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Practical Beacon Placement for Link Monitoring
Using Network Tomography

Ritesh Kumar and Jasleen Kaur

Abstract—Recent interest in using tomography for network a beacon set? Two requirements guide the design of a good
monitoring has motivated the issue of whether it is possible to use peacon placement strategy:
only a small number of probing nodes (beacons) for monitoring

all edges of a network in the presence of dynamic routing. Past  *® Minimizing the number of beacons.

work has shown that minimizing the number of beacons is NP- One of the prime motivations for using tomography
hard, and has provided approximate solutions that may be fairly for network monitoring is to reduce the cost of the
suboptimal. In this paper, we use a two-pronged approach to monitoring infrastructure. However, even a tomographic

compute an efficient beacon set: (i) we formulate the need for,
and design algorithms for, computing the set of edges that can be
monitored by a beacon under all possible routing states; and (ii)

infrastructure involves the development, installation, de-
bugging, operation, and maintenance of specialized soft-

we minimize the number of beacons used to monitor all network ware/hardware on each beacon. In order to minimize
edges. We show that the latter problem is NP-complete and use the cost of doing so, it is important that the number of
various approximate placement algorithm that yields beacon sets beacons used to monitor all links of a given network are

of sizes within 1 + In(|E|) of the optimal solution, where E is minimized
the set of edges to be monitored. Beacon set computations for Robust X t ting d . d taint

several Rocketfuel ISP topologies indicate that our algorithms A us_ne_ss 9 routing dynamics and uncertainty. .
may reduce the number of beacons yielded by past solutions by A monitoring infrastructure should not assume a specific
more than 50% and are, in most cases, close to optimal. routing configuration in selecting a beacon set. This is

because of two reasons. First, routing state in many
networks responds to changes in traffic patterns and
link loads, as well as to link failures. Since Internet

HE last two decades have witnessed an exponential traffic conditions are highly dynamic, the default IP

growth of the Internet in terms of its infrastructure, its  routes in a given network may change at time-scales
traffic load and composition, as well as its commercial usage. much smaller than the time-scales at which beacons are
In order to provide good connectivity, reliability, and quality = deployed. Second, the routing state within individual
of service to Internet users, it is important to have the ability ~ASes may be considered proprietary information and may
to monitor the health of the networks that comprise the Inter- not even be available—this is an important consideration
net. Consequently, there is significant interest in developing for monitoring infrastructures that cover multiple ASes.
network monitoring infrastructures that allow ISPs as well as Consequently, a beacon placement strategy should find a
end-users to monitor network links and nodes. beacon set that is able to monitor all relevant network

An important consideration in the design of monitoring links, independent of the current route configuration.

infrastructures is that of developing low-cost solutions. IA few recent efforts have focused on the problem of finding
particular, the idea of placing and operating sophisticat¢@éacon sets for a network [4], [7]. These, however, do not
monitors at all nodes in a network is neither cost-efficient neidequately meet the above challenge—the beacon set of [4]
practical (especially when monitoring is performed by ends not robust to changes in IP routes, and the beacon set
users). Instead, there has been significant recent interespiBposed in [7] can be quite large for real ISP topologies
relying ontomographictechniques that use only a few probingdetails in Sections Il and VI). In this paper, we present and
end-nodes (beacons) for monitoring the health of all netwodgaluate beacon placement strategies that meet both aspects of
links. They do so by sending specially-designed probes alofig above challenge.
the IP routes to the two end-points of a given link, only
one of which traverses the link—by obserying the diﬁerem@ontributions
in the results of the two probes, properties of the link are )
estimated [1]-[9]. Though there are several properties of a link V& formally model the problem of beacon placement using
which can be measured topographically, we consider only lifJ€neric framewqu that allows us to evaluate severgl beacon
failure and link delay monitoring in this work. placement _strategles—proposed here as well as in relgted
A central issue in the design of a monitoring infrastructur@ork—thatincorporate different beacon types as well as policy
is that of beacon placementgiven a set of links to be constraints. We approach the beacon placement problem both

monitored, which network nodes should be used to constrd@goretically and experimentally. Our analytical framework
relies on a two-pronged methodology:
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a generic framework that allows the incorporation of this Il. PROBLEM FORMULATION
diversity. Ogr_frf_slmework r_elles on defining the concept . acon Placement
of a Deterministically Monitorable Edge Set (DMEBS)) ) o
a beacon as the set of links that can be monitored by'” a tomographic network monitoring infrastructure, each
the beacon under all possible route configurations. VI#tWOrk link is monitored by a special probing node, referred
present efficient graph-theoretic algorithms for computirg @S @eacon The basic idea behind most tomographic setups
the DMES of two types of beacons discussed in tHe fairly simple: the beacon sends a pair of nearly-simultaneous
literature. probes to the two end-nodes of the link, only one of which

« Second, we consider the optimization problem of findingjaverses the link. Each end-point sends back a response to the
the minimum number of beacons which can collectivelj€acon—this may be implemented, for instance, using ICMP
monitor all the links of a network (the union of their€Ch0O messages. The results of the probes can then be used to
DMES covers all network edges). We show that this proBj2fer properties of the link. For instance, if the objective is to

lem is intractable. We derive approximation algorithmg'easure link delays, then the difference in round-trip times of
that yield beacon sets of sizes within+ In(E) of the the two probes can be used as an estimate. If the objective is to

optimal solution in general, and within a constant of simply detect link transmission failures, the success and failure
for one of the beacon types considered. of the two probes may be used as reasonable estimators. In

We also establish additional properties of beacon sdfdS paper, we consider the problem of monitoring csilygle

that help in improving the computation efficiency of oufink failures. _ o
approximation algorithms. Note that, in general, a beacon is capable of monitoring sev-

We simulate our beacon placement algorithms on sevefif! network links. A set of beacons that can be collectively
real ISP topologies obtained from the Rocketfuel project [1d{S€d t© monitorall the links of a network is referred to as
Our experimental results illustrate that: (i) our beacon plac8-P€acon setA central issue in the design of a monitoring
ment strategies yield beacon sets that &ie- 80% smaller infrastructure is that obeacon placementwhich networ!<.
than those yielded by [7]; (ii) in practice, the best-performin§°des should be used to construct a beacon set? Specifically,
heuristics for our approximation algorithms yield solutiong€nd as motivated in Section |, our objective is tdind
fairly close to optimal; and (jii) the routing-dependent beacdii¢ smallest number of beacons required to deterministically
placement strategy of [4] yields smaller beacon sets ( nitor a_II the links ofaglven_ network, even in the presence
10-75%) for statically-routed networks, but the beacon sefsdynamism and uncertainty in IP routes.
are much larger in the long-run if traffic-dependent dynamic

routing is employed. MES and Past Work

Finally, we extend our analytical framework to incorporate .
realistic network scenarios that include half-duplex links as Our methodology for finding the smallest beacon set for a

well as non-transit networks. network first enlists the edges that can be monitored by each

The rest of this paper is organized as follows. We formula{;é”mdidate beacon—ihis is referred to as iemitorable edge

the problem of Beacon Placement and discuss past worksﬁ\t(MES) of the beacon. Note that the union of MES of all

Section IIl. We define and compute DMESs in Section ”k?eacons in a beacon set is equal to the set of all network edges.

and address the Beacon Minimization Problem in Sections W general, the larger is the average MES size in a beacon set,

and V. We present our evaluations on Rocketfuel topologi&%vsmsl_le;l IS dt_he beagoln é’e:w b | t sch
in Section VI. We derive additional insights for specialized ¢ Drietly discuss below Wo beacon placement SChemes
oposed recently, which differ in their assumptions about

which links comprise the MES of a beacon.
« Simple Beacons

beacon types and network scenarios in Sections VII-VIII.
summarize our conclusions in Section IX.

Notations and Assumptions In [4], the authors assume that the MES of a beacon
We model a network as an undirected gr&p(iV, E), where consists of all links that can be reached by the beacon—

edges)—in section VIII-A, we extend our analysis to directed ) o )
l\We assume that each beacon node is capable of monitoring all of its

graph.s as well. We use. the terms networks and graph's—%ﬂ ctly-connected links using a link-layer technology. Additionally, each
also links and edges—interchangeably. We assumeChiat beacon can monitor some remote links as described above. We also assume

connected (there exists a path from any node to any othlespughout this paper thatll links of a network need to be monitored—it

node). We also assume that all routes aoyclic (simple) :feigg;gq&ig’vﬁ;iég tgngeoﬁ]gﬁ?;'gfj's to the case when only a subset of all

We say that two physical paths between a pair of nodes areperhaps the largest MES (and smallest beacon set) that can be envisioned is
distinct if they differ in even one of the edges traversed. when asinglebeacon monitorall the links of a network—this is feasible, for

FinaIIy we make an important assumption that if two nod’éstance, in a network which supports source-routing [11]. In such a network,
! a beacon can precisely specify the path traversed by its probes, and hence can

are physically connected, theegists a network routbetween prope the end-points of any network link. However, this strategy relies on the
them. In fact, we assume that no physically available loop-freeilability of source-routing support afl network nodes, which is the not

(simple) path in the network is prohibited as a network rout¢ case with a majority of current networks [4]. _
The IP routing tree of a node refers to the tree, rooted at the node, which

in section VIII-B we will lift this assumption to iNCorporate is formed by the links that lie on the default IP routes from that node to each
real-world scenarios of non-transit networks. of the other nodes in the network.
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Our Approach
In this paper, we build on past work to address these

limitations by using a two-pronged approach:
i 1) Deterministic MES Computation: In order to achieve
robustness to routing dynamics, for each candidate bea-
"""""" @ con, we determine the set of edges—referred to as its

Deterministic MES (DMES)—that can be monitored by

Beacon A is "locally flexible" Beacon A is "simple"

MES = {AB, AC, BC) MES = {AB, AC) it underall possiple. rogting configurations: '
2) Beacon Set Minimization: In order to minimize in-
Fig. 1. Simple vs. Locally-flexible Beacons frastructure cost, we address the problem of finding the

to monitor a link in its MES, such a beacon—henceforth smalle.stbeacon seF. )
referred to as a “simple” beacon—sends probes to tH"éthe following two sections we present our abstractions and

end-points of the link, along the default IP paths to thodBethodologies for implementing the above for both simple and

end-points. The authors demonstrate that the problem!8fally-fexible beacons.

minimizing the size of the beacon set with such beacons is

NP-hard, and provide a placement strategy that produced!!- D ETERMINISTICALLY MONITORABLE EDGE SETS

a beacon set no larger thant in|E| times the optimal  The first key problem we need to solve is to find the set
beacon set. Unfortunately, since the authors assume thhedges that can be monitored by a beacon, independent of
all links within the routing tree of a beacon belong to itéhe routing configuration. This is formally captured in the
MES, their strategy is not robust to changes in routinfpllowing definition.

trees and works only for networks with static routes. Definition 1: An edge is said to bdeterministically moni-

« Locally-flexible Beacons torable by a beacon if the beacon can monitor it under all pos-
In [7], the authors consider beacons that have a greas#le route configurations. Th2eterministically Monitorable
flexibility in selecting the paths taken by the probed=dge Sef(DMES) of a beacon is the set of all deterministically
Specifically, the beacons—henceforth referred to a@sonitorable edges associated with that beacon.
“locally-flexible” beacons—are capable of selecting the In what follows, we consider both simple and locally-
first link (outgoing link from beacon) on which a probeflexible beacons and present algorithms for computing their
to any destination is transmitted. A probe can, thereforBMES. For clarity, we first establish an equivalence between
be sent to a destination either along the current IP rout@eterministically monitoring an edge” and the topological
to the destination, or along one of the current IP routgructure of the network. Lemma 1 does that:
from any immediate neighbor to the same destinationLemma 1: If all possible (simple) physical paths from a
(see Figure 1%.Furthermore, the authors do not assumleeaconu to a nodey end in the same edge thenwu can
static routing state and define the MES of a beacon teterministically monitor edge.
consist of links that, irrespective of what current routeBroof: Since all possible simple physical paths framo y
are, can always be monitored. The authors do not providad ine, then the current network route fromto y also ends
a mechanism to compute such an MES for a beacon, ite.® This implies that whenever a probe is sent frano y
show that even if these sets are known, the beacon aetl it reacheg, the probe always passes through the edge
minimization problem is NP-hard. The authors instead the other end-point ot is =, any monitorable property of
suggest an alternative beacon-placement strategy whiehmay be estimated regardless of the current routing state of
unfortunately, can result in fairly large beacon sets fdhe network, by sending probes fromto each ofr andy. m
current network topologies (see Section VI). The advantage of the above formulation is that it allows

To summarize, existing beacon placement strategies &g&to ignore the network routing state, whichdignamicand

either not robust to routing dynamics or are inefficient iflerived from an exponentially large set of possible paths, and
minimizing the number of beacofis. use only thestatic topology of the network for computing

the DMES. This can be done by relying on graph-theoretic
4The authors in [7] implicitly assume that the default IP route from angnalysis (such as depth-first search) for efficiently finding for

neighbor to a given destination will not go through the beacon node. T .
assumption may get violated when a path through the beacon has a sm Ph potentlal beacon, the set of edge& such that all

cost that any other physical path between a neighbor and the destinationphysical paths to one of the end-pointseoénd in that edge.
SAn orthogonal problem of beacon placement for detectimgtiple link Lemma 1 ensures thatcan monitor such an edgeunder all

failures that occur simultaneously has been considered in [12]. In gener@l ; : ;

it is not possible to detect all cases of simultaneous link failures in a giv nOSSIbl_e route conflguratlon_s. .

network. In [12], the authors restrict their attention to those simultaneous link It IS important to emphasize that there may be edges in a

failures that can be detected in the absence of any limitations on the numbegpiph which may never qualify to become a DME using the

beacons and probes. They then provide efficient algorithms for mlnlmlzmg;EImu'ation above. For example, in figure 2, the DMEs for

number of beacons and probes needed for detecting these failures. Like [4], .
this work assumes “simple” beacons and uses the IP routing tree in the bea@dnth€ nodes in a graph are the edges 1-2 and 5-6. To work

set computation and, hence, is applicable only to networks with non-dynamic

routes. We believe that it is possible to use our formulations from this papef®This is because of our assumption that network routes are simple;
to extend the work in [12] to locally-flexible beacons, as well as to networkberefore, the current route is also a member of the set of all simple physical
with dynamic routing. paths fromu to y.
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e that no physically connected path in the network is
prohibited as a network path.

The above observations indicate thapifinde are up, there
0 ° ° ° is a valid network route froms to y, and hence the probe to
y should be successful. ]
Monitoring link failure:  Link failures can be monitored by
° exchangingping-type request-response messages between the
beaconu and each of the two end-points,andy, of the link
e. The probe results can then be usedubtp infer whethere
is up or down as follows:

« If the probe toy is successful i's response reaches
around this, we assume that all edges directly connected to a u), then e is up. This is because it were down,
beacon can also be monitored by the beacon. Such monitoring then no physical path would exist from to y (pre-
is done using either physical layer or device driver queries on condition in Lemma 1), and the probe would not have
the directly connected link. This gives us the hope of using been successfully responded to.
extra beacons to monitor edges which don't fall under thee The probe toy fails but the probe to: is successfully
above formulation. We shall refer to edges monitored in this responded to. From Lemma 2, this implies tha down.
way also as DMEs in the interest of reducing terminology, « The probes to both andy fail. This leads to uncertainty
though we will differentiate between these kinds of DMEs in  in concluding whethee is up or down, as there could be
Section VII. failures in the paths to each afandy.

We present graph-theoretic algorithms for computing the« It is not possible for the probe tg to be successfully
DMEs for simple and locally-flexible beacons in Sections I1I-B responded to without the probe #obeing successfully
and IlI-C, respectively. Below, we first illustrate how a beacon responded to as all probes that reachlso reache.

Fig. 2. The DMES may not be a connected graph.

can monitor a DME for link failures and latencies. Monitoring link latency: Link latencies can be monitored
- for networks that rely on anonotonicrouting policy. Using
A. Monitoring DMEs the construction in Lemma 2, this means that when routes

We illustrate the use of the DMES formulation by considhave stabilized after any failures, the pathis embedded in
ering two kinds of probes which can be used to monitor linthe pathp’. Beacons can then exchangeng-type request-
failures and latencies, respectively, for beacon-link pairs thgsponse messages with each of the two end-paingsdy,
satisfy the pre-condition in Lemma 1. Lemma 2 first estal®f the link e. The probe results can then be usedubly infer
lishes a crucial property relevant for link failure monitoringProbe results can then be usedbyo infer the latency ok
It is important to observe that link failure is perhaps the mogs follows:
fundamental property of a link that can be monitored; if a 4 We require probes from: to each ofz and y to be
link is down, it is unlikely that additional properties of the successfully responded to.
link—such as latency and bandwidth—can be monitored. . Assuming monotonic routing, the route of the probe from

Lemma 2: Let the two end-nodes on the lirnkbe » andy u to y is exactly the same route as that of the probe from
such that a probe packet from the beaadnp y traverses in the u to  except the last edge
directionz — y. If a probe tox is successfully responded to , The difference in the round trip times for both these
and ife andy are up, then a probe towill also be successfully probes gives us the round trip delay of the link

responded to.
Proof: Let p be the current network route of a probe fram
to z; we make the following observations; B. DMES for Simple Beacons
1) p cannot traverse. This is because if it does them Theorem 1: Let u be a simple beacon and 18t{v) be the
contains a cycle that includesandy, which contradicts set of all distinct physical paths fromto another node. The
our assumption that network routes are simple. link [(v) is deterministically monitorable by if for all paths
2) If p ande are up, then there exists at least one simpjein S(v), I(v) is the last edge op. The DMES ofu is the
physicalpath between: andy that is also up. This is set of all such edge§v) for all nodesv € V.
becausep can always be extended leyto yield such a Proof: Since all paths from the simple beacento v have
path, p’. Note from the first observation above thét [(v) as the last edge, the current IP route frano v (which
does not contain cycles, and hence isimplepath. takes one of these paths) also ends in the ddge From
3) If p and e are up, then there exists a network rout®efinition 1 and Lemma 1, therefore, simple beaeois able
betweenu andy. This is because’ is up and can be to monitor the linki(v). u
used in the event that all other candidate routes from Note that a DMES vyielded by Theorem 1 need not form
to y are broker!. Note that this relies on our assumptiora connected sub-graph; Figure 2 illustrates that the DMES of

7 _ , _ _ _ node 1 includes only the edges 1-2 and 5-6. We now present
Note that in case a link failure occurs in the network, it may take some

time for the network routing state to converge to the above-mentioned p%ﬂ efficient algorithm for computing the DMES for simple
P eacons.
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Algorithm 1 Computing DMES of a simple beacon that belong to the subgraph rooted at the edge, if there are no
Initialize S to be an empty set more edges connecting that subgraph.t8ince the number of
for all edges! neighboringu do potential nodes is bounded by |, and the time complexity of
Includel in S depth first search i®(|E|+ |V]), the time complexity for the
end for parallel DMES computation algorithm is the same as above.
for all nodesv in V' do Hence, we can calculate the DMES af nodes inG(V, E)

Do a depth first search from (we get subgraphs eachin ©(|V|(|E| + |V])) time.
connected ta by one or more edges)

if « lies in a subgraph connected toby only a single C. DMES for Locally-flexible Beacons

edgee then
Include the edge in S Theorem 2: Let u be a locally-flexible beacon an#, be
end if the set of edges directly connecteditd-or each edgée F,,,
end for let S;(v) be the set of all paths from to any other node,
S is the DMES foru that start with the edgé. A link [;(v) is deterministically

monitorable fromw if for all paths in S;(v), l;(v) is the
last edge. The DMES of: is the set of all deterministically-
DFS Root monitorable edges (v), for all v € V and alli € E,,.

Proof: Since locally-flexible beacons can select the outgo-
ing link on which to transmit a probe, we need to consider
only those paths te which start from a specific edge i,
to see if there is a common ending edge. Thus, evenhs
paths tov which end with different edges, if all paths io
that start fromu with edgei end with a common edgk(v),

u has the control over the ability to reaehthrough;(v).
From Definition 1 and Lemma 1, therefore, the common edge
is deterministically monitorable. ]

Below, we present an algorithm for computing the DMES
for locally-flexible beacons.

Algorithm 2 Computing DMES of a locally-flexible beacon

Fig. 3. The subgraphs of the DFS tree. Running a DFS allows us to sed%f
an edge can be deterministically monitored by a beacon. Initialize S to be an empty set
for all edgesi neighboringu do
Proof: (Proof of correctness) Consider a depth first tree Includei in S
(along with its back edges) constructed from the nodi we Removei from E
consider all subgraphs sprouting from the neighboring edgesnd for
of v, then these might connect tovia one or more edges. for all nodesv in V' do
These subgraphs are connected to each other only thraugh Do a depth first search from (we get subgraphs each
Separating subgraphs this way helps us to isolate all possible connected ta by one or more edges)

paths from the beacomto the nodev. Any probe packet from if one ofu’s neighbors lies in the subgraph connected to
u to v is entirely confined to paths in the subgraph containing v by a single edge then
u. Now, if the beacon lies in a subgraph which connectsuto Include the edge in S

via only one edge, all paths fromto v have to cross this edge ~ end if

at the end of the path. However,iflies in a subgraph which ~ end for

is connected ta via two or more edges, then there exist at S is the DMES foru

least two distinct paths from the simple beaaoto the node

v which end in different edges to the node This means  Proof: (Proof of Correctness) The proof is similar to that for

that the edges are not deterministically monitorable froam Algorithm 1. Letu; be the neighbor connected tothrough

(Theorem 1). B . The subgraph containing; also contains all paths from

Time Complexity:The cost of computing the DMES of ato v that start ini. This is because, if there was another path

simple beacon is essentially that of running a depth first seafebm « to v throughi, v andu; would have been connected

(DFS) algorithm at every node in the network. Since th&hich would be captured in the depth first search. Conversely,

time complexity of running a depth first search 6i{V, E) consider any simple path from; to v. Since Algorithm 2

is O(|E| + |V]), the time complexity of Algorithm 1 is removesi from E before running the DFS, a possible path in

O(VI(|E| + V). the subgraph containing; doesn’'t have in it. Thus, adding
Note that the DMES for multiple simple beacons can beat the start of the path still retains the loop-free (simple)

computed in parallel. After running DFS on a nodewe property of the path. Such a path is a valid path froro v

can add an incident edges ofto the DMES of all nodes starting with edge. Since we removed'’s neighboring edges
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from E, one could argue that some paths might be missinglgorithm 3 Find the beacon set for completely monitoring
However, this cannot be true because no simple paths frgn@raphG(V, £).

v to u would transitu in the middle of the path. Hence the Initialize B to be an empty set

subgraphs obtained by removing the edges neighbariage Initialize £/ = FE

representative of all paths fromis neighbors tov. [ ] while E’ is not emptydo

Time ComplexityThe cost of this algorithm is that of running Select* nodeu from V not in B

a depth first search on each node and for each depth first E' = E'— the DMES ofu

search run checking if any of the neighbors of u are in a singly Includew in B

connected subgraph. Thus, if the degreeudf k, the time  end while

complexity of the algorithm i®(|V|(|E| + |[V|+ k)). Since B is the required beacon set.

k is bounded by|V|, the time complexity isO(|V|(|E| +
[V])). Note that, unlike simple beacons, DMES for locally-
flexible beacons can not be computed in parallel for multiple
nodes because for each locally-flexible beacon we customize
the graphG(V, E) (removal of neighboring edges) specific
to the beacon before doing all the depth first searches. The
complexity of computing DMES foall nodes inG(V, E) is,
therefore,O(|V|?(|E| + |V])).

IV. BEACON SET MINIMIZATION Fig. 4. Optimality of the “pruning” algorithm depends on the order node-
' selection.
The second key problem—of minimizing the beacon set for
a network—is formally stated below: from E’ could be deterministically monitored by some node

Beacon Minimization Problem (BMP): Let D,, be the that was already included in the beacon set.
DMES associated with a node € V. Then thebeacon- ~ The efficacy of the “pruning” algorithm in minimizing the
minimization problenis to find the smallest set of beaconssSize of the beacon set depends on the order of selection
B CV, such thatJ,.; D, = E. (the *ed operation in Algorithm 3) of nodes. For instance,
The Beacon Placement Problem is intractable for the beacgtfSider the topology in Figure 4. The optimal beacon set
types considered in this paper. We formally prove in sefwith locally-flexible beacons) for this topology contains just
tion VII-A that BMP is NP-Complete for the case of simplehode 1. However, the “pruning” algorithm will lead to a non-
beacons. BMP has also been shown to be NP-complete gptimal beacon set if it selects any node other than node 1
locally-flexible beacons in [7]. Below we develop a correspor@s its first beacon. In fact, selecting the nodes in the order 5,
dence between the general BMP (independent of beacon tyfie$: 2 and 1 causes the “pruning” algorithm to select all the
and Minimum Set Cover problem (MSCP)—this will let ugiodes in the graph for the beacon set.
apply well-known MSCP heuristics for addressing BMP. Fortunately, there exists a known heuristic for the MSCP
Theorem 3: BMP is a special case of the Minimum Sefruning-based solution that ensures that the size of the solution
Cover problem. is within a bound of the optimal [15]. The heuristic dictates
Proof: MSCP [13] can be stated as follows. Consider a sEté following node-selection rule (* in above algorithm) for
S with elementsey, e, ... . Now consider a group of arbitrary BMP: select the node with a DMES that has the maximum
subsets ofS; X1, X, Xs... such thatlJ, X; = S. The Min overlap with the current pruned graph. SpecificallyEif is
Set Cover problem is to find a collection af’s (say setQ), the current set of edges of the pruned graph then we choose
such thalJy, ., X: = S and|Q| is the minimum. the nodev such that|D, N E’| is maximum. This heuristic

To show that BMP is a special case of MSCP, considé‘?sullgs(,je”mesrg‘c’)"’l‘ble [15] bounds on optimality of the beacon
a graph G(V, E). Since every node can deterministicall?®t Boptiman; — L T 7l E]-
monitor at least its neighboring edged, .., D, = E. Also, o i
Vv €V : D, C E. To solve BMP, we need to find trenallest A- Monitoring a Subset of the Links
subset,B C V, such thatUUeB D, = E; then B is the Some network operators may be interested in investing
required beacon set. Now consider a Bét={D,, : v € B}. in a monitoring infrastructure that monitors only a critical
Note that|B’| = |B|. Also note the correspondence betweesubset of network edges. For such cases, our pruning algorithm
MSCP and BMP given the associatiofs— F,X; — D, (Algorithm 3) can be extended to find a potentially smaller
andQ — B'. W beacon set as follows.

MSCP is known to be NP-Complete [13], [14]. However, Given a graph(V, E), such that for every nodec V, its
MSCP has a pruning-based approximate solution—below, WMES is D;, let L, L C E, be the subset of links that need
adapt the pruning algorithm and use heuristics from ttie be monitored. Consider the following algorithm:
literature [15] to establish approximate solutions with bounded Algorithm 4 differs from Algorithm 3 in two prime ways:
optimality for BMP. « FE'is initialized to L rather thanE.

It is straightforward to see that the algorithm returns a valid « The node selection heuristic selects a node whose DMES
beacon set. This is because every edge that was eliminated has the maximum overlap with the pruned set of edges,
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Algorithm 4 Find a beacon set to monitor the set of eddes show the optimal beacon set for such a graph is a singleton

in the graphG(V, E). set, and can contain any one node of the graph.
Initialize B to be an empty set Lemma 3: A graphG(V, E) with no high arity nodes is a
Initialize E' = L tree.
while E’ is not emptydo Proof: Since the graph is connected, the nodes present in
Select* nodeu from V' not in B the graph have an arity of at least one. Since there are no high
E' = E'— the DMES ofu arity nodes in graph, the arity of all nodes is one. Suppose
Includew in B there is a cycle ir;. Then, any two distinct nodes in the cycle
end while have separate paths to each other from their different outgoing
B is the required beacon set. edges. Thus, the nodes in the cycle are high arity, which is
a contradiction. Hence, the graph cannot contain cycles. This
implies thatG(V, E) is a tree. [ |
which is a subset off, (still equivalent to “currently ~ Theorem 5: A network with no high arity nodes can be
pruned graph”). monitored by a single beacon on any node in the network.

Theorem 4: Algorithm 4 finds a beacon set for monitoring  7Y00f: From Lemma 3, we know that a network with no

edges inL using no more tha®(1 + In|L|) beacons. high arity nodes is a tree. Consider an arbitrary node the

Proof: Using the same terminology of beacons, DMES arfee as a beacon; the_n the network graph can be cc_>nsidered
links, consider a Min Set Cover problem as follows. Let th@S @ rée rooted at. Since the graph is a tree, there is only
set of edgest = L, the set of DMESs under consideratior?"® 5|r_nple phy_su:_al p_ath ava|la_ble framto any other node.

— (D, : D;( L # (). By the node selection heuristic used in pa_rtlcular, thl_s |m_pl|es that giveany network edgee, all
algorithm 4, the algorithm reduces to the standard Min S@Fysmal paths (in this graph, therg is only one such pgth) from
Cover heuristic for the smaller instance of Min Set Covef 10 On€ of the end-points af, end in the edge. Thus,c is a
problem outlined above. Hence, the optimality of the solutiolR'VIE of u. Thus, all et;iges of thg graph belong to the DMES
is bounded by the optimality bound for the smaller instandd 4 @nd can be monitored by it. u
of Min Set Cover problem which i®(1 + in|L|). |

B. High Arity Networks

V. HIGH ARITY NODES AND BEACON SETS We next show that using node arity analysis, the beacon

In [7], the authors introduced the concept of high aritgearCh space in the pruning algorithms of Section IV can
nodes which was used in constructing a beacon set. In tR@ substantially reduced. Specifically, in Theorem 6 we show
section, we show how the concept of node arity can be usef}gt only high arity nodes need to be considered as potential
in speeding-up the computation of a small beacon set, B@acons. Lemma 4 is used to prove the theorem.
formulated in Section IV. Below, we restate the definition of Lemma 4: A graph which has at least one high arity node
node arity from [7] in a slightly different manner. cannot be completely monitored by a single simple or locally-
Definition 2: (Node Arity) The arity of a nodey, with flexible beacon placed on a single arity node.
respect to another nodle, is defined as the number of distinct Proof: Consider a grapltz(V, £), which has a high arity
paths that exist between the two nodes such that each of the@de . Also consider a single beacon on a single arity node
paths starts from a unique outgoing edge framThe arity b- Sincez is a high arity node, there exists a nogleto which
of a nodeu is defined as the maximum of arities ofwith 2 has multiple paths with different outgoing edges fram
respect all nodes of the graph. and multiple incoming edges t@. Thus,z andy are part of
Using the terminology of [7], we refer to a node as “higi® cycle.b cannot be on this cycle as otherwise it would be
arity” if the node’s arity is more than one. Note that sincBigh arity. Note thatb cannot deterministically monitor any
G(V, E) is assumed to be connected, there is at least one p@éiges in this cycle. This is because for any edge in the cycle,
from every node to every other node (assumjig > 1). b has multiple paths to one of its end-points, which end in a
Hence, the arity of a node is always greater than or equaldiferent edge. Hence, cannot completely monitor the entire
one. Also, since the maximum number of distinct paths (wi@aph. u
a unigue outgoing edge) fromto v can not be more than the Theorem 6: For a network with at least one high-arity
degree ofu, the arity of a node is bounded by its degree. node, an optimal beacon set is a subset of the set of high
Algorithm 7 in the Appendix gives an efficient way forarity nodes.
finding whether a node i(V, E) is high arity or not. Our ~ Proof: Let B be an optimal beacon set of graphV’ E).
algorithm is based on the insight that if a nodehas arity Supposeb € B is a single arity node. Sinc& is optimal,

one, all subgraphs generated in the depth-first search froniemovingb from B causes at least one edgec E to be
will be connected ta) by a single edge. not deterministically monitorable bys. Let z andy be the

two nodes on either side efand, without loss of generality,

assume that is traversed when a probe packet is sent ficim

y (and hence not traversed when sentcjo Now consider a
It is interesting to study the Beacon Placement Problem fdepth first search frony. Consider the subgraphs sprouting

a graphG(V, E) that contains only single arity nodes. Werom the edges adjacent tg. Since e is deterministically

A. Single Arity Networks
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monitorable fromp, b lies in the subgrapht.., sprouting from
the edgee. Also, F, is connected toy by only e and no
other edge (otherwise, wouldn't have been deterministically
monitorable byb). Since,e was exclusively monitorable by
only b, there are no other beacons ij. @
Now consider the following two cases: 8
o F. has at least one high arity node. B
Let 2 be a high arity node itf.. Sincee is the only edge £, L ASi1zal
connecting the subgraph to the rest of the grapmust & AS: 1755 -
be high arity with respect to a node in the subgraph itself. s soer el
Hence from Lemma 4h cannot monitor the entire sub- 02 | S A
graph. Also, no other beacon outsifie can completely ﬁg; e
monitor F,, as all paths from such beacons must traverse o , , , , | AS:7018 —v—
e; just like b, such beacons can not deterministically 1 2 4 8 16 32 64 128
guarantee the last edge in their paths to nodes in the Arity

cycle formed byh (Lemma 4). Sincé should be able to
monitor the entire subgraph as it is the sole beacon in ﬁg 5. Distribution of node arities for ten Rocketfuel topologies.
we have a contradiction. It follows that all nodes in the
subgraph must be single arity. Single Arity Nodes
« F. has only single arity nodes. 0.0+

If £, contains only single arity nodes then all edges in th
subgraph can be monitored by a single beacon outside
subgraph. This is becaude is a tree, and is reachable
only throughe from a beacon outsidé,. Any path from
an outside beacon to any node i has a unique sub-
path after crossing. Hence, all edges withid, can be
monitored by it. This implies thdtis a redundant beacon,

0.8

0.7

0.6

0.5+

0.4+

Fraction of Nodes

0.3

and removingb from B doesn'’t effect the monitorable 0.2+

edge coverage of the beacon $t This contradicts the 0.1

definition of B as an optimal beacon set. 0 : : : : : : : : : :
Thus, there can not exist a single arity nodeBnHence,B P I AT 2 momous ayateme . Chen e
is a subset of the set of high arity nodes. ]

Theorem 6 lets us reduce the set of potential beacons used
in Algorithm 3 to the set of high arity nodes. This can lead &

to substantial computational savings. For instance, we showye jmplement and run all of these solutions on ten major
in Section VI (and Figure 6), that the fraction of single aritygp topologies obtained from the Rocketfuel project at the

nodes in current ISP topologies can be quite high. University of Washington [10] and present the results below.
In [7] the authors have shown that the set of high arity nodes y gton [10] P '

in a graph is a beacon set—though potentially a non-optimal Node Arities
set—when beacons are locally-flexible. We have strengthened
this result by showing that the optimal beacon sealisays e first study the arities of nodes in the ten topologies—
a subset of the set of high-arity nodes (even with simpfdd 5 plots the distribution of node arity in each. Fig 6 plots
beacons). Hence, our pruning algorithm is potentially capatfe fraction of nodes that are single-arity in each topology. We
of finding smaller beacon sets for all topologies. In order f@oserve that:
empirically evaluate the efficacy of our methodology, we next « The distribution of node arities are quite different for
compute the beacon sets for a few real-world ISP topologies. different ISPs, indicating that ISP topologies can be
quite diverse in their topological structure. In particular,
VI. EXPERIMENTAL RESULTS some ISP topologies have a long-tailed arity distribution,
In this section, we empirically evaluate the performance of indicating that only a handful of nodes have significant
our beacon placement strategies. Specifically, we compare the redundancy in the manner in which they connect to the
sizes of beacons sets for several current ISP topologies, for rest of the network. For most topologies, a majority of
which beacon sets are computed: (i) by the beacon placement nodes have arities withig0, although some nodes can
solution with locally-flexible beacons suggested in [7]; (i)  have arities higher thaih50.
by our beacon placement algorithms for simple beacons; and The fraction of single arity nodes in the ISP topologies
(iii) by our algorithms for locally-flexible beacons. We also  varies from less thar80% to more than85%. It is
study the overhead of incorporating dynamism in routing, by  important to note that as the last edge on the path from
comparing our solution to that obtained in [4], which applies every other node in the network, a single arity node has
only to statically-routed networks. only one local edge that can be used to reach it. Single

Fraction of nodes which are single arity.



RITESH KUMAR AND JASLEEN KAUR: PRACTICAL BEACON PLACEMENT FOR LINK MONITORING USING NETWORK TOMOGRAPHY 9

Comparison of Beacon Types
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Fig. 7. Beacon set sizes (as absolute numbers) yielded by different strategies

for the Rocketfuel topologies.
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Fig. 8. Beacon set sizes (as fraction of total number of edges) yielded

different strategies for the Rocketfuel topologies.

not apply to single-arity networks, we ignore such components
when computing beacon sets. This eliminates only a small
fraction of nodes from each of the ISP topologies.

For any ISP topology, we add up the sizes of beacon sets
computed for each of the remaining components to get the
total beacon set sizestBy 4|, | Bs|, and| By, p|—for the three
solutions being compared. Figs 7-8 plot the histograms of
these beacon set sizes for the ten topologies. We observe that:

« Beacon sets with locally-flexible beacons.

Our beacon placement solution for locally-flexible bea-
cons reduces the beacon set sizes yielded by [7] by
50 — 80%. More importantly, we find that some major
ISP topologies can be completely monitored, independent
of routing state, using less than a hundred locally-flexible
beacons. This is an encouraging observation as it suggests
that a tomography-based monitoring infrastructure may
be feasible even for major ISP topologies.

Beacon sets with simple beacons.

Even with simple beacons, our beacon placement solution
reduces the beacon set sizes of [7] 4y— 70%. This
suggests that it may be feasible to design a simpler mon-
itoring infrastructure that does not require that network
nodes use different transmission rules for probe packets
(as is required with locally-flexible beacons).

This conclusion is further supported by the comparison
of beacon set sizes yielded by our solution for simple
vs. locally-flexible beacons, which indicates that locally-
flexible beacons may not yield significant gains for many
major ISP topologies.

C. Overhead of Allowing Dynamic Routing

The beacon-placement framework and strategy developed
in [4] applies only to networks that empltatic routes—the
BYithors assume that the IP route taken by packets between any
two nodes is fixed and known. This assumption ensures that

arity nodes, therefore, are not robust to failures of locite DMES of a node consists efl links that comprise the IP
links. We find that for most topologies, more than half ofouting tree sourced at the node. Such routing-based DMESs
the nodes have a single arity.
A |arge fraction Of Sing'e_arity nodes a|so |mp||es thaiormulated in our frameWork. Consequently, the beaCOI’l set
the optimizations proposed in Section V to enable fastzes yielded by the strategy of [4]|—henceforth, referred to as
computation of beacon sets, can result in substant@P—are likely to be much smaller.

savings.

It is important to note that Rocketfuel ISP topologies a
subject to inference errors. In particular, [16] demonstrat88
that the inclusion of links that do not exist and the omissic
of links that are actually present can inflate path diversity

are likely to be much larger than the topology-based DMESs

In order to quantify this, we evaluate the performance of
r§.B on the Rocketfuel topologies. Unfortunately, the routing
licy of these networks is not known publicly—consequently,
is not possible for us to obtain the actual network routes
hich are needed by SB). Instead, we compute one possible

these inferred topologies. This also limits the accuracy of nodgt of routes by using the shortest path routing algorithm after

arities computed above.

B. Beacon Set Sizes

assigning uniform weights to all edges. Fig 9 plots the resultant
beacon set sizes obtained using SB (Shortest path tree) and
compares it to our placement strategy with simple beacons
(MSCP heuristic). We find that the beacon sets obtained using

It is important to mention that the Rocketfuel topologies foBB for statically-routed networks are much smaller (by 10-
an ISP may not be single connected graph (possibly due to |at396) than those obtained using our strategy for dynamically-
of data about some links). Thus, some of the topologies weuted networks.
analyze have multiple (independent) connected componentslt is important to note, however, that strategies like SB
More importantly, some of the components consist of onlyan not be applied to networks that allow dynamism in IP
single-arity nodes (such components have a tree structure). Farting. For instance, several ISPs are known to employ load-
a fair comparison with the previous work in [7], which doedalancing mechanisms that lead to routing dynamism even in
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Beacon Set Sizes: Static vs. Dynamic routes Proof: Using algorithm 1's formulation, edgeis the only
edge which connects to the subgraph containing Thus, if
e is removed from the graph, the subgraph containingill

be disconnected from the rest of the graph. Thus a cut
edge.

Let the end-nodes of be v andw (the depth first search
was run fromv). Now consider the resultant subgraph layout
if a depth first search is done from. The edge: would be a
single edge connecting an entire subgraph containingow
the DME e was monitorable by all the nodes in the subgraph
containingu. By a depth first search an, we see that is also
: , 4 monitorable by the entire subgraph containingThese two
1221 1239 1755 2914 3257 356 3967 4755 46l 7018 subgraphs collectively contain all nodes. Tlus monitorable

Autonomous Systems . . .
by all nodes in the graph. Consequentlyjs present in the
DMES of all nodes. ]
Fig. 9. Beacon set sizes (as fraction of total number of edges) with routing- | emma 5 motivates and allows us to define a set of all such
dependent vs. topology-dependent placement. DMEs. We then establish a structure on the DMES of all the
gdes in the graph using the following definition.

70% — [ Union WSPT]

60%- | [MMSCP
Heuristic

M Shortest

50%-+ path Tree

40%

30%

20%+

Beacon Set Size (%age)

10% -

0% =

the absence of link failures. The beacon set computed for" L
network using SB is likely to change if routes change, and newDe‘c'n't',On 3: The cut edge sét of a connected graph
beacons would then have to be deployed. To illustrate thg,(v’ E) is a set of edge;Z Sl,JCh that if any edge € Z

we re-run SB for 10 different randomly-computed instances removed fromG, then( is dlscqnnected. )

of network routing state in the Rocketfuel topologies. Each 1heorem 7: The DMES of a simple beacon nodein a
instance is obtained: (i) by assigning weights randomly (froff@PhG(V; E) is of the formE,, U Z, where £, are the edges

1 to 10) to all edges, and (i) by re-running the shortesticident on node: andZ is the cut edge set df.

path routing algorithm. We compute the beacon set for eachProof: Let us consider Algorithm 1 for finding the DMES of
of the routing states and plot the size of the union of tHaSimple beacon node S, which finally becomes the DMES
10 beacon sets in Fig 9 (Union WSPT). We find that thf u, is |n|t|aII_y an empty setS is populated first with with
union is much larger than the beacon set obtained using 8¢ €dges neighboring te. At this stageS = F£.,. Next, we
strategy. The implies that for networks where traffic loads vafyn @ depth first search ail the nodes and include cut edges
randomly (and which change link weights to reflect traffil? S- From lemma 5, the set of such edgesZisThus, the
loads), a routing-dependent strategy like SB is likely to requiF%-'VlES ofuis B, U Z. . o .
beacon sets much larger in the long-run than those yielded byNote that Theorem 7 has an important implication for tree

topology-dependent strategies like ours or that of [7]. networks. All edges of a tree are cut edges. Thus, for a tree
graphG(V, E), Z = E. From Theorem 7, the DMES afny

node in the graph is the entire set of ed@esThis agrees well

with our previous observation in Section V-A that single-arity

Our results in Section VI indicate that, in practice, Usingenwvorks can be monitored using a single beacon.
locally-flexible beacons instead of simple beacons offers only a

slight improvement in the size of the computed beacon sets. In
this section, we conduct additional analysissonplebeacons, A. Revisiting Beacon Minimization

that lets us derive approximate solutions to the correspondingl-he additional structure on the DMES of simple beacons

_BMP’ that have better optimality bounds_ than those pr_esent{gﬂ)ws us to use an algorithm to minimize the beacon set, that
in Section IV. We conduct both theoretical and expenment?ésuIts in a tighter bound on the optimality. In this section we

analysis to evaluate the new beacon sets. _ . will show how to use the Vertex Cover problem to do so.
Our analysis in this section relies primarily on establishing Note that since the DMES of a node is nd#w, U Z, the
the “cut” property of a DME of a simple beacon. Intuitively, '

) ) resence of a single simple beacon in the network ensures that
this means that when such a DME is removed from a gra%em d P

the graph gets disconnected—note that this is true only for t | the edges in Z can be monitored. Thus, we can essentially
il th iA f th h the DMES of
DMEs which were found by the depth first search algorith ove the edges i#f from the graph and use the Sofa

d not th that included in the DMES si ode asF,, to come up with a beacon set. We will next show
En no the ones tha yéeret inciu eb N eS' thsmlp }ﬁat finding an optimal number of beacons as described above
ecause they were incident on a beacon. since the -c NP-Complete, by reducing the Vertex Cover Problem [13]

property of a DME is a global property of the graph (an the Beacon Minimization Problem.

not dependent on the beacon under consideration), we alSQy corem 8: The Beacon Minimization Problem (BMP) for
show that such DMEs are present in the DMES of all potentiglllmple beacohs is NP-Complete

simple beacons in the network. Proof:

Lemma 5: A DME found using the depth first search part '
of Algorithm 1 is a cut edge.. Also, such a DME s present in sy graph theory literature, the terbridge is also commonly used for a
the DMES of all the nodes in the graph. cut edge.

VII. | MPROVING OPTIMALITY OF SIMPLE BEACON SETS
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BMP is in NP: We have shown how to obtain the DMESAlgorithm 5 Compute a beacon set using the approximate
for all the nodes in the beacon set in polynomial time. Hend&@rtex Cover algorithm.

taking a union of the DMESs and comparing it with the set of Initialize B to be an empty set
all edges allows us to verify in polynomial time if the solution Remove the edges 4 from G to getG’

is correct. This proves that the BMP is in NP.
Reduction from Vertex Cover:Consider an instance of
a vertex cover problem with a graghif'(V’, E’). In general,

while G’ contains edgedo
Select* an edge frond:’
Include both its end nodes iB

this graph may have one or more cut edges. We construct an Remove the edge, its two end nodes and their edges from

instance of BMP from this setup as follows:
e For every cut edge (with end nodes: andy) in £/, add a
noden. and edgeg. andq. so thate, p. andg, form a triangle

G/
end while
B is the required Beacon Set.

with p. and g, incident onn.. Now, the resultant graph (say
G"(V", E")) doesn't have any cut edges, as removing any ef

the edges still keepsG” connected.

e Now, consider the Beacon Minimization Problem on grap
G". SinceG” has no cut edges, the DMES of a naden G”
reduces taE!/ (the edges incident on).

e Now, consider a solution to the
BMP on G”. We have a set of nodes
B such that all the edges are “covered”
(Uues £/ = E”). Note that the sense
of “covered” used here is exactly the
same as the sense of “vertex covered”
in the Vertex Cover problem.

To get a solution for the Vertex
Cover problem from a solution to the BMP, consider any ¢
the triangles ¢, pe, ¢.) that were introduced above.

Beacon Set Size (%age)

Beacon Set Size Percentages

70%
O vertex
Cover 1

60%

[ Vertex
Cover 2

50%
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30% -

EMscP
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20%-

10%* /4{&
I i

0% -
1221 1239 1755 2914 3257 3356 3967 4755 6461 7018

Autonomous Systems

e To cover all the three edges, we need exactly two nodes
gig. 10. Comparison of vertex cover heuristics simplebeacons

(betweenz, y and n.). Thus, two of these three nodes ar
present inB. If n. is present inB then it covers bothp,
and ¢.. Hence, removingn., p. and g, from G” (and n,
from B) ensures that the resultant graph can still be optimally
“covered” by B. This is because:. was not covering any
other edge other thap, andqe..
e If n. is absent fromB then we first check if putting.,.

in B and removing either: or y from B leaves any of the
edges in the graph uncovered. If it doesn’t then we have two
optimal solutions to the beacon placement problem and we

use the argument given above. However, if the transformation?)

doesn’t give us another optimal solution then it means that
andy are single handedly “covering” more edges then jst
and g.. Thus removingn., p. andq. from G” still ensures
that all the edges are covered optimally.

e We repeat this for all the., p. andg. that we introduced
to get a solution to the Vertex Cover problem 6V’ E').

Since Vertex Cover is NP-Complete [17] the above implies
that BMP is also NP-Complete. ]

We use a known approximate solution to the Vertex Cover
problem for deriving the following algorithm which yields an
approximately-optimal beacon set.

Algorithm 5 has a known optimality bound of a constant

3)

followed by the list of nodes adjacent to it. There is
no specific ordering to these nodes besides that they are
sorted based on their identifier value. In this heuristic,
we select the edge formed by the first node listed in the
pruned graph and the first node in the adjacency list of
the node. This essentially means that the edge selection
criteria is fairly random.

Heuristic 2 (degree-order)\We sort the nodes of the
graph according to their degrees; we also sort the nodes
in the adjacency list (of a particular node) according to
their degrees. We then use heuristic 1 on this prepro-
cessed graph representation.

Heuristic 3 (MSCP-adapted)This heuristic maps di-
rectly to the Min Set Cover heuristic adopted in sec-
tion IV. However, this is not an edge-selection heuristic,
but a node-selection heuristic. We calculate the degree
of all the nodes in the graph and select the one with the
highest degree. We then include this node in our beacon
set, remove this node (and its edges) from the graph and
recalculate degrees.

2 [17]). Note that this constant bound of 2 does not dependWe next simulate these three heuristics on the Rocketfuel
on the edge selection heuristic used (select*) in the aboology data and compare the resultant beacon sets with those
algorithm. Below, we enumerate three heuristics that we studitained using Algorithm 3 for simple beacons (that latter is

next.

referred to as simply “simple beacons” below). The results are

1) Heuristic 1 (random):We select the edges in the ordeplotted in Figure 10.
they appear in the Rocketfuel data. The Rocketfuel dataWe observe that even though all three vertex cover heuristics
is arranged in an adjacency list format with node idsave a tight worst-case optimality bound (constant 2 when
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compared tol + In|E| for simple beacons), heuristic 3 andhetwork routing mechanisms used. To argue about the appli-

simple beacons yield the smallest beacon sets in our sinmability of our optimizations to the new model we first present

lations. In fact, there is very little difference between simplan observation for directed graphs.

beacons and heuristic 3. Lemma 6: The existence of a high arity node in the
The above empirical result also yield an interesting observdirected graph as constructed in Section VIII-A implies that

tion insight about the solution obtained by the best-performinge have a cycle. Conversely, a cycle implies the existence of

heuristic (heuristic 3). We know that heuristic 1, being a vertexhigh arity node.

cover heuristic, never yields a beacon set larger than twiceProof: Let u be high arity with respect t@. This means

the optimal beacon set [17]. However, in most cases we fitltat we have distinct paths; and p, from u to v both of

that the beacon set size yielded by heuristic 3 is quite clogfich start from different outgoing edges of Since every

(but always greater) to half the beacon set size yielded Wirected link is paired with an oppositely directed link between

heuristic 1. This implies that heuristic 3 yields beacon sets withe same nodes, we have pagfysandp, from v to u. Let us

sizes close to the optimal beacon set, for all of the topologiassume that we chosevasuch that the first edges in pathls

considered in our experiments. andpl, differ. Now pathsp; andp), (and also pathg| andp,)
combine to form a cycle.
VIII. | NCORPORATINGADDITIONAL NETWORK Now consider the case when we have a cycle in the graph.
SCENARIOS We break the cycle into any two paths and p,. Like the
A. Incorporating Half-Duplex Links argument above, we would have a reverse path for beth

Throughout the analysis presented so far, for brevity, ﬁ:hm which makes the nodes at which we broke the cycle,

have used an undirected graph model to present our algorit arity. i ) _ u
The above formulation keeps our single-arity network op-

and proofs. In practice, networks may connect two nodes usinl%_ R ) high ari d h
a pair of half-duplex links, rather than a single full duplex link!MiZation intact. Having no high arity nodes means that our

A network monitoring infrastructure should ideally be capablR€WOrk has no cycles. This is even stronger than a directed
of monitoring both half-duplex links as separate entitie@CYClic graph as, because of the way links are connected, any
Below, we illustrate that our beacon placement solutions CFHVS'C‘T"I loop in the network becomes a cyclic path. The graph
be extended to such networks with slight modifications. ooks like a tree excePt that all edges are a<_:tu.ally_ paired.
Changes in Network Model: We modify our network model Th_e ak_)ove form_ulat|0_n also keeps the opt|m|zat|on_ of con-
by replacing each undirected link by two half-duplex link$dering just the high arity nodes for the beacon set, intact. In
between the end-nodes. More formally, @(V, E) is the the proof, a high arity node is salq to imply a cycle which has
undirected graph, we deriv@’ (v, E') from G as follows: already been proved above for directed graphs.
« V' = Vv,
o For all e € F, add directed edges; = z — y and B. Incorporating Non-Transit Nodes
e2 =y — x 0 E', wherez andy are the nodes connected o, formulation so far assumes that any simple physical
by ein G. path between two nodes may be selected by the routing
Changes in Definitions: protocol as the network route taken by packets sent between
 Node Arity:The definition of node arity remains the samehe two nodes. While this is a reasonable assumption for
except that the “outgoing edges” of a node now refers tp single autonomous network, it might not be true in a
the links directed away from the node. backbone network which consists of nodes (that provide
« Path: A path now consists of directed links. This als@access to customer sub-networks) which refuse to carry any
holds for the definition of physically connected paths. transit traffic—that has both source and destination outside
« DME: The definition of a DME should now be consideredhe customer sub-network. Note that while the backbone ISP
with the new definition of paths. does not monitor the customer sub-network, it would want
Changes in Algorithms: The algorithms to find the DMES to monitor the access links to such non-transit customers. In
of a beacon (Algorithms 1 and 2) change in the followingrder to incorporate such backbone networks, we extend our
way. Prior to conducting a depth first search on node find DMES-finding algorithms in this section.
all possible paths from the beacanto nodev, we need to  We model non-transit networks in the form of a node in the
reverse all links of the graph so that at the end of the searcigtwork. The invariant to be modeled is that any vatidtable
we get paths from: to v; (in the undirected graph this didn’t path in the network can have a non-transit node only either in
matter as the set of paths from beaeoto nodev is the same the beginning or the end of the path. In the following, we do
as that from node to beaconu). In practice, however, since so by modifying our DFS-based traversals to stop the “depth-
all directed links are paired with another link in the oppositeecursion” as soon as a non-transit node is encountered.
direction, we do not actually need to reverse the graph to findThe change in the algorithm is in the depth first search;
the subgraph of nodes—we should only ensure that the edy¢he depth first search algorithm encounters a non-transit
which finally gets included in the DMES of the beacon is theode, it doesn’t proceed depth-wise further, but returns back
edge going into node. to its parent node in the depth first search tree. This essentially
The pruning algorithm requires no changes since it means that non-transit nodes are alwkgs/esin a depth first
completely abstracted away from the beacon capabilities asehrch tree. We claim that the above algorithm gives us a valid
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Algorithm 6 Find the DMES of a simple beacenin a graph  , Case 2:If any of = and/ory are non-transit nodes, then

G(V, E) containing non-transit nodes. derivation ofP, , in G from P, in G’ is given above.
Consider a modification of algorithm 1. This enumerates all paths that can exist betweend
Initialize S to be an empty set y in G assuming these are the only non-transit nodes
for all edges! neighboringu do present in the network. Without loss of generality, let us
Includel in S assume that is a non-transit nodey may or may not
end for be a non-transit node. IP, , is non-empty inG, then
for all nodesv in V do there exists a non-empty,, ,» as described above. A
Do a modified depth first search from such that on non-empty P, ,» implies thatz’ andy’ are connected

visiting a non-transit node we don't proceed further by our modified depth first search algorithm ¢h This
recursively but we retract to the parent node in the DFS  follows directly from Case 1. Since our modified depth
tree; we don't stop at the root node if the root is a non- first search algorithm connectsto =" (depth first starting
transit node. (we get a set of subgraphs each connected from root doesn’t stop at root because the root is a non-

to v by one or more edges) transit node), it also connects to y'. Also, since our
if u lies in a subgraph connected toby only a single modified depth first search algorithm connects any non-
edgee then transit node to a normal neighbor node, it joiisandy.
Include the edge in S Thus our modified depth first search algorithm connects
end if x andy.
end for Conversely, ifP, , is empty inG, it means that for all
S is the DMES ofu neighbors ofr (and possiblyy if y is a non-transit node),

P, is empty. From Case 1, we can conclude that our
modified depth first search algorithm doesn’t connect any

optimal DMES for the beacon in G(V, E)) containing non- of thosex” andy'. Thus,z andy are not connected by
transit nodes. our modified depth first search algorithm.

Proof: (Proof of correctness) Since non-transit nodes don't* C@se 3:A trivial border case which is not easily evident
allow transit traffic, any valid path i6?(V, E) now can contain from the above is about two non-transit nodesand

a non-transit node only at the start or the end. Consider a graph ¥: directly connected. Our modified depth first search
G’ which is the same a§/(V, E) minus all non-transit nodes ~ @lgorithm correctly connects them.

and its neighboring edges. Note tig@tmight not be connected Using the above connectivity proof, along with the proof of

even if G is. Let us denote the set of paths between the nogerrectness of Algorithm 1, we establish the correctness of
pair (z,y) by the symbolP, ,,. Because of the characteristicAlgorithm 6. Though the above is shown only for simple

of the non-transit nodes, the set of paths for a node (paiy) beacons, the same connectivity argument also holds for the
in G(V, E) can be described as; DMES algorithm for locally-flexible beacons. [ |

« if x andy are not non-transit nodes, then the set of paths
P, , remains the same in bot andG’. C. Robustness th beacon failures
« if 2 is a non-transit node, then the set of paffis, in A tomographic monitoring infrastructure should ideally be
G is equal tol J . [(z, ") + P, ,, in G'] wherex' is not robust to beacon failures; in particular, there should be no
a non-transit node and adjacentato links in the network that can be monitored by only a single
« if z andy are non-transit nodes, then the set of p@thg beacon. To achieve robustness to beacon failures, therefore,
in G is equal to{J,, ,,[(x,2") + Py, in G’ + (y¥',y)] a monitoring infrastructure may wish to instantiate additional
wherez’ is a normal node and adjacentitoandy’ is @ (possibly redundant) beacons in the network. A beacon set is
normal node and adjacent to said to be robust td: beacon failures if any subset of the
We have to prove that if and only if two nodesy in beacon set containing less beacons is able to monitor the
G(V, E) are connected by a network route, then there existsamplete network.
path in the (modified) depth first tree which connects the two In [4], the authors have presented a technique for computing
nodes. We consider the following cases: such robust beacon sets, using an extended version of the Min
. Case 1:If z andy are normal nodes, then from theSet Cover_problem.We believe their solution is general enough
above, existence of a non-empy,, in G’ implies a non- to be applicable to the beacon-placement framework presented
empty P, ,, in G. Also, any path inP, , doesn't contain " this paper. A detailed treatment of this scenario is, however,

non-transit nodes. Hence, our modified depth first searfRyond the scope of this paper.

algorithm connects these two nodes.

Conversely, ifP,, in G’ is empty, then (because initially IX. CONCLUDING REMARKS

G was connected), we can conclude that all pathB,ip In this paper, we have presented a generic framework for
had non-transit nodes in the middle. Our modified dep#iddressing the problem of beacon placement for network
first search algorithm will not conneat and y as on monitoring using tomography, efficiently and under a generic
all paths it finds a non-transit node on and halt furtheset of policy constraints. Our framework incorporates routing
depth-wise graph search from that point onward. dynamism and monitoring policy constraints by defining the
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generic concept of Deterministically Monitorable Edge Setélgorithm 7 Finding out if a nodey in G(V, E) is high arity
and then using the DMESs to find beacon sets that are withi@@anot.
bounded-range of the optimal size for monitoring a given set of D0 & depth first search from;
network edges. We extend our basic framework to incorporatelf there is a back edge to from any other nodehen
networks consisting of half-duplex links as well as non-transit ~declareu high arity
sub-networks. else
We supplement our theoretical analysis with empirical re- declareu single arity
sults obtained from running beacon placement strategies orend if
Rocketfuel versions of real-world ISP topologies. We find
that our algorithms perform significantly better than previous
techniques and reduce the beacon set size by about 5d€oselected first for traversal. In the depth first search run,
80%. We also find that the best-performing heuristic used feensider that we are on the first edge frerwhich has a path
placement of “simple” beacons, yields beacon sets fairly clo&v, with an alternating path to the same nodas defined
to optimal. above. Because of the alternating path, there exists a cycle
Acknowledgments: The authors thanks the anonymou#vith nodesu andv on it. Since the edge on the alternating
JSAC reviewers for their valuable feedback and suggestiongath outgoing fromu is not yet traversed, it will become a
back edge and will be detected as outlined in the algorithm.
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