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Practical Beacon Placement for Link Monitoring
Using Network Tomography

Ritesh Kumar and Jasleen Kaur

Abstract— Recent interest in using tomography for network
monitoring has motivated the issue of whether it is possible to use
only a small number of probing nodes (beacons) for monitoring
all edges of a network in the presence of dynamic routing. Past
work has shown that minimizing the number of beacons is NP-
hard, and has provided approximate solutions that may be fairly
suboptimal. In this paper, we use a two-pronged approach to
compute an efficient beacon set: (i) we formulate the need for,
and design algorithms for, computing the set of edges that can be
monitored by a beacon under all possible routing states; and (ii)
we minimize the number of beacons used to monitor all network
edges. We show that the latter problem is NP-complete and use
various approximate placement algorithm that yields beacon sets
of sizes within 1 + ln(|E|) of the optimal solution, where E is
the set of edges to be monitored. Beacon set computations for
several Rocketfuel ISP topologies indicate that our algorithms
may reduce the number of beacons yielded by past solutions by
more than 50% and are, in most cases, close to optimal.

I. I NTRODUCTION

T HE last two decades have witnessed an exponential
growth of the Internet in terms of its infrastructure, its

traffic load and composition, as well as its commercial usage.
In order to provide good connectivity, reliability, and quality
of service to Internet users, it is important to have the ability
to monitor the health of the networks that comprise the Inter-
net. Consequently, there is significant interest in developing
network monitoring infrastructures that allow ISPs as well as
end-users to monitor network links and nodes.

An important consideration in the design of monitoring
infrastructures is that of developing low-cost solutions. In
particular, the idea of placing and operating sophisticated
monitors at all nodes in a network is neither cost-efficient nor
practical (especially when monitoring is performed by end-
users). Instead, there has been significant recent interest in
relying ontomographictechniques that use only a few probing
end-nodes (beacons) for monitoring the health of all network
links. They do so by sending specially-designed probes along
the IP routes to the two end-points of a given link, only
one of which traverses the link—by observing the difference
in the results of the two probes, properties of the link are
estimated [1]–[9]. Though there are several properties of a link
which can be measured topographically, we consider only link
failure and link delay monitoring in this work.

A central issue in the design of a monitoring infrastructure
is that of beacon placement—given a set of links to be
monitored, which network nodes should be used to construct
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a beacon set? Two requirements guide the design of a good
beacon placement strategy:

• Minimizing the number of beacons.
One of the prime motivations for using tomography
for network monitoring is to reduce the cost of the
monitoring infrastructure. However, even a tomographic
infrastructure involves the development, installation, de-
bugging, operation, and maintenance of specialized soft-
ware/hardware on each beacon. In order to minimize
the cost of doing so, it is important that the number of
beacons used to monitor all links of a given network are
minimized.

• Robustness to routing dynamics and uncertainty.
A monitoring infrastructure should not assume a specific
routing configuration in selecting a beacon set. This is
because of two reasons. First, routing state in many
networks responds to changes in traffic patterns and
link loads, as well as to link failures. Since Internet
traffic conditions are highly dynamic, the default IP
routes in a given network may change at time-scales
much smaller than the time-scales at which beacons are
deployed. Second, the routing state within individual
ASes may be considered proprietary information and may
not even be available—this is an important consideration
for monitoring infrastructures that cover multiple ASes.
Consequently, a beacon placement strategy should find a
beacon set that is able to monitor all relevant network
links, independent of the current route configuration.

A few recent efforts have focused on the problem of finding
beacon sets for a network [4], [7]. These, however, do not
adequately meet the above challenge—the beacon set of [4]
is not robust to changes in IP routes, and the beacon set
proposed in [7] can be quite large for real ISP topologies
(details in Sections II and VI). In this paper, we present and
evaluate beacon placement strategies that meet both aspects of
the above challenge.

Contributions

We formally model the problem of beacon placement using
a generic framework that allows us to evaluate several beacon
placement strategies—proposed here as well as in related
work—that incorporate different beacon types as well as policy
constraints. We approach the beacon placement problem both
theoretically and experimentally. Our analytical framework
relies on a two-pronged methodology:

• First, we consider the issue of diversity in routing con-
figurations and in the probing-flexibility of beacons, that
governhow monitoring is done by beacons. We present
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a generic framework that allows the incorporation of this
diversity. Our framework relies on defining the concept
of a Deterministically Monitorable Edge Set (DMES)of
a beacon as the set of links that can be monitored by
the beacon under all possible route configurations. We
present efficient graph-theoretic algorithms for computing
the DMES of two types of beacons discussed in the
literature.

• Second, we consider the optimization problem of finding
the minimum number of beacons which can collectively
monitor all the links of a network (the union of their
DMES covers all network edges). We show that this prob-
lem is intractable. We derive approximation algorithms
that yield beacon sets of sizes within1 + ln(E) of the
optimal solution in general, and within a constant of 2
for one of the beacon types considered.
We also establish additional properties of beacon sets
that help in improving the computation efficiency of our
approximation algorithms.

We simulate our beacon placement algorithms on several
real ISP topologies obtained from the Rocketfuel project [10].
Our experimental results illustrate that: (i) our beacon place-
ment strategies yield beacon sets that are50 − 80% smaller
than those yielded by [7]; (ii) in practice, the best-performing
heuristics for our approximation algorithms yield solutions
fairly close to optimal; and (iii) the routing-dependent beacon
placement strategy of [4] yields smaller beacon sets (by
10-75%) for statically-routed networks, but the beacon sets
are much larger in the long-run if traffic-dependent dynamic
routing is employed.

Finally, we extend our analytical framework to incorporate
realistic network scenarios that include half-duplex links as
well as non-transit networks.

The rest of this paper is organized as follows. We formulate
the problem of Beacon Placement and discuss past work in
Section II. We define and compute DMESs in Section III
and address the Beacon Minimization Problem in Sections IV
and V. We present our evaluations on Rocketfuel topologies
in Section VI. We derive additional insights for specialized
beacon types and network scenarios in Sections VII-VIII. We
summarize our conclusions in Section IX.

Notations and Assumptions

We model a network as an undirected graphG(V,E), where
V is the set of network nodes andE is the set of links (or
edges)—in section VIII-A, we extend our analysis to directed
graphs as well. We use the terms networks and graphs—and
also links and edges—interchangeably. We assume thatG is
connected (there exists a path from any node to any other
node). We also assume that all routes areacyclic (simple).
We say that two physical paths between a pair of nodes are
distinct, if they differ in even one of the edges traversed.

Finally, we make an important assumption that if two node
are physically connected, thereexists a network routebetween
them. In fact, we assume that no physically available loop-free
(simple) path in the network is prohibited as a network route;
in section VIII-B we will lift this assumption to incorporate
real-world scenarios of non-transit networks.

II. PROBLEM FORMULATION

Beacon Placement

In a tomographic network monitoring infrastructure, each
network link is monitored by a special probing node, referred
to as abeacon. The basic idea behind most tomographic setups
is fairly simple: the beacon sends a pair of nearly-simultaneous
probes to the two end-nodes of the link, only one of which
traverses the link. Each end-point sends back a response to the
beacon—this may be implemented, for instance, using ICMP
echo messages. The results of the probes can then be used to
infer properties of the link. For instance, if the objective is to
measure link delays, then the difference in round-trip times of
the two probes can be used as an estimate. If the objective is to
simply detect link transmission failures, the success and failure
of the two probes may be used as reasonable estimators. In
this paper, we consider the problem of monitoring onlysingle
link failures.

Note that, in general, a beacon is capable of monitoring sev-
eral network links.1 A set of beacons that can be collectively
used to monitorall the links of a network is referred to as
a beacon set. A central issue in the design of a monitoring
infrastructure is that ofbeacon placement—which network
nodes should be used to construct a beacon set? Specifically,
and as motivated in Section I, our objective is to:find
the smallest number of beacons required to deterministically
monitor all the links of a given network, even in the presence
of dynamism and uncertainty in IP routes.

MES and Past Work

Our methodology for finding the smallest beacon set for a
network first enlists the edges that can be monitored by each
candidate beacon—this is referred to as themonitorable edge
set (MES) of the beacon. Note that the union of MES of all
beacons in a beacon set is equal to the set of all network edges.
In general, the larger is the average MES size in a beacon set,
the smaller is the beacon set.2

We briefly discuss below two beacon placement schemes
proposed recently, which differ in their assumptions about
which links comprise the MES of a beacon.

• Simple Beacons:
In [4], the authors assume that the MES of a beacon
consists of all links that can be reached by the beacon—
which are links that lie on its IP routing tree.3 In order

1We assume that each beacon node is capable of monitoring all of its
directly-connected links using a link-layer technology. Additionally, each
beacon can monitor some remote links as described above. We also assume
throughout this paper thatall links of a network need to be monitored—it
is straightforward to tune our analysis to the case when only a subset of all
network links needs to be monitored.

2Perhaps the largest MES (and smallest beacon set) that can be envisioned is
when asinglebeacon monitorsall the links of a network—this is feasible, for
instance, in a network which supports source-routing [11]. In such a network,
a beacon can precisely specify the path traversed by its probes, and hence can
probe the end-points of any network link. However, this strategy relies on the
availability of source-routing support atall network nodes, which is the not
the case with a majority of current networks [4].

3The IP routing tree of a node refers to the tree, rooted at the node, which
is formed by the links that lie on the default IP routes from that node to each
of the other nodes in the network.
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Fig. 1. Simple vs. Locally-flexible Beacons

to monitor a link in its MES, such a beacon—henceforth
referred to as a “simple” beacon—sends probes to the
end-points of the link, along the default IP paths to those
end-points. The authors demonstrate that the problem of
minimizing the size of the beacon set with such beacons is
NP-hard, and provide a placement strategy that produces
a beacon set no larger than1 + ln|E| times the optimal
beacon set. Unfortunately, since the authors assume that
all links within the routing tree of a beacon belong to its
MES, their strategy is not robust to changes in routing
trees and works only for networks with static routes.

• Locally-flexible Beacons:
In [7], the authors consider beacons that have a greater
flexibility in selecting the paths taken by the probes.
Specifically, the beacons—henceforth referred to as
“locally-flexible” beacons—are capable of selecting the
first link (outgoing link from beacon) on which a probe
to any destination is transmitted. A probe can, therefore,
be sent to a destination either along the current IP route
to the destination, or along one of the current IP route
from any immediate neighbor to the same destination
(see Figure 1).4 Furthermore, the authors do not assume
static routing state and define the MES of a beacon to
consist of links that, irrespective of what current routes
are, can always be monitored. The authors do not provide
a mechanism to compute such an MES for a beacon, but
show that even if these sets are known, the beacon set
minimization problem is NP-hard. The authors instead
suggest an alternative beacon-placement strategy which,
unfortunately, can result in fairly large beacon sets for
current network topologies (see Section VI).

To summarize, existing beacon placement strategies are
either not robust to routing dynamics or are inefficient in
minimizing the number of beacons.5

4The authors in [7] implicitly assume that the default IP route from any
neighbor to a given destination will not go through the beacon node. This
assumption may get violated when a path through the beacon has a smaller
cost that any other physical path between a neighbor and the destination.

5An orthogonal problem of beacon placement for detectingmultiple link
failures that occur simultaneously has been considered in [12]. In general,
it is not possible to detect all cases of simultaneous link failures in a given
network. In [12], the authors restrict their attention to those simultaneous link
failures that can be detected in the absence of any limitations on the number of
beacons and probes. They then provide efficient algorithms for minimizing the
number of beacons and probes needed for detecting these failures. Like [4],
this work assumes “simple” beacons and uses the IP routing tree in the beacon
set computation and, hence, is applicable only to networks with non-dynamic
routes. We believe that it is possible to use our formulations from this paper
to extend the work in [12] to locally-flexible beacons, as well as to networks
with dynamic routing.

Our Approach

In this paper, we build on past work to address these
limitations by using a two-pronged approach:

1) Deterministic MES Computation: In order to achieve
robustness to routing dynamics, for each candidate bea-
con, we determine the set of edges—referred to as its
Deterministic MES (DMES)—that can be monitored by
it underall possible routing configurations.

2) Beacon Set Minimization: In order to minimize in-
frastructure cost, we address the problem of finding the
smallestbeacon set.

In the following two sections we present our abstractions and
methodologies for implementing the above for both simple and
locally-flexible beacons.

III. D ETERMINISTICALLY MONITORABLE EDGE SETS

The first key problem we need to solve is to find the set
of edges that can be monitored by a beacon, independent of
the routing configuration. This is formally captured in the
following definition.

Definition 1: An edge is said to bedeterministically moni-
torableby a beacon if the beacon can monitor it under all pos-
sible route configurations. TheDeterministically Monitorable
Edge Set(DMES) of a beacon is the set of all deterministically
monitorable edges associated with that beacon.

In what follows, we consider both simple and locally-
flexible beacons and present algorithms for computing their
DMES. For clarity, we first establish an equivalence between
“deterministically monitoring an edge” and the topological
structure of the network. Lemma 1 does that:

Lemma 1: If all possible (simple) physical paths from a
beaconu to a nodey end in the same edgee, then u can
deterministically monitor edgee.
Proof: Since all possible simple physical paths fromu to y
end ine, then the current network route fromu to y also ends
in e.6 This implies that whenever a probe is sent fromu to y
and it reachesy, the probe always passes through the edgee.
If the other end-point ofe is x, any monitorable property of
e may be estimated regardless of the current routing state of
the network, by sending probes fromu to each ofx andy.

The advantage of the above formulation is that it allows
us to ignore the network routing state, which isdynamicand
derived from an exponentially large set of possible paths, and
use only thestatic topology of the network for computing
the DMES. This can be done by relying on graph-theoretic
analysis (such as depth-first search) for efficiently finding for
each potential beaconu, the set of edgese such that all
physical paths to one of the end-points ofe end in that edge.
Lemma 1 ensures thatu can monitor such an edgee under all
possible route configurations.

It is important to emphasize that there may be edges in a
graph which may never qualify to become a DME using the
formulation above. For example, in figure 2, the DMEs for
all the nodes in a graph are the edges 1-2 and 5-6. To work

6This is because of our assumption that network routes are simple;
therefore, the current route is also a member of the set of all simple physical
paths fromu to y.
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Fig. 2. The DMES may not be a connected graph.

around this, we assume that all edges directly connected to a
beacon can also be monitored by the beacon. Such monitoring
is done using either physical layer or device driver queries on
the directly connected link. This gives us the hope of using
extra beacons to monitor edges which don’t fall under the
above formulation. We shall refer to edges monitored in this
way also as DMEs in the interest of reducing terminology,
though we will differentiate between these kinds of DMEs in
Section VII.

We present graph-theoretic algorithms for computing the
DMEs for simple and locally-flexible beacons in Sections III-B
and III-C, respectively. Below, we first illustrate how a beacon
can monitor a DME for link failures and latencies.

A. Monitoring DMEs

We illustrate the use of the DMES formulation by consid-
ering two kinds of probes which can be used to monitor link
failures and latencies, respectively, for beacon-link pairs that
satisfy the pre-condition in Lemma 1. Lemma 2 first estab-
lishes a crucial property relevant for link failure monitoring.
It is important to observe that link failure is perhaps the most
fundamental property of a link that can be monitored; if a
link is down, it is unlikely that additional properties of the
link—such as latency and bandwidth—can be monitored.

Lemma 2: Let the two end-nodes on the linke bex andy
such that a probe packet from the beaconu to y traverses in the
directionx → y. If a probe tox is successfully responded to
and ife andy are up, then a probe toy will also be successfully
responded to.
Proof: Let p be the current network route of a probe fromu
to x; we make the following observations;

1) p cannot traversey. This is because if it does thenp
contains a cycle that includesx andy, which contradicts
our assumption that network routes are simple.

2) If p and e are up, then there exists at least one simple
physicalpath betweenu and y that is also up. This is
becausep can always be extended bye to yield such a
path, p′. Note from the first observation above thatp′

does not contain cycles, and hence is asimplepath.
3) If p and e are up, then there exists a network route

betweenu and y. This is becausep′ is up and can be
used in the event that all other candidate routes fromu
to y are broken.7 Note that this relies on our assumption

7Note that in case a link failure occurs in the network, it may take some
time for the network routing state to converge to the above-mentioned path
p′.

that no physically connected path in the network is
prohibited as a network path.

The above observations indicate that ifp and e are up, there
is a valid network route fromu to y, and hence the probe to
y should be successful.
Monitoring link failure: Link failures can be monitored by
exchangingping-type request-response messages between the
beaconu and each of the two end-points,x andy, of the link
e. The probe results can then be used byu to infer whethere
is up or down as follows:

• If the probe to y is successful (y’s response reaches
u), then e is up. This is because ife were down,
then no physical path would exist fromu to y (pre-
condition in Lemma 1), and the probe would not have
been successfully responded to.

• The probe toy fails but the probe tox is successfully
responded to. From Lemma 2, this implies thate is down.

• The probes to bothx andy fail. This leads to uncertainty
in concluding whethere is up or down, as there could be
failures in the paths to each ofx andy.

• It is not possible for the probe toy to be successfully
responded to without the probe tox being successfully
responded to as all probes that reachy also reachx.

Monitoring link latency: Link latencies can be monitored
for networks that rely on amonotonicrouting policy. Using
the construction in Lemma 2, this means that when routes
have stabilized after any failures, the pathp is embedded in
the pathp′. Beacons can then exchangeping-type request-
response messages with each of the two end-points,x andy,
of the link e. The probe results can then be used byu to infer
Probe results can then be used byu to infer the latency ofe
as follows:

• We require probes fromu to each ofx and y to be
successfully responded to.

• Assuming monotonic routing, the route of the probe from
u to y is exactly the same route as that of the probe from
u to x except the last edgee.

• The difference in the round trip times for both these
probes gives us the round trip delay of the linke.

B. DMES for Simple Beacons

Theorem 1: Let u be a simple beacon and letS(v) be the
set of all distinct physical paths fromu to another nodev. The
link l(v) is deterministically monitorable byu if for all paths
p in S(v), l(v) is the last edge onp. The DMES ofu is the
set of all such edgesl(v) for all nodesv ∈ V .
Proof: Since all paths from the simple beaconu to v have
l(v) as the last edge, the current IP route fromu to v (which
takes one of these paths) also ends in the edgel(v). From
Definition 1 and Lemma 1, therefore, simple beaconu is able
to monitor the linkl(v).

Note that a DMES yielded by Theorem 1 need not form
a connected sub-graph; Figure 2 illustrates that the DMES of
node 1 includes only the edges 1-2 and 5-6. We now present
an efficient algorithm for computing the DMES for simple
beacons.
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Algorithm 1 Computing DMES of a simple beaconu.
Initialize S to be an empty set
for all edgesl neighboringu do

Include l in S
end for
for all nodesv in V do

Do a depth first search fromv (we get subgraphs each
connected tov by one or more edges)
if u lies in a subgraph connected tov by only a single
edgee then

Include the edgee in S
end if

end for
S is the DMES foru

DFS Root

DME Beacon

y

x

e

Fig. 3. The subgraphs of the DFS tree. Running a DFS allows us to see if
an edge can be deterministically monitored by a beacon.

Proof: (Proof of correctness) Consider a depth first tree
(along with its back edges) constructed from the nodev. If we
consider all subgraphs sprouting from the neighboring edges
of v, then these might connect tov via one or more edges.
These subgraphs are connected to each other only throughv.
Separating subgraphs this way helps us to isolate all possible
paths from the beaconu to the nodev. Any probe packet from
u to v is entirely confined to paths in the subgraph containing
u. Now, if the beaconu lies in a subgraph which connects tov
via only one edge, all paths fromu to v have to cross this edge
at the end of the path. However, ifu lies in a subgraph which
is connected tov via two or more edges, then there exist at
least two distinct paths from the simple beaconu to the node
v which end in different edges to the nodev. This means
that the edges are not deterministically monitorable fromu
(Theorem 1).
Time Complexity:The cost of computing the DMES of a
simple beacon is essentially that of running a depth first search
(DFS) algorithm at every node in the network. Since the
time complexity of running a depth first search onG(V,E)
is Θ(|E| + |V |), the time complexity of Algorithm 1 is
Θ(|V |(|E|+ |V |)).

Note that the DMES for multiple simple beacons can be
computed in parallel. After running DFS on a nodev, we
can add an incident edges ofv to the DMES of all nodes

that belong to the subgraph rooted at the edge, if there are no
more edges connecting that subgraph tov. Since the number of
potential nodes is bounded by|V |, and the time complexity of
depth first search isΘ(|E|+ |V |), the time complexity for the
parallel DMES computation algorithm is the same as above.
Hence, we can calculate the DMES ofall nodes inG(V,E)
in Θ(|V |(|E|+ |V |)) time.

C. DMES for Locally-flexible Beacons

Theorem 2: Let u be a locally-flexible beacon andEu be
the set of edges directly connected tou. For each edgei ∈ Eu,
let Si(v) be the set of all paths fromu to any other nodev,
that start with the edgei. A link li(v) is deterministically
monitorable fromu if for all paths in Si(v), li(v) is the
last edge. The DMES ofu is the set of all deterministically-
monitorable edgesli(v), for all v ∈ V and all i ∈ Eu.

Proof: Since locally-flexible beacons can select the outgo-
ing link on which to transmit a probe, we need to consider
only those paths tov which start from a specific edge inEu,
to see if there is a common ending edge. Thus, even ifu has
paths tov which end with different edges, if all paths tov
that start fromu with edgei end with a common edgeli(v),
u has the control over the ability to reachv through li(v).
From Definition 1 and Lemma 1, therefore, the common edge
is deterministically monitorable.

Below, we present an algorithm for computing the DMES
for locally-flexible beacons.

Algorithm 2 Computing DMES of a locally-flexible beacon
u.

Initialize S to be an empty set
for all edgesi neighboringu do

Include i in S
Removei from E

end for
for all nodesv in V do

Do a depth first search fromv (we get subgraphs each
connected tov by one or more edges)
if one ofu’s neighbors lies in the subgraph connected to
v by a single edgee then

Include the edgee in S
end if

end for
S is the DMES foru

Proof: (Proof of Correctness) The proof is similar to that for
Algorithm 1. Let ui be the neighbor connected tou through
i. The subgraph containingui also contains all paths fromu
to v that start ini. This is because, if there was another path
from u to v throughi, v andui would have been connected
which would be captured in the depth first search. Conversely,
consider any simple path fromui to v. Since Algorithm 2
removesi from E before running the DFS, a possible path in
the subgraph containingui doesn’t havei in it. Thus, adding
i at the start of the path still retains the loop-free (simple)
property of the path. Such a path is a valid path fromu to v
starting with edgei. Since we removedu’s neighboring edges
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from E, one could argue that some paths might be missing.
However, this cannot be true because no simple paths from
v to u would transitu in the middle of the path. Hence the
subgraphs obtained by removing the edges neighboringu are
representative of all paths fromu’s neighbors tov.
Time Complexity:The cost of this algorithm is that of running
a depth first search on each node and for each depth first
search run checking if any of the neighbors of u are in a singly
connected subgraph. Thus, if the degree ofu is k, the time
complexity of the algorithm isΘ(|V |(|E|+ |V |+ k)). Since
k is bounded by|V |, the time complexity isΘ(|V |(|E| +
|V |)). Note that, unlike simple beacons, DMES for locally-
flexible beacons can not be computed in parallel for multiple
nodes because for each locally-flexible beacon we customize
the graphG(V,E) (removal of neighboring edges) specific
to the beacon before doing all the depth first searches. The
complexity of computing DMES forall nodes inG(V,E) is,
therefore,Θ(|V |2(|E|+ |V |)).

IV. B EACON SET M INIMIZATION

The second key problem—of minimizing the beacon set for
a network—is formally stated below:

Beacon Minimization Problem (BMP): Let Du be the
DMES associated with a nodeu ∈ V . Then thebeacon-
minimization problemis to find the smallest set of beacons,
B ⊆ V , such that

⋃
b∈B Db = E.

The Beacon Placement Problem is intractable for the beacon
types considered in this paper. We formally prove in sec-
tion VII-A that BMP is NP-Complete for the case of simple
beacons. BMP has also been shown to be NP-complete for
locally-flexible beacons in [7]. Below we develop a correspon-
dence between the general BMP (independent of beacon type)
and Minimum Set Cover problem (MSCP)—this will let us
apply well-known MSCP heuristics for addressing BMP.

Theorem 3: BMP is a special case of the Minimum Set
Cover problem.

Proof: MSCP [13] can be stated as follows. Consider a set
S with elementse1, e2, ... . Now consider a group of arbitrary
subsets ofS; X1, X2, X3... such that

⋃
i Xi = S. The Min

Set Cover problem is to find a collection ofXi’s (say setQ),
such that

⋃
Xi∈Q Xi = S and |Q| is the minimum.

To show that BMP is a special case of MSCP, consider
a graph G(V,E). Since every node can deterministically
monitor at least its neighboring edges,

⋃
v∈V Dv = E. Also,

∀v ∈ V : Dv ⊆ E. To solve BMP, we need to find thesmallest
subset,B ⊆ V , such that

⋃
v∈B Dv = E; then B is the

required beacon set. Now consider a setB′ = {Dv : v ∈ B}.
Note that|B′| = |B|. Also note the correspondence between
MSCP and BMP given the associationsS → E,Xi → Dv

andQ → B′.
MSCP is known to be NP-Complete [13], [14]. However,

MSCP has a pruning-based approximate solution—below, we
adapt the pruning algorithm and use heuristics from the
literature [15] to establish approximate solutions with bounded
optimality for BMP.

It is straightforward to see that the algorithm returns a valid
beacon set. This is because every edge that was eliminated

Algorithm 3 Find the beacon set for completely monitoring
a graphG(V,E).

Initialize B to be an empty set
Initialize E′ = E
while E′ is not emptydo

Select* nodeu from V not in B
E′ = E′− the DMES ofu
Includeu in B

end while
B is the required beacon set.

1 2 3 4 5

Fig. 4. Optimality of the “pruning” algorithm depends on the order node-
selection.

from E′ could be deterministically monitored by some node
that was already included in the beacon set.

The efficacy of the “pruning” algorithm in minimizing the
size of the beacon set depends on the order of selection
(the *ed operation in Algorithm 3) of nodes. For instance,
consider the topology in Figure 4. The optimal beacon set
(with locally-flexible beacons) for this topology contains just
node 1. However, the “pruning” algorithm will lead to a non-
optimal beacon set if it selects any node other than node 1
as its first beacon. In fact, selecting the nodes in the order 5,
4, 3, 2 and 1 causes the “pruning” algorithm to select all the
nodes in the graph for the beacon set.

Fortunately, there exists a known heuristic for the MSCP
pruning-based solution that ensures that the size of the solution
is within a bound of the optimal [15]. The heuristic dictates
the following node-selection rule (* in above algorithm) for
BMP: select the node with a DMES that has the maximum
overlap with the current pruned graph. Specifically, ifE′ is
the current set of edges of the pruned graph then we choose
the nodev such that|Dv ∩ E′| is maximum. This heuristic
results in provable [15] bounds on optimality of the beacon
set: |B(heuristic)|

|B(optimal)| = 1 + ln|E|.

A. Monitoring a Subset of the Links

Some network operators may be interested in investing
in a monitoring infrastructure that monitors only a critical
subset of network edges. For such cases, our pruning algorithm
(Algorithm 3) can be extended to find a potentially smaller
beacon set as follows.

Given a graphG(V,E), such that for every nodei ∈ V , its
DMES is Di, let L, L ⊆ E, be the subset of links that need
to be monitored. Consider the following algorithm:

Algorithm 4 differs from Algorithm 3 in two prime ways:
• E′ is initialized toL rather thanE.
• The node selection heuristic selects a node whose DMES

has the maximum overlap with the pruned set of edges,
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Algorithm 4 Find a beacon set to monitor the set of edgesL
in the graphG(V,E).

Initialize B to be an empty set
Initialize E′ = L
while E′ is not emptydo

Select* nodeu from V not in B
E′ = E′− the DMES ofu
Includeu in B

end while
B is the required beacon set.

which is a subset ofL (still equivalent to “currently
pruned graph”).

Theorem 4: Algorithm 4 finds a beacon set for monitoring
edges inL using no more thanΘ(1 + ln|L|) beacons.

Proof: Using the same terminology of beacons, DMES and
links, consider a Min Set Cover problem as follows. Let the
set of edgesE = L, the set of DMESs under consideration
= {Di : Di ∩L 6= ∅}. By the node selection heuristic used in
algorithm 4, the algorithm reduces to the standard Min Set
Cover heuristic for the smaller instance of Min Set Cover
problem outlined above. Hence, the optimality of the solution
is bounded by the optimality bound for the smaller instance
of Min Set Cover problem which isΘ(1 + ln|L|).

V. H IGH ARITY NODES AND BEACON SETS

In [7], the authors introduced the concept of high arity
nodes which was used in constructing a beacon set. In this
section, we show how the concept of node arity can be useful
in speeding-up the computation of a small beacon set, as
formulated in Section IV. Below, we restate the definition of
node arity from [7] in a slightly different manner.

Definition 2: (Node Arity) The arity of a node,u, with
respect to another node, v, is defined as the number of distinct
paths that exist between the two nodes such that each of these
paths starts from a unique outgoing edge fromu. The arity
of a nodeu is defined as the maximum of arities ofu with
respect all nodes of the graph.

Using the terminology of [7], we refer to a node as “high
arity” if the node’s arity is more than one. Note that since
G(V,E) is assumed to be connected, there is at least one path
from every node to every other node (assuming|V | > 1).
Hence, the arity of a node is always greater than or equal to
one. Also, since the maximum number of distinct paths (with
a unique outgoing edge) fromu to v can not be more than the
degree ofu, the arity of a node is bounded by its degree.

Algorithm 7 in the Appendix gives an efficient way for
finding whether a node inG(V,E) is high arity or not. Our
algorithm is based on the insight that if a nodev has arity
one, all subgraphs generated in the depth-first search fromv
will be connected tov by a single edge.

A. Single Arity Networks

It is interesting to study the Beacon Placement Problem for
a graphG(V,E) that contains only single arity nodes. We

show the optimal beacon set for such a graph is a singleton
set, and can contain any one node of the graph.

Lemma 3: A graphG(V,E) with no high arity nodes is a
tree.

Proof: Since the graph is connected, the nodes present in
the graph have an arity of at least one. Since there are no high
arity nodes in graph, the arity of all nodes is one. Suppose
there is a cycle inG. Then, any two distinct nodes in the cycle
have separate paths to each other from their different outgoing
edges. Thus, the nodes in the cycle are high arity, which is
a contradiction. Hence, the graph cannot contain cycles. This
implies thatG(V,E) is a tree.

Theorem 5: A network with no high arity nodes can be
monitored by a single beacon on any node in the network.

Proof: From Lemma 3, we know that a network with no
high arity nodes is a tree. Consider an arbitrary nodeu in the
tree as a beacon; then the network graph can be considered
as a tree rooted atu. Since the graph is a tree, there is only
one simple physical path available fromu to any other node.
In particular, this implies that givenany network edgee, all
physical paths (in this graph, there is only one such path) from
u to one of the end-points ofe, end in the edgee. Thus,e is a
DME of u. Thus, all edges of the graph belong to the DMES
of u, and can be monitored by it.

B. High Arity Networks

We next show that using node arity analysis, the beacon
search space in the pruning algorithms of Section IV can
be substantially reduced. Specifically, in Theorem 6 we show
that only high arity nodes need to be considered as potential
beacons. Lemma 4 is used to prove the theorem.

Lemma 4: A graph which has at least one high arity node
cannot be completely monitored by a single simple or locally-
flexible beacon placed on a single arity node.

Proof: Consider a graphG(V,E), which has a high arity
nodex. Also consider a single beacon on a single arity node
b. Sincex is a high arity node, there exists a nodey, to which
x has multiple paths with different outgoing edges fromx
and multiple incoming edges toy. Thus,x andy are part of
a cycle.b cannot be on this cycle as otherwise it would be
high arity. Note thatb cannot deterministically monitor any
edges in this cycle. This is because for any edge in the cycle,
b has multiple paths to one of its end-points, which end in a
different edge. Hence,b cannot completely monitor the entire
graph.

Theorem 6: For a network with at least one high-arity
node, an optimal beacon set is a subset of the set of high
arity nodes.

Proof: Let B be an optimal beacon set of graphG(V,E).
Supposeb ∈ B is a single arity node. SinceB is optimal,
removing b from B causes at least one edgee ∈ E to be
not deterministically monitorable byB. Let x and y be the
two nodes on either side ofe and, without loss of generality,
assume thate is traversed when a probe packet is sent fromb to
y (and hence not traversed when sent tox). Now consider a
depth first search fromy. Consider the subgraphs sprouting
from the edges adjacent toy. Since e is deterministically



8 IEEE JSAC - SAMPLING 2006

monitorable fromb, b lies in the subgraph,Fe, sprouting from
the edgee. Also, Fe is connected toy by only e and no
other edge (otherwise,e wouldn’t have been deterministically
monitorable byb). Since,e was exclusively monitorable by
only b, there are no other beacons inFe.

Now consider the following two cases:
• Fe has at least one high arity node.

Let h be a high arity node inFe. Sincee is the only edge
connecting the subgraph to the rest of the graph,h must
be high arity with respect to a node in the subgraph itself.
Hence from Lemma 4,b cannot monitor the entire sub-
graph. Also, no other beacon outsideFe can completely
monitorFe, as all paths from such beacons must traverse
e; just like b, such beacons can not deterministically
guarantee the last edge in their paths to nodes in the
cycle formed byh (Lemma 4). Sinceb should be able to
monitor the entire subgraph as it is the sole beacon in it,
we have a contradiction. It follows that all nodes in the
subgraph must be single arity.

• Fe has only single arity nodes.
If Fe contains only single arity nodes then all edges in the
subgraph can be monitored by a single beacon outside the
subgraph. This is becauseFe is a tree, and is reachable
only throughe from a beacon outsideFe. Any path from
an outside beacon to any node inFe has a unique sub-
path after crossinge. Hence, all edges withinFe can be
monitored by it. This implies thatb is a redundant beacon,
and removingb from B doesn’t effect the monitorable
edge coverage of the beacon setB. This contradicts the
definition of B as an optimal beacon set.

Thus, there can not exist a single arity node inB. Hence,B
is a subset of the set of high arity nodes.

Theorem 6 lets us reduce the set of potential beacons used
in Algorithm 3 to the set of high arity nodes. This can lead
to substantial computational savings. For instance, we show
in Section VI (and Figure 6), that the fraction of single arity
nodes in current ISP topologies can be quite high.

In [7] the authors have shown that the set of high arity nodes
in a graph is a beacon set—though potentially a non-optimal
set—when beacons are locally-flexible. We have strengthened
this result by showing that the optimal beacon set isalways
a subset of the set of high-arity nodes (even with simple
beacons). Hence, our pruning algorithm is potentially capable
of finding smaller beacon sets for all topologies. In order to
empirically evaluate the efficacy of our methodology, we next
compute the beacon sets for a few real-world ISP topologies.

VI. EXPERIMENTAL RESULTS

In this section, we empirically evaluate the performance of
our beacon placement strategies. Specifically, we compare the
sizes of beacons sets for several current ISP topologies, for
which beacon sets are computed: (i) by the beacon placement
solution with locally-flexible beacons suggested in [7]; (ii)
by our beacon placement algorithms for simple beacons; and
(iii) by our algorithms for locally-flexible beacons. We also
study the overhead of incorporating dynamism in routing, by
comparing our solution to that obtained in [4], which applies
only to statically-routed networks.
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We implement and run all of these solutions on ten major
ISP topologies obtained from the Rocketfuel project at the
University of Washington [10] and present the results below.

A. Node Arities

We first study the arities of nodes in the ten topologies—
Fig 5 plots the distribution of node arity in each. Fig 6 plots
the fraction of nodes that are single-arity in each topology. We
observe that:

• The distribution of node arities are quite different for
different ISPs, indicating that ISP topologies can be
quite diverse in their topological structure. In particular,
some ISP topologies have a long-tailed arity distribution,
indicating that only a handful of nodes have significant
redundancy in the manner in which they connect to the
rest of the network. For most topologies, a majority of
nodes have arities within20, although some nodes can
have arities higher than150.

• The fraction of single arity nodes in the ISP topologies
varies from less than30% to more than85%. It is
important to note that as the last edge on the path from
every other node in the network, a single arity node has
only one local edge that can be used to reach it. Single
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arity nodes, therefore, are not robust to failures of local
links. We find that for most topologies, more than half of
the nodes have a single arity.
A large fraction of single-arity nodes also implies that
the optimizations proposed in Section V to enable fast
computation of beacon sets, can result in substantial
savings.

It is important to note that Rocketfuel ISP topologies are
subject to inference errors. In particular, [16] demonstrates
that the inclusion of links that do not exist and the omission
of links that are actually present can inflate path diversity in
these inferred topologies. This also limits the accuracy of node
arities computed above.

B. Beacon Set Sizes

It is important to mention that the Rocketfuel topologies for
an ISP may not be single connected graph (possibly due to lack
of data about some links). Thus, some of the topologies we
analyze have multiple (independent) connected components.
More importantly, some of the components consist of only
single-arity nodes (such components have a tree structure). For
a fair comparison with the previous work in [7], which does

not apply to single-arity networks, we ignore such components
when computing beacon sets. This eliminates only a small
fraction of nodes from each of the ISP topologies.

For any ISP topology, we add up the sizes of beacon sets
computed for each of the remaining components to get the
total beacon set sizes—|BHA|, |BS |, and|BLF |—for the three
solutions being compared. Figs 7-8 plot the histograms of
these beacon set sizes for the ten topologies. We observe that:

• Beacon sets with locally-flexible beacons.
Our beacon placement solution for locally-flexible bea-
cons reduces the beacon set sizes yielded by [7] by
50 − 80%. More importantly, we find that some major
ISP topologies can be completely monitored, independent
of routing state, using less than a hundred locally-flexible
beacons. This is an encouraging observation as it suggests
that a tomography-based monitoring infrastructure may
be feasible even for major ISP topologies.

• Beacon sets with simple beacons.
Even with simple beacons, our beacon placement solution
reduces the beacon set sizes of [7] by40 − 70%. This
suggests that it may be feasible to design a simpler mon-
itoring infrastructure that does not require that network
nodes use different transmission rules for probe packets
(as is required with locally-flexible beacons).
This conclusion is further supported by the comparison
of beacon set sizes yielded by our solution for simple
vs. locally-flexible beacons, which indicates that locally-
flexible beacons may not yield significant gains for many
major ISP topologies.

C. Overhead of Allowing Dynamic Routing

The beacon-placement framework and strategy developed
in [4] applies only to networks that employstatic routes—the
authors assume that the IP route taken by packets between any
two nodes is fixed and known. This assumption ensures that
the DMES of a node consists ofall links that comprise the IP
routing tree sourced at the node. Such routing-based DMESs
are likely to be much larger than the topology-based DMESs
formulated in our framework. Consequently, the beacon set
sizes yielded by the strategy of [4]—henceforth, referred to as
SB—are likely to be much smaller.

In order to quantify this, we evaluate the performance of
SB on the Rocketfuel topologies. Unfortunately, the routing
policy of these networks is not known publicly—consequently,
it is not possible for us to obtain the actual network routes
(which are needed by SB). Instead, we compute one possible
set of routes by using the shortest path routing algorithm after
assigning uniform weights to all edges. Fig 9 plots the resultant
beacon set sizes obtained using SB (Shortest path tree) and
compares it to our placement strategy with simple beacons
(MSCP heuristic). We find that the beacon sets obtained using
SB for statically-routed networks are much smaller (by 10-
75%) than those obtained using our strategy for dynamically-
routed networks.

It is important to note, however, that strategies like SB
can not be applied to networks that allow dynamism in IP
routing. For instance, several ISPs are known to employ load-
balancing mechanisms that lead to routing dynamism even in
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the absence of link failures. The beacon set computed for a
network using SB is likely to change if routes change, and new
beacons would then have to be deployed. To illustrate this,
we re-run SB for 10 different randomly-computed instances
of network routing state in the Rocketfuel topologies. Each
instance is obtained: (i) by assigning weights randomly (from
1 to 10) to all edges, and (ii) by re-running the shortest-
path routing algorithm. We compute the beacon set for each
of the routing states and plot the size of the union of the
10 beacon sets in Fig 9 (Union WSPT). We find that the
union is much larger than the beacon set obtained using our
strategy. The implies that for networks where traffic loads vary
randomly (and which change link weights to reflect traffic
loads), a routing-dependent strategy like SB is likely to require
beacon sets much larger in the long-run than those yielded by
topology-dependent strategies like ours or that of [7].

VII. I MPROVING OPTIMALITY OF SIMPLE BEACON SETS

Our results in Section VI indicate that, in practice, using
locally-flexible beacons instead of simple beacons offers only a
slight improvement in the size of the computed beacon sets. In
this section, we conduct additional analysis forsimplebeacons,
that lets us derive approximate solutions to the corresponding
BMP, that have better optimality bounds than those presented
in Section IV. We conduct both theoretical and experimental
analysis to evaluate the new beacon sets.

Our analysis in this section relies primarily on establishing
the “cut” property of a DME of a simple beacon. Intuitively,
this means that when such a DME is removed from a graph,
the graph gets disconnected—note that this is true only for the
DMEs which were found by the depth first search algorithm
and not the ones that were included in the DMES simply
because they were incident on a beacon. Since the “cut”
property of a DME is a global property of the graph (and
not dependent on the beacon under consideration), we also
show that such DMEs are present in the DMES of all potential
simple beacons in the network.

Lemma 5: A DME found using the depth first search part
of Algorithm 1 is a cut edge. Also, such a DME is present in
the DMES of all the nodes in the graph.

Proof: Using algorithm 1’s formulation, edgee is the only
edge which connectsv to the subgraph containingu. Thus, if
e is removed from the graph, the subgraph containingu will
be disconnected from the rest of the graph. Thuse is a cut
edge.

Let the end-nodes ofe be v and w (the depth first search
was run fromv). Now consider the resultant subgraph layout
if a depth first search is done fromw. The edgee would be a
single edge connecting an entire subgraph containingv. Now
the DME e was monitorable by all the nodes in the subgraph
containingu. By a depth first search onw, we see thate is also
monitorable by the entire subgraph containingv. These two
subgraphs collectively contain all nodes. Thuse is monitorable
by all nodes in the graph. Consequently,e is present in the
DMES of all nodes.

Lemma 5 motivates and allows us to define a set of all such
DMEs. We then establish a structure on the DMES of all the
nodes in the graph using the following definition.

Definition 3: The cut edge set8 of a connected graph
G(V,E) is a set of edgesZ such that if any edgee ∈ Z
is removed fromG, thenG is disconnected.

Theorem 7: The DMES of a simple beacon nodeu in a
graphG(V,E) is of the formEu∪Z, whereEu are the edges
incident on nodeu andZ is the cut edge set ofG.

Proof: Let us consider Algorithm 1 for finding the DMES of
a simple beacon nodeu. S, which finally becomes the DMES
of u, is initially an empty set.S is populated first with with
the edges neighboring tou. At this stageS = Eu. Next, we
run a depth first search onall the nodes and include cut edges
in S. From lemma 5, the set of such edges isZ. Thus, the
DMES of u is Eu ∪ Z.

Note that Theorem 7 has an important implication for tree
networks. All edges of a tree are cut edges. Thus, for a tree
graphG(V,E), Z = E. From Theorem 7, the DMES ofany
node in the graph is the entire set of edgesE. This agrees well
with our previous observation in Section V-A that single-arity
networks can be monitored using a single beacon.

A. Revisiting Beacon Minimization

The additional structure on the DMES of simple beacons
allows us to use an algorithm to minimize the beacon set, that
results in a tighter bound on the optimality. In this section we
will show how to use the Vertex Cover problem to do so.

Note that since the DMES of a node is nowEu ∪ Z, the
presence of a single simple beacon in the network ensures that
all the edges in Z can be monitored. Thus, we can essentially
remove the edges inZ from the graph and use the DMES of a
node asEu to come up with a beacon set. We will next show
that finding an optimal number of beacons as described above
is NP-Complete, by reducing the Vertex Cover Problem [13]
to the Beacon Minimization Problem.

Theorem 8: The Beacon Minimization Problem (BMP) for
simple beacons is NP-Complete.

Proof:

8In graph theory literature, the termbridge is also commonly used for a
cut edge.
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BMP is in NP: We have shown how to obtain the DMES
for all the nodes in the beacon set in polynomial time. Hence
taking a union of the DMESs and comparing it with the set of
all edges allows us to verify in polynomial time if the solution
is correct. This proves that the BMP is in NP.

Reduction from Vertex Cover:Consider an instance of
a vertex cover problem with a graphG′(V ′, E′). In general,
this graph may have one or more cut edges. We construct an
instance of BMP from this setup as follows:
• For every cut edgee (with end nodesx andy) in E′, add a

nodene and edgespe andqe so thate, pe andqe form a triangle
with pe and qe incident onne. Now, the resultant graph (say
G′′(V ′′, E′′)) doesn’t have any cut edges, as removing any of
the edgese still keepsG′′ connected.
• Now, consider the Beacon Minimization Problem on graph

G′′. SinceG′′ has no cut edges, the DMES of a nodeu in G′′

reduces toE′′
u (the edges incident onu).

ne

qepe

e
x y

• Now, consider a solution to the
BMP on G′′. We have a set of nodes
B such that all the edges are “covered”
(
⋃

u∈B E′′
u = E′′). Note that the sense

of “covered” used here is exactly the
same as the sense of “vertex covered”
in the Vertex Cover problem.

To get a solution for the Vertex
Cover problem from a solution to the BMP, consider any of
the triangles (e, pe, qe) that were introduced above.
• To cover all the three edges, we need exactly two nodes

(betweenx, y and ne). Thus, two of these three nodes are
present inB. If ne is present inB then it covers bothpe

and qe. Hence, removingne, pe and qe from G′′ (and ne

from B) ensures that the resultant graph can still be optimally
“covered” by B. This is becausene was not covering any
other edge other thanpe andqe.
• If ne is absent fromB then we first check if puttingne

in B and removing eitherx or y from B leaves any of the
edges in the graph uncovered. If it doesn’t then we have two
optimal solutions to the beacon placement problem and we
use the argument given above. However, if the transformation
doesn’t give us another optimal solution then it means thatx
andy are single handedly “covering” more edges then justpe

and qe. Thus removingne, pe and qe from G′′ still ensures
that all the edges are covered optimally.
• We repeat this for all thene, pe andqe that we introduced

to get a solution to the Vertex Cover problem onG′(V ′, E′).
Since Vertex Cover is NP-Complete [17] the above implies

that BMP is also NP-Complete.
We use a known approximate solution to the Vertex Cover

problem for deriving the following algorithm which yields an
approximately-optimal beacon set.

Algorithm 5 has a known optimality bound of a constant
2 [17]). Note that this constant bound of 2 does not depend
on the edge selection heuristic used (select*) in the above
algorithm. Below, we enumerate three heuristics that we study
next.

1) Heuristic 1 (random):We select the edges in the order
they appear in the Rocketfuel data. The Rocketfuel data
is arranged in an adjacency list format with node ids

Algorithm 5 Compute a beacon set using the approximate
Vertex Cover algorithm.

Initialize B to be an empty set
Remove the edges inZ from G to getG′

while G′ contains edgesdo
Select* an edge fromG′

Include both its end nodes inB
Remove the edge, its two end nodes and their edges from
G′

end while
B is the required Beacon Set.
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followed by the list of nodes adjacent to it. There is
no specific ordering to these nodes besides that they are
sorted based on their identifier value. In this heuristic,
we select the edge formed by the first node listed in the
pruned graph and the first node in the adjacency list of
the node. This essentially means that the edge selection
criteria is fairly random.

2) Heuristic 2 (degree-order):We sort the nodes of the
graph according to their degrees; we also sort the nodes
in the adjacency list (of a particular node) according to
their degrees. We then use heuristic 1 on this prepro-
cessed graph representation.

3) Heuristic 3 (MSCP-adapted):This heuristic maps di-
rectly to the Min Set Cover heuristic adopted in sec-
tion IV. However, this is not an edge-selection heuristic,
but a node-selection heuristic. We calculate the degree
of all the nodes in the graph and select the one with the
highest degree. We then include this node in our beacon
set, remove this node (and its edges) from the graph and
recalculate degrees.

We next simulate these three heuristics on the Rocketfuel
topology data and compare the resultant beacon sets with those
obtained using Algorithm 3 for simple beacons (that latter is
referred to as simply “simple beacons” below). The results are
plotted in Figure 10.

We observe that even though all three vertex cover heuristics
have a tight worst-case optimality bound (constant 2 when
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compared to1 + ln|E| for simple beacons), heuristic 3 and
simple beacons yield the smallest beacon sets in our simu-
lations. In fact, there is very little difference between simple
beacons and heuristic 3.

The above empirical result also yield an interesting observa-
tion insight about the solution obtained by the best-performing
heuristic (heuristic 3). We know that heuristic 1, being a vertex
cover heuristic, never yields a beacon set larger than twice
the optimal beacon set [17]. However, in most cases we find
that the beacon set size yielded by heuristic 3 is quite close
(but always greater) to half the beacon set size yielded by
heuristic 1. This implies that heuristic 3 yields beacon sets with
sizes close to the optimal beacon set, for all of the topologies
considered in our experiments.

VIII. I NCORPORATINGADDITIONAL NETWORK

SCENARIOS

A. Incorporating Half-Duplex Links

Throughout the analysis presented so far, for brevity, we
have used an undirected graph model to present our algorithms
and proofs. In practice, networks may connect two nodes using
a pair of half-duplex links, rather than a single full duplex link.
A network monitoring infrastructure should ideally be capable
of monitoring both half-duplex links as separate entities.
Below, we illustrate that our beacon placement solutions can
be extended to such networks with slight modifications.
Changes in Network Model: We modify our network model
by replacing each undirected link by two half-duplex links
between the end-nodes. More formally, ifG(V,E) is the
undirected graph, we deriveG′(V ′, E′) from G as follows:

• V ′ = V ;
• For all e ∈ E, add directed edgese1 = x → y and

e2 = y → x to E′, wherex andy are the nodes connected
by e in G.

Changes in Definitions:
• Node Arity:The definition of node arity remains the same

except that the “outgoing edges” of a node now refers to
the links directed away from the node.

• Path: A path now consists of directed links. This also
holds for the definition of physically connected paths.

• DME: The definition of a DME should now be considered
with the new definition of paths.

Changes in Algorithms: The algorithms to find the DMES
of a beacon (Algorithms 1 and 2) change in the following
way. Prior to conducting a depth first search on nodev to find
all possible paths from the beaconu to nodev, we need to
reverse all links of the graph so that at the end of the search,
we get paths fromu to v; (in the undirected graph this didn’t
matter as the set of paths from beaconu to nodev is the same
as that from nodev to beaconu). In practice, however, since
all directed links are paired with another link in the opposite
direction, we do not actually need to reverse the graph to find
the subgraph of nodes—we should only ensure that the edge
which finally gets included in the DMES of the beacon is the
edge going into nodev.

The pruning algorithm requires no changes since it is
completely abstracted away from the beacon capabilities and

network routing mechanisms used. To argue about the appli-
cability of our optimizations to the new model we first present
an observation for directed graphs.

Lemma 6: The existence of a high arity node in the
directed graph as constructed in Section VIII-A implies that
we have a cycle. Conversely, a cycle implies the existence of
a high arity node.

Proof: Let u be high arity with respect tov. This means
that we have distinct pathsp1 and p2 from u to v both of
which start from different outgoing edges ofu. Since every
directed link is paired with an oppositely directed link between
the same nodes, we have pathsp′1 andp′2 from v to u. Let us
assume that we chose av such that the first edges in pathsp′1
andp′2 differ. Now pathsp1 andp′2 (and also pathsp′1 andp2)
combine to form a cycle.

Now consider the case when we have a cycle in the graph.
We break the cycle into any two pathsp1 and p2. Like the
argument above, we would have a reverse path for bothp1

andp2 which makes the nodes at which we broke the cycle,
high arity.

The above formulation keeps our single-arity network op-
timization intact. Having no high arity nodes means that our
network has no cycles. This is even stronger than a directed
acyclic graph as, because of the way links are connected, any
physical loop in the network becomes a cyclic path. The graph
looks like a tree except that all edges are actually paired.

The above formulation also keeps the optimization of con-
sidering just the high arity nodes for the beacon set, intact. In
the proof, a high arity node is said to imply a cycle which has
already been proved above for directed graphs.

B. Incorporating Non-Transit Nodes

Our formulation so far assumes that any simple physical
path between two nodes may be selected by the routing
protocol as the network route taken by packets sent between
the two nodes. While this is a reasonable assumption for
a single autonomous network, it might not be true in a
backbone network which consists of nodes (that provide
access to customer sub-networks) which refuse to carry any
transit traffic—that has both source and destination outside
the customer sub-network. Note that while the backbone ISP
does not monitor the customer sub-network, it would want
to monitor the access links to such non-transit customers. In
order to incorporate such backbone networks, we extend our
DMES-finding algorithms in this section.

We model non-transit networks in the form of a node in the
network. The invariant to be modeled is that any validroutable
path in the network can have a non-transit node only either in
the beginning or the end of the path. In the following, we do
so by modifying our DFS-based traversals to stop the “depth-
recursion” as soon as a non-transit node is encountered.

The change in the algorithm is in the depth first search;
if the depth first search algorithm encounters a non-transit
node, it doesn’t proceed depth-wise further, but returns back
to its parent node in the depth first search tree. This essentially
means that non-transit nodes are alwaysleavesin a depth first
search tree. We claim that the above algorithm gives us a valid
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Algorithm 6 Find the DMES of a simple beaconu in a graph
G(V,E) containing non-transit nodes.
Consider a modification of algorithm 1.

Initialize S to be an empty set
for all edgesl neighboringu do

Include l in S
end for
for all nodesv in V do

Do a modified depth first search fromv such that on
visiting a non-transit node we don’t proceed further
recursively but we retract to the parent node in the DFS
tree; we don’t stop at the root node if the root is a non-
transit node. (we get a set of subgraphs each connected
to v by one or more edges)
if u lies in a subgraph connected tov by only a single
edgee then

Include the edge in S
end if

end for
S is the DMES ofu

optimal DMES for the beaconu in G(V,E) containing non-
transit nodes.

Proof: (Proof of correctness) Since non-transit nodes don’t
allow transit traffic, any valid path inG(V,E) now can contain
a non-transit node only at the start or the end. Consider a graph
G′ which is the same asG(V,E) minus all non-transit nodes
and its neighboring edges. Note thatG′ might not be connected
even if G is. Let us denote the set of paths between the node
pair (x, y) by the symbolPx,y. Because of the characteristic
of the non-transit nodes, the set of paths for a node pair(x, y)
in G(V,E) can be described as;

• if x andy are not non-transit nodes, then the set of paths
Px,y remains the same in bothG andG′.

• if x is a non-transit node, then the set of pathsPx,y in
G is equal to

⋃
x′ [(x, x′) + Px′,y in G′] wherex′ is not

a non-transit node and adjacent tox.
• if x andy are non-transit nodes, then the set of pathsPx,y

in G is equal to
⋃

x′,y′ [(x, x′) + Px′,y′ in G′ + (y′, y)]
wherex′ is a normal node and adjacent tox andy′ is a
normal node and adjacent toy.

We have to prove that if and only if two nodesx, y in
G(V,E) are connected by a network route, then there exists a
path in the (modified) depth first tree which connects the two
nodes. We consider the following cases:

• Case 1: If x and y are normal nodes, then from the
above, existence of a non-emptyPx,y in G′ implies a non-
emptyPx,y in G. Also, any path inPx,y doesn’t contain
non-transit nodes. Hence, our modified depth first search
algorithm connects these two nodes.
Conversely, ifPx,y in G′ is empty, then (because initially
G was connected), we can conclude that all paths inPx,y

had non-transit nodes in the middle. Our modified depth
first search algorithm will not connectx and y as on
all paths it finds a non-transit node on and halt further
depth-wise graph search from that point onward.

• Case 2:If any of x and/ory are non-transit nodes, then
derivation ofPx,y in G from Px′,y′ in G′ is given above.
This enumerates all paths that can exist betweenx and
y in G assuming these are the only non-transit nodes
present in the network. Without loss of generality, let us
assume thatx is a non-transit node;y may or may not
be a non-transit node. IfPx,y is non-empty inG, then
there exists a non-emptyPx′,y′ as described above. A
non-emptyPx′,y′ implies thatx′ and y′ are connected
by our modified depth first search algorithm inG. This
follows directly from Case 1. Since our modified depth
first search algorithm connectsx to x′ (depth first starting
from root doesn’t stop at root because the root is a non-
transit node), it also connectsx to y′. Also, since our
modified depth first search algorithm connects any non-
transit node to a normal neighbor node, it joinsy′ andy.
Thus our modified depth first search algorithm connects
x andy.
Conversely, ifPx,y is empty inG, it means that for all
neighbors ofx (and possiblyy if y is a non-transit node),
Px′,y′ is empty. From Case 1, we can conclude that our
modified depth first search algorithm doesn’t connect any
of thosex′ and y′. Thus,x and y are not connected by
our modified depth first search algorithm.

• Case 3:A trivial border case which is not easily evident
from the above is about two non-transit nodesx and
y, directly connected. Our modified depth first search
algorithm correctly connects them.

Using the above connectivity proof, along with the proof of
correctness of Algorithm 1, we establish the correctness of
Algorithm 6. Though the above is shown only for simple
beacons, the same connectivity argument also holds for the
DMES algorithm for locally-flexible beacons.

C. Robustness tok beacon failures

A tomographic monitoring infrastructure should ideally be
robust to beacon failures; in particular, there should be no
links in the network that can be monitored by only a single
beacon. To achieve robustness to beacon failures, therefore,
a monitoring infrastructure may wish to instantiate additional
(possibly redundant) beacons in the network. A beacon set is
said to be robust tok beacon failures if any subset of the
beacon set containingk less beacons is able to monitor the
complete network.

In [4], the authors have presented a technique for computing
such robust beacon sets, using an extended version of the Min
Set Cover problem. We believe their solution is general enough
to be applicable to the beacon-placement framework presented
in this paper. A detailed treatment of this scenario is, however,
beyond the scope of this paper.

IX. CONCLUDING REMARKS

In this paper, we have presented a generic framework for
addressing the problem of beacon placement for network
monitoring using tomography, efficiently and under a generic
set of policy constraints. Our framework incorporates routing
dynamism and monitoring policy constraints by defining the
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generic concept of Deterministically Monitorable Edge Sets,
and then using the DMESs to find beacon sets that are within a
bounded-range of the optimal size for monitoring a given set of
network edges. We extend our basic framework to incorporate
networks consisting of half-duplex links as well as non-transit
sub-networks.

We supplement our theoretical analysis with empirical re-
sults obtained from running beacon placement strategies on
Rocketfuel versions of real-world ISP topologies. We find
that our algorithms perform significantly better than previous
techniques and reduce the beacon set size by about 50 to
80%. We also find that the best-performing heuristic used for
placement of “simple” beacons, yields beacon sets fairly close
to optimal.
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APPENDIX

Proof: (Proof of Correctness) Consider the case whenu is
high arity. Then there exists a node (sayv) to which there
are more than one paths fromu with different outgoing edges
from u. In a depth first search fromu, one of these edges will

Algorithm 7 Finding out if a node,u in G(V,E) is high arity
or not.

Do a depth first search fromu;
if there is a back edge tou from any other nodethen

declareu high arity
else

declareu single arity
end if

be selected first for traversal. In the depth first search run,
consider that we are on the first edge fromu which has a path
to v, with an alternating path to the same nodev as defined
above. Because of the alternating path, there exists a cycle
with nodesu and v on it. Since the edge on the alternating
path outgoing fromu is not yet traversed, it will become a
back edge and will be detected as outlined in the algorithm.

Now consider that nodeu is not a high arity node. Also
assume that we detect a back edge in the way outlined in
the algorithm. Since the back edge was to nodeu itself, it
means that nodeu is part of a cycle with two outgoing edges
participating in the cycle. Thus, there is at least one node in
the network (from the same cycle) which has two paths tou
each path having a different outgoing edge fromu. This means
that u is a high arity node. This is a contradiction. Hence if
u is an arity one node then one cannot detect a back edge as
described in the algorithm.

Time Complexity:The complexity of depth first search is
Θ(|E| + |V |). Detecting a back edge involves going through
all the neighbors ofu. If the degree ofu is k, then the cost
for checking for a back edge isΘ(k). Sincek is bounded by
|E|, the time complexity of our algorithm isΘ(|E|+ |V |).
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