value of Ú , the maximum number of deadlines used simultaneously in

CSGT and CSGF networks [16].

combined with the fact that the unfairness measure of a CSGF network is small,
this implies that the throughput guarantee provided to a micro-flow in a CSGF
network may be better than in a CSGT network. The difference between the two
networks is less for flows with large bit-rates.

2. The throughput guarantee of a CSGF network may be better than that of a core-
stateful network for flows with small reserved rates. This is because although -ONQP ���
 R
is inversely related to � � for both CSGF and core-stateful networks, the inverse
relation is much stronger for flows that traverse multi-hop paths in core-stateful
networks (see (4) and (11)). For flows with large reserved rates, however, the addi-
tional terms in (11), as compared to (4), dominate the value of -ON�P ���
 R .

Figure 4(b) plots for the three network architectures, the value of -ON�P ���
 R for a ��ÌÎÍ ��Ï flow
as a function of

6
, for

¯ 1H�,�
ranging from a multiple of � to Û times the sum of link

propagation latencies. Flows in the CSGT and CSGF networks are allowed to achieve
a maximum rate of up to Û times their reserved rates (¶ 1H�,�QÔ ¶ = Û). We observe the
following:

1. -�NQP ���
 R increases linearly with the number of hops traversed by a flow in all three
network architectures. In CSGT and CSGF networks, -gN�P ���
 R also increases with¯ 1H�,�

; these networks, therefore, benefit from the provisioning of low-delay feed-
back channels between edge routers.

2. The throughput guarantee provided by a CSGF network is comparable to that pro-
vided by core-stateful networks (even when

¯ 1K�I�
is two times the sum of prop-

agation latencies). Perhaps more importantly, we find that a CSGF network can
guarantee non-zero throughput to flows, including flows with small reserved rates,
at short time-scales of hundreds of milliseconds.

Our observations illustrate that a CSGF network is capable of providing throughput
guarantees to individual flows at small time-scales. Large-scale CSGF networks provi-
sioned with low-delay feedback channels may provide even better throughput guaran-
tees to flows with small reserved rates, than core-stateful networks.

5.3 Discussion
Our observations in this section reveal that the end-to-end proportionate allocation guar-
antee of a CSGF network is better than that provided by core-stateful fair networks.
Note that because a CSGF network does not maintain per-flow state in core routers, it,
unlike core-stateful networks, does not guarantee the stronger notion of single-link (bot-
tleneck) proportionate allocation. It may seem tempting to conclude that this stronger
guarantee is useful to relate the throughput of flows that share their paths only partially.
However, as argued in Section 3, two such flows may not share their bottleneck links,
which govern the allocation of end-to-end throughput. Further, even if the flows share
their bottleneck links, the sharing may be short-lived. Hence, it is difficult to relate, in
a consistent manner, the end-to-end bandwidth attained by the two flows whose paths
overlap only partially. Hence, we believe that our weaker notion of end-to-end propor-
tionate allocation across flows that share the same end-to-end path, is adequate for the
purposes of defining meaningful end-to-end service semantics.

We also find that it is possible to design CSGF networks that provide throughput
guarantees similar to core-stateful networks by provisioning low-delay feedback chan-

nels between edge routers. However, the ability to provide comparable guarantees, with-
out maintaining per-flow state in core routers, does not come for free. We discuss some
of these issues in the next section.
6 Deployment Considerations
Use of a Sequencer A CSGF network uses a sequencer to provide in-order
delivery of packets to applications. It has been shown in [16] that sequencer buffer
requirements are modest even in large-scale networks.

It may seem that due to re-sequencing delays, end-to-end delay guarantees provided
to flows in a CSGT or a CSGF network are weaker than those provided in core-stateful
fair networks. This is, however, not the case, as is evident from the following two facts.
First, despite deadline re-use, the transmission deadlines assigned to a given packet at
routers in a CSGT or a CSGF network are never larger than the deadlines assigned to
it without deadline re-use [13], or in a corresponding core-stateful network (we omit a
detailed proof of this assertion). Second, a CSGT network provides deadline guarantees
(see Lemma Ü of [16]). Together, these two facts imply that the delay guarantees pro-
vided in CSGT or CSGF networks are no worse than those provided by a core-stateful
network of fair servers.

Feedback Channels The CSGF proportionate allocation guarantee does not de-
pend on the delay or losses experienced by feedback messages on the reverse network
path—it merely depends on the proportionate allocation guarantee of the ingress server.
The throughput guarantee, on the other hand, depends on the maximum delay expe-
rienced in the feedback channels—the larger are the delays and losses on the reverse
path, the weaker is the throughput guarantee. Note that delays or losses, though only
those that occur on the forward path, can weaken the throughput guarantee of even core-
stateful networks. Nevertheless, adequately provisioned feedback channels between the
edge routers are an essential component of a CSGF or a CSGT architecture.

Overhead Due to Feedback Messages The transmission of feedback mes-
sages from the egress routers to the ingress routers in a CSGT or CSGF network raises
some concern about the overhead introduced by this traffic. This overhead can be re-
duced for flows with bi-directional data transmission; the acknowledgments from the
egress router can be piggy-backed on to data packets on the reverse path. In general,
this overhead is a price paid for eliminating per-flow state and computation in the core
of the network. It is, however, worthwhile to note that feedback messages are transmit-
ted on the reverse path only when packets depart much earlier than their deadlines. This,
in turn, happens only when sufficient idle bandwidth is available on the forward path.
The feedback messages enable the efficient and fair use of such idle bandwidth on the
forward path.

Complexity of Edge Routers Edge routers in a CSGF network are more com-
plex than in core-stateful networks—the additional complexity is in terms of both extra
per-aggregate state (set of reusable deadlines), as well as the use of two schedulers
instead of one. Note, however, that the scheduler complexity is associated mainly with
maintaining priority queues. In a CSGF network, priority queue operations incur a com-
plexity of ÝÉ�EÞ�ß�à{áªâã�LÞ�ßQà½á ¸ � , where áäâ is the number of aggregates and á ¸ is the

average number of flows within an aggregate. In a corresponding core-stateful network,
the priority queue complexity is ÝÉ�EÞ�ß�à��
á â � á ¸ �"� , which is the same as above. There-
fore, processing complexity of ingress routers in CSGF networks is similar to those in
core-stateful networks. Since edge routers are likely to process lower volumes of traffic,
the extra state maintenance may not affect the performance of the network.

The egress edge router does not maintain any extra per-flow or per-aggregate state
information; the sequencer does buffer packets that arrive out of sequence and maintains
them in a sorted order of their sequence number. However, as mentioned before, the
sequencer buffer space requirement is modest even in large-scale networks. This also
implies that the size of the priority queue is bounded and small; the priority queue
maintenance, therefore, does not introduce significant costs.

Admission Control In this paper, we have addressed the issue of providing fair-
ness guarantees without maintaining per-flow state in the data path of core routers. Note,
however, that we still need to ensure that the sum of reserved rates of flows at any router
does not exceed its outgoing link capacity. One way to ensure this is to maintain and
use per-flow state only in the control plane of core routers; since the control plane is
accessed at a much lower frequency than the data plane, this may not affect the scalabil-
ity and performance of the core routers. Recently, admission control frameworks have
been proposed, that, instead of maintaining state at all routers, either use one or more
bandwidth brokers or the edge routers to perform admission control [5, 26].

7 Related Work
The Core-Jitter Virtual Clock (CJVC) [21] network provides the same end-to-end delay
guarantees as a corresponding core-stateful Jitter Virtual Clock network. A CJVC net-
work, however, is non work-conserving, which limits network utilization and results
in higher average delays, as discussed before. A number of work-conserving core-
stateless networks that provide end-to-end delay guarantees similar to core-stateful
networks have been proposed recently [13, 17, 25]. However, these networks do not
provide throughput guarantees at short time-scales (they may penalize flows that use
idle capacity to transmit at more than their reserved rates). The first core-stateless net-
work that provides throughput guarantees at short time-scales has been proposed re-
cently [16]. This architecture, however, does not guarantee proportionate allocation of
throughput across flows sharing the same end-to-end path. Core-stateless schemes pro-
posed to provide fairness, provide only approximate fairness in the long-term through-
put achieved by flows. In particular, these schemes do not provide guarantees for short-
lived flows or for specific durations of interest in the lifespan of long-lived flows [6, 7,
20].

8 Summary
In this paper, we present the Core-stateless Guaranteed Fair (CSGF) network architecture—
the first work-conserving core-stateless architecture that provides deterministic end-to-
end fairness guarantees at short time-scales. We decouple the throughput and propor-
tionate allocation guarantees provided by a fair network and use a number of insights to
develop a core-stateless network that provides both guarantees. First, we argue that an
end-to-end notion of proportionate allocation is meaningful only when defined across

flows that share the same end-to-end path. Second, we show that for a network to guar-
antee proportionate allocation, it must also provide throughput guarantees. Third, we
show that a set of three mechanisms—fair access at the ingress, aggregation of micro-
flows in the core, and re-sequencing at the egress—when used in conjunction with a
network that provides throughput guarantees, leads to a network that guarantees pro-
portionate allocation as well. We use these insights, and the previously proposed CSGT
network architecture, to design a CSGF network that provides deterministic fairness
guarantees at short time-scales. The end-to-end proportionate allocation guarantee of
a CSGF network is better than that or a core-stateful fair network. The end-to-end
throughput guarantees of CSGF networks provisioned with low-delay feedback chan-
nels are comparable to core-stateful networks, and may even be better for flows with
small bit-rate requirements.

References
1. V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D.C. Burger. Clock Rate Versus IPC: The

End of the Road for Conventional Microarchitectures. In 27th International Symposium on
Computer Architecture (ISCA), June 2000.

2. J.C.R. Bennett, K. Benson, A. Charny, W.F.Courtney, and J.Y. LeBoudec. Delay Jitter
Bounds and Packet Scale Rate Guarantee for Expedited Forwarding. In IEEE/ACM Trans-
actions on Networking, volume 10, pages 529–540, August 2002.

3. J.C.R. Bennett and H. Zhang. WF r Q: Worst-case Fair Weighted Fair Queuing. In Proceed-
ings of INFOCOM’96, pages 120–127, March 1996.

4. J.C.R. Bennett and H. Zhang. Hierarchical Packet Fair Queueing Algorithms. In IEEE/ACM
Transactions on Networking, volume 5, pages 675–689, October 1997.

5. S. Bhatnagar and B.R. Badrinath. Distributed Admission Control to Support Guaranteed
Services in Core-stateless Networks. In Proceedings of IEEE INFOCOM, April 2003.

6. Z. Cao, Z. Wang, and E. Zegura. Rainbow Fair Queueing: Fair Bandwidth Sharing Without
Per-Flow State. In Proceedings of IEEE INFOCOM, March 2000.

7. A. Clerget and W. Dabbous. TUF: Tag-based Unified Fairness. In Proceedings of IEEE
INFOCOM, April 2001.

8. K. Coffman and A. Odlyzko. The Size and Growth Rate of the Internet. March 2001.
http://www.firstmoday.dk/issues/issue3 10/ coffman/.

9. A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing Algo-
rithm. In Proceedings of ACM SIGCOMM, pages 1–12, September 1989.

10. S.J. Golestani. A Self-Clocked Fair Queueing Scheme for High Speed Applications. In
Proceedings of INFOCOM’94, 1994.

11. P. Goyal, H. Vin, and H. Cheng. Start-time Fair Queuing: A Scheduling Algorithm for
Integrated Services Packet Switching Networks. In Proceedings of ACM SIGCOMM’96,
pages 157–168, August 1996.

12. P. Kaiser. A (R)evolutionary Technology Roadmap Beyond Today’s OE Industry. NSF
Workshop on The Future Revolution in Optical Communications & Networking, December
2000.

13. J. Kaur and H. Vin. Core-stateless Guaranteed Rate Scheduling Algorithms. In Proceedings
of IEEE INFOCOM, volume 3, pages 1484–1492, April 2001.

14. J. Kaur and H. Vin. Core-stateless Guaranteed Throughput Networks. Technical Report TR-
01-47, Department of Computer Sciences, University of Texas at Austin, November 2001.

15. J. Kaur and H. Vin. End-to-end Fairness Analysis of Fair Queuing Networks. In Proceedings
of the 23rd IEEE International Real-time Systems Symposium (RTSS), December 2002.

16. J. Kaur and H. Vin. Core-stateless Guaranteed Throughput Networks. In Proceedings of
IEEE INFOCOM, volume 3, April 2003.

17. C. Li and E. Knightly. Coordinated Network Scheduling: A Framework for End-to-end
Services. In IEEE ICNP, November 2000.

18. R. Pan, B. Prabhakar, and K. Psounis. CHOKE, A Stateless Active Queue Management
Scheme for Approximating Fair Bandwidth Allocation. In Proceedings of IEEE INFOCOM,
March 2000.

19. A.K. Parekh. A Generalized Processor Sharing Approach to Flow Control in Integrated Ser-
vices Networks. PhD Thesis, Department of Electrical Engineering and Computer Science,
MIT, 1992.

20. I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing: Achieving Approximately
Fair Bandwidth Allocations in High Speed Networks. In Proceedings of ACM SIGCOMM,
September 1998.

21. I. Stoica and H. Zhang. Providing Guaranteed Services Without Per Flow Management. In
Proceedings of ACM SIGCOMM, September 1999.

22. H. Zhang. Service Disciplines For Guaranteed Performance Service in Packet-Switching
Networks. Proceedings of the IEEE, 83(10), October 1995.

23. H. Zhang and S. Keshav. Comparison of Rate-Based Service Disciplines. In Proceedings of
ACM SIGCOMM, pages 113–121, August 1991.

24. L. Zhang. VirtualClock: A New Traffic Control Algorithm for Packet Switching Networks.
In Proceedings of ACM SIGCOMM’90, pages 19–29, August 1990.

25. Z.L. Zhang, Z. Duan, and Y.T. Hou. Virtual Time Reference System: A Unifying Scheduling
Framework for Scalable Support of Guarantees Services. IEEE Journal on Selected Areas in
Communication, Special Issue on Internet QoS, December 2000.

26. Z.L. Zhang, Z. Duan, Y.T. Hou, and L. Gao. Decoupling QoS Control from Core Routers:
A Novel Bandwidth Broker Arcitecture for Scalable Support of Guaranteed Services. In
Proceedings of ACM SIGCOMM, Sweden, August 2000.

A Proof of Theorem 1
A work-conserving server that has at least one continuously backlogged flow in ' ! #* % +
would satisfy:

i ��·�¸ � ��
 � �E "!C#* &%��å� � � �
 &% G "!I� G � 1H�,� , where the
� 1H�,�

term appears
due to packetization effects.

Consider a particular interval ' (!C#" &%,+ . Let � � º ` � q ¼ �E¾ 9 � > ¿A
` . From (6), for any other

flow � (whether continuously backlogged or not), we have:
� ��
 � �E % G ! � 7 � � � � �� �¨� 4 �"
 15
 � . Since we assume that the sum of reserved rates at any server does not exceed

its capacity (Section 2), we have:� � �E % G ! � G � 1H�,� 7 ���·�¸ � ��
 � �E ! #" % �
7 � � ��)·�¸ � � � ���·�¸ � � 4 �"
 15
 �
7 � � � � � ���·�¸ � � 4 �"
 15
 �

This implies: � � �
 &% G "!I� G : `gb"c� q G i @(�n� A @n� q�� ` � @� q . Therefore,
� 15
 � �E "!C#* &%��å�� 1 �E &% G "!I� G � 1 - 15
 � , where - 15
 � � : `gb"c� q � i @,�I� A @,� q�� ` � @� q .

Node
1

Node
3

Node
2

Before t=8: 3 pkt/ 5 sec
After t=8: 1 pkt/ 5 sec

1 pkt/sec 1 pkt/sec

1 pkt/sec

Fig. 5. Topology for the Example

B CSGT Networks Do not Guarantee Proportionate Al-
location: An Example

At time � Ë , let flow � be created, and at time � ËU��� , let flow D be created. Let
both flows traverse the 3-hop network depicted in Figure 5. Let the reserved rate of each
of the flows at all nodes be � packet every ��Ë seconds. Let the CSGT parameter,

�
,

for flows � and D be Ü —this implies that by any time , no packet (from either flow �
or flow D) with a deadline greater than ��³Ü � ��Ë has been transmitted from the first
(ingress) node.

Let the transmission capacity on all outgoing links, except the link from node Ü to
node Û , be � packet every second, and let there be no other flows sharing these links.
Let the capacity available to flows � and D on the link from node Ü to node Û (which is
shared with other flows) be Û packets every æ seconds before ��ç , and � packet everyæ seconds after ��ç . Let the link propagation latencies be Ë .

Since
� � Ü for both flows, at � � , the first node transmits the following se-

quence of packets starting at � Ë : at � � , the first flow � packet with a deadline of��Ë ; at � Ü , the first flow D packet with deadline of ��Ë®��� ; at � Û , the second flow� packet with deadline of Ü)Ë ; and at �}è , the second flow D packet with deadline ofÜ)Ë®��� .
The acknowledgment for the second flow � packet (deadline= Ü�Ë) arrives at the first

node at �êé , at which time, the first node re-uses it for the third flow � packet,
which gets transmitted by � ��Ë . Further, since

� � Ü , the fourth flow � packet gets
transmitted immediately after that, with a deadline of Û�Ë .

The acknowledgment for the second flow D packet does not arrive in time for dead-
line Ü)ËU��� to get re-used. The third blue packet is therefore assigned a deadline of Û�ËU��� ,
and gets transmitted after the fourth flow � packet, by � ��Ü . By � �$Ü , therefore,
flow � has transmitted è packets, whereas flow D has transmitted only Û .

The acknowledgment for the fourth flow � packet (deadline= Û�Ë) arrives at the first
node at � � é , at which time, the first node re-uses it for the fifth flow � packet,
which gets transmitted by � Ü�Ë . Further, since

� � Ü , the sixth flow � packet gets
transmitted immediately after that, with a deadline of è Ë .

The acknowledgment for the third flow D packet does not arrive in time for dead-
line Û�ËU��� to get re-used. The fourth flow D packet is, therefore, assigned a deadline ofè Ë®��� and is transmitted after the sixth flow � packet. By � Ü�Ü , therefore, flow � has
transmitted ë packets, whereas flow D has transmitted only è .

It is easy to examine further time intervals to see that the difference between number
of flow � packets transmitted and the number of flow D packets transmitted, grows with
time. Specifically, the difference at time is given by: ìí�
 G ÜQ�®Dïî � ��ËÇì . It follows that the

difference
FFF º @ � qI¼ � >
 �E¾*¿A @ G º ` � q ¼ � >
 �E¾/¿A

`
FFF is not bounded, and grows approximately linearly

with the length of the time interval ' ! #* % + .

