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Abstract—The efficiency of TCP congestion-control in achiev-
ing high throughput is quite poor in high-speed, lossy, and
dynamic-bandwidth environments. The main culprit is the slow
bandwidth-search process used by TCP, which may take up to
several thousands of round-trip times (RTTs) in searching for
and acquiring the end-to-end spare bandwidth. While several
alternate protocols have been proposed to speed up the search
process, these still take hundreds of RTTs for doing so.

In this paper, we argue that the sluggishness of existing
protocols stems from two limiting design decisions that help
a transfer remain non-intrusive to competing transfers. We
argue that these legacy design decisions can be done away with
if we limit the impact of probing for spare bandwidth. We use
this idea to design a new approach for congestion-control that
allows TCP connections to boldly search for, and adapt to, the
available bandwidth within a single RTT. Our approach relies
on carefully orchestrated packet sending times and estimates the
available bandwidth based on the delays experienced by these.
We instantiate our new protocol, referred to as RAPID, using
mechanisms that promote efficiency as well as queue-friendliness.
Our experimental evaluations indicate that RAPID: (i) converges
to an updated value of bandwidth within 1-2 RTTs; (ii) helps
maintain fairly small queues even in high-speed networks; and
(iii) has negligible impact on regular TCP traffic. The benefits
of our approach are especially significant on lossy links and
those with rapidly-changing bandwidth.1

I. INTRODUCTION

“Congestion Control” can be easily listed among the top-

10 networking problems of the past two decades. And indeed,

why not? A congestion-control protocol has no simple task—

it has to discover the end-to-end spare bandwidth available

to a transfer in a quick, adaptive, and non-intrusive manner.

Simultaneously achieving these properties turns out to be a

significant challenge, especially for an end-to-end protocol that

receives no explicit feedback from routers/switches. Indeed,

the dominant end-to-end transport protocol, TCP NewReno,

has been shown to be abysmally slow in discovering the spare

bandwidth, especially in high-speed networks and on paths that

experience dynamic bandwidth and non-congestion losses.

Several alternate protocols have been proposed to address

this limitation. However, as discussed in Section II-A, most

of these protocols struggle to remain non-intrusive to other

network traffic while achieving speed—consequently, we be-

lieve that these designs are still quite sluggish in probing

1This research was supported in part by NSF CAREER award CNS-
0347814 and NSF RI grant EIA-0303590. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

for spare bandwidth. In particular, even the so-called “high-

speed” protocols may still take 100s-to-1000s of round-trip

times (RTTs) to converge to a stable sending rate.

In this paper, inspired by recent advances in the field of

bandwidth estimation, we propose the idea that the sluggish-

ness of transport protocols can be done away with without

overloading the network, if we limit the impact of probing

for spare bandwidth. We use this idea to design a novel

approach, referred to as RAPID Congestion Control (RAPID),

that exhibits two significantly desirable characteristics. Most

notably, it reduces the time it takes a transport protocol to

acquire freshly-available bandwidth by more than an order of

magnitude. Equally significantly, by relying on a delay-based

congestion-detection strategy, the protocol ensures that it is

friendly to regular TCP transfers, and that packet queues at

bottleneck links are small and transient.

In the rest of this paper, we discuss the sluggishness of

existing protocols and present our key insight in Section II.

We describe the RAPID protocol mechanisms in Section III

and present preliminary performance evaluation results in

Section IV. We conclude in Section V.

II. CONGESTION-CONTROL TIMESCALES

A. The Problem: Slow Feedback Loop

The basic issue considered in this work is that of the

sluggishness of transport protocols in discovering the available

bandwidth (also referred to as avail-bw or AB). To understand

the issue, consider how an end-to-end transport protocol

probes for the avail-bw in the absence of explicit feedback

from the network. In steady-state, the protocol continuously

operates a 2-phase AB-search cycle: in the search-phase, it

successively “tries out” larger data sending rates. For each rate

probed at, it examines performance feedback such as packet

loss and high end-to-end delays that arrives after an RTT-

worth of delay—this helps it estimate when the most recent

sending rate was higher than the avail-bw.2 When such a rate

is reached, the reduction-phase of the protocol reduces the

sending rate to a lower value and switches back to the search-

phase. The speed with which each loop of this search-cycle

is executed fundamentally determines how quickly a protocol

can acquire and adapt to changes in the avail-bw.

2Different protocols differ in how the successive probing rates relate to the
current rate, as well as in the performance measures they use as feedback.
Table I summarizes these differences for some prominent protocols.



Protocol Search-phase Feedback-metric Experimentally-observed
(per-RTT increase in probe-rate) time to acquire AB = 1 Gbps

NewReno Additive Increase Packet Loss ∼ 7433 RTT

HighSpeed Multiplicative Increase Packet Loss ∼ 666 RTT

FAST Multiplicative Increase Packet Delays (and Loss) ∼ 70 RTT

RAPID Exponential Increase Delays (and Loss) ∼ 4 RTT

TABLE I
TIME TAKEN TO ACQUIRE AN AB OF 1 GBPS BY DIFFERENT PROTOCOLS (SEE SECTION IV)

Note that the smallest timescale at which the above cycle

could be executed is a round-trip time (RTT)—performance

feedback can arrive no earlier than this time. Unfortunately,

most existing protocols execute this cycle at timescales much

larger than this. This is because, primarily driven by the goal

of not overloading the network, all previous protocols adopt

two limiting design features:

1) Only a single (larger) sending rate is probed for over a

round-trip time.

This is true for all previous protocols, including recent

ones, such as HighSpeed TCP, FAST, Scalable, CUBIC,

and PCP [1], [2], [3], [4], [5], [6], [7]. This legacy design

decision is perhaps motivated by the fact that unless the

single rate is deemed acceptable (not too high), other

rates should not be probed for.

2) The new rate probed for is not significantly larger than

the previous sending rate.

This feature is adopted primarily to prevent a single

transfer from overloading the network, in case the pre-

vious rate was quite close to the avail-bw. Existing

protocols differ in how the new probing rate relates

to the previous rate—for most protocols, the ratio of

(probeRate - previousRate)/previousRate is bounded by

a small fraction of 1.3

As a result of these two design limitations, most protocols—

even the recent ones designed for high-speed networks [2],

[3], [4], [5], [6], [7]—take a fairly long time for converging to

the avail-bw. For instance, Table I lists the experimentally-

observed times taken by a single transfer for acquiring an

additional spare capacity of 1 Gbps that suddenly becomes

available.4 We find that even high-speed protocols can take

hundreds of RTTs for converging to the avail-bw.

B. Key Insight: Limit Probing Volume

We believe that both of the above design limitations can

be done away with if one limits the volume (and impact) of

probing for a larger sending rate. Specifically, we advocate

that a transport protocol should: (i) use a rate-based packet

transmission mechanism, and (ii) rely on packet delays for

estimating avail-bw within an RTT. We believe that such a

protocol can, in fact, boldly probe for an exponentially-wide

3The exception is CUBIC, in which a binary search method is used after the
AB is discovered for the first time—here, the ratio probeRate/previousRate
depends on the past probing history.

4These experiments were run on the ns-2 simulator, and a packet size of
1040 B was used—see Section IV.

range of candidate sending rates within a single RTT—any

associated overloading impact can be avoided by using the

following guidelines:

1) Achieve a rapid AB search: Probe for an exponentially-

wide range of candidate sending rates within a single

RTT. However, send extremely small probes (of one

packet each) at each candidate rate in order to limit the

transient overloading impact of the large rates.

2) Avoid persistently overloading the network path: Ensure

that the average rate of packet transmission does not

exceed the most-recently discovered estimate of avail-

bw. This implies that some of the rates in the above-

suggested exponential range will be smaller than this

estimate, and some will be larger.

We use these ideas to design a new protocol, referred to

as RAPID Congestion Control (RAPID), and show that it

can adapt to fairly large changes in AB within 1-4 RTTs.

Furthermore, RAPID can avoid persistent or large router

queues due to its efforts in avoiding network overload. The

benefits of the protocol are especially significant in dynamic

bandwidth environments and high-speed networks.

It is worth mentioning that the PCP protocol proposed in [1]

also relies on a rate-based transmission and adopts a guideline

similar to the second one advocated above. However, like all

other existing protocols, this protocol also probes for only a

single probing rate within an RTT. The prime advantage of

this protocol is that it is significantly less intrusive than most

window-based protocols; our initial investigations, however,

suggest that even PCP is more aggressive and intrusive to on-

going transfers than RAPID. Nevertheless, PCP comes closest

to RAPID in spirit—we are currently conducting experimental

evaluations to compare the two protocols.

We present the basic mechanisms used in RAPID in Sec-

tion III and some preliminary evaluations in Section IV.

III. RAPID CONGESTION-CONTROL

Unlike many congestion-control protocols, RAPID employs

a rate-based transmission policy and relies on packet delays for

estimating avail-bw—its mechanisms, therefore, are designed

quite differently from those of most protocols. While the

RAPID design is motivated by the primary goal of shrinking

the timescales at which congestion-control operates, several

equally-important goals are given due consideration in the

design process [8]. Most significantly, a RAPID network

strives to (i) maintain a low buffer occupancy at congested

router links, and (ii) remain friendly to regular TCP transfers.



Below, we describe the basic mechanisms used for achieving

each of these.

A. Acquiring AB Within a Few RTTs

As long as there is data to send, a RAPID sender contin-

uously transmits data in logical groups of N packets each,

referred to as a multi-rate probe stream (p-stream). The i-th

packet in a p-stream is sent at a rate of ri−1; this implies

that the transmission times of packets i and i − 1 differ by
P

ri−1

, where P is the size of packet i. The sender controls the

average sending rate of a p-stream, referred to as ravg , which

is given by: N−1

ravg
= 1

r1

+ 1

r2

+ . . . + 1

rN−1

. Further, for all

i > 1, ri > ri−1.5

a) AB-estimation logic: We use the one-way delays

experienced by packets in a p-stream for estimating avail-bw

in the same manner as the PathChirp bandwidth estimation

tool [9]. When the RAPID receiver receives all packets of a

p-stream, it computes the AB by looking for increasing trends

in the one-way delays experienced by packets. Intuitively, if

i is the first packet in a p-stream such that ri−1 ≥ AB, then

each of the packets i, . . . , N will queue up behind its previous

packet at the bottleneck link—due to this “self-congestion”,

each of these packets will experience a larger one-way delay

than its predecessor. Thus, the smallest rate at which the

receiver observes an increasing trend in one-way delays can

be used as an estimate of the current avail-bw6—we refer the

reader to [9] for details and the precise formulation.

The receiver communicates the avail-bw estimate, hence-

forth referred to as ABest, to the sender.

b) Transmitting in a non-overloading manner: When the

sender receives an ABest, it updates the ravg of the next

p-stream as: ravg = ABest. Thus, the transfer acquires a

sending rate equal to the avail-bw within an RTT. It then

selects an appropriate set of rates, r1, . . . , rN−1, such that the

average of these is equal to ravg . Thus, even though a p-stream

probes for new rates of up to rN−1, which may be much larger

than ABest, the average sending rate of a p-stream does not

exceed this value. This helps ensure that the average load on

the bottleneck link does not exceed its capacity—this is critical

for maintaining small and transient queues at the bottleneck

links.

c) Speeding up the search process: Each p-stream probes

for the range of sending rates given by: [r1, . . . , rN−1]. The

larger is the ratio of
rN−1

r1

, the faster is the AB-search process.

Note that for a given ravg and N , there are infinite choices

for the set: r1, . . . , rN−1. So for instance, while these rates

could be additively-related as in: ri = r1 + (i − 1)δ, a faster

search will be obtained by using a multiplicative-relation as

in: ri = mi−1 ∗ r1. The current version of RAPID adopts this

latter relation using a multiplicative factor of m = 1.07, and

N = 22. This yields: r1 ≈ 0.6 ∗ ravg and rN−1 ≈ 2.5 ∗ ravg .

With the above choice of rates, RAPID can probe for avail-

bw spanning several orders of magnitude within a few RTTs.

5The gap between the first packet of a p-stream and the last packet of the
previous p-stream is set to ravg . This can also be stated as: r0 = ravg.

6If no increasing trend is detected, rN−1 is taken as the AB estimate.

d) Achieving a Quick-yet-Slow Start: RAPID faces a

similar dilemma as all congestion-control protocols—how to

obtain the initial ABest (or the initial ravg) for a new

transfer? We address this issue with the same approach as most

other protocols—fortunately, our ability to probe for multiple

rates within an RTT makes our slow-start much faster than

other protocols. Specifically, when a new transfer begins, we

initialize ravg to a small value (currently, around 850Kbps)

and set the multiplicative factor as: m = 2. Since even this

relatively-small rate may overload an already-congested path,

we limit the adverse impact by initializing N = 4. If the

ABest returned is no smaller than r3, we increase N to

8 and send another p-stream with the new ravg . We repeat

this process—and increase N multiplicatively till a maximum

value of 64—till we get an ABest within the range of rates

probed for.7 Following this, we switch to the steady-state

RAPID mode, in which m = 1.07 and N = 22.

B. Remaining TCP-Friendly

RAPID is quite non-intrusive to regular TCP NewReno

transfers. The prime reason for this is that the RAPID

congestion-control relies on queuing delay as feedback,

whereas TCP reduces its sending rate only on witnessing

packet losses. When a router carrying both TCP and RAPID

transfers gets congested, the RAPID transfers would respond

to the congestion and reduce their sending rates much be-

fore the TCP transfers would. The downside is that in the

presence of long-lived TCP transfers, RAPID transfers would

obtain much lower throughput than the former. However,

this problem plagues any network that runs fundamentally

different congestion-control protocols—an easy solution is to

provision routers with separate queues for traffic from different

protocols.

We next experimentally evaluate how well the above mech-

anisms achieve the stated goals for RAPID.

IV. EXPERIMENTAL EVALUATION

We use the ns-2 simulator for evaluating the performance

of RAPID and other prominent congestion-control protocols.

For all of our simulations, we rely on a simple dumbbell

topology in which multiple sources and aggregated at a single

bottleneck link—this bottleneck link is the only link shared by

co-existing transfers. Unless noted otherwise, the bottleneck

link is provisioned with a delay-bandwidth product (DBP)

worth of buffers, where the delay is the average end-to-end

propagation delay for transfers (set to 60 ms). We set the

maximum size of each link-layer packet to 1040 B.

In what follows, we summarize our experiments and obser-

vations.

7Note that this process is no more aggressive than the slow-start adopted
by most protocols, which multiplicatively increases the number of packets
sent over an RTT in exactly the same manner. In fact, by setting ravg =

ABest, we ensure that any overload is merely transient. Also note that 64 is
a commonly-adopted setting for the slow-start threshold.
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Fig. 1. Speed of Acquiring AB (Dynamic Bandwidth)

A. Speed of Acquiring Spare Bandwidth

TCP is known to be quite inefficient in utilizing spare

bandwidth in two kinds of environments: (i) in high-speed

networks, especially those that witness sudden and large

changes in avail-bw, and (ii) in networks that experience non-

congestion losses induced by bit-errors (such losses can occur

on most transmission mediums, though with significantly

different probabilities). We evaluate NewReno, HighSpeed,

FAST, and RAPID by simulating examples of these two cases.

For all of the experiments in this section, we simulate a 1Gbps

bottleneck link in our dumbbell topology.

e) High-speed Networks with Dynamic Bandwidth: In

the first set of experiments, we simulate a network for 600

seconds, and introduce 4 constant-bit-rate (cbr) traffic streams

on the bottleneck link according to the following schedule:

cbr-1 exists from 50-400 seconds, cbr-2 exists from 100-150

seconds, cbr-3 exists from 250-350 seconds, and cbr-4 exists

for a small duration from 460-462 seconds. Each cbr stream

has a bit-rate of 200 Mbps. The spare bandwidth left on the

network is plotted in Figs 1(a)-(c) using a faint dotted line.

We use this setup to run a series of experiments in which

we introduce a single long-lived transfer at time 1 second,

and respectively, run it over NewReno, HighSpeed, FAST,

and RAPID. The throughput obtained by the transfer in each

experiment is also plotted in Figs 1(a) and 1(b). We find that:

1) NewReno and HighSpeed, which are both loss-based

protocols, experience packet losses when the avail-bw

reduces suddenly. This is because a loss-based protocol

induces persistent queuing in the bottleneck buffers (see

queue-size distribution in Fig 2)—any sudden decrease

in AB overflows the buffers causing multiple packet

losses. When this happens, NewReno takes an abysmally

long time (more than 7000 RTTs) to re-acquire the spare

bandwidth. HighSpeed is faster, but still takes up to 700

RTTs to recover its throughput.

2) Delay-based FAST performs much better since it does

not overflow router buffers and does not witness multiple

losses. In fact, FAST maintains a smaller but significant

number of packets in the bottleneck queue and is able

to utilize sudden increase in AB as well.
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Fig 2 shows that queues can grow to more than 10,000 packets

in the FAST experiment. In order to see how FAST would

perform in networks with limited buffers, we provision the

bottleneck link with exactly 10,000 buffers (which is around

15% of the DBP) and re-run the FAST experiment (plotted

as FAST’ in Fig 1(c)). We expect to see some packet loss in

this case—indeed, Fig 1(c) shows that FAST’ does witness

multiple packet losses initially; surprisingly, however, it is

simply unable to re-stabilize to the spare bandwidth for several

hundred seconds.

f) Non-congestion Error-based Losses: Error-based

losses can occur with probabilities of up to 10−6 even on

reliable optic fiber links. In high-speed networks, this is not

ignorable since a 1Gbps transfer would witness losses at

timescales of tens-to-hundreds of seconds. In such a setting,

the ability of a congestion-control protocol to re-acquire AB

quickly after a loss is critical.

In order to study this ability, we simulate a periodic er-

ror loss process on the 1Gbps bottleneck link—this process

periodically drops 1 in 106 packets. We simulate a single

long-lived transfer on this topology for 600 seconds, using

HighSpeed, FAST, and RAPID, respectively, as the underlying

protocols. Figure 3 plots the resultant throughput (observed

in the period 30-70 seconds). We find that each transfer
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experiences around 4-5 losses in this duration. FAST takes a

significant amount of time (around 70 RTTs) to re-acquire the

gigabit bandwidth after a loss. HighSpeed fares much better

(except in one case of loss) due to its tendency to build-up

very large router queues that help it maintain high throughput

while it recovers from the packet losses—on the flip side,

router queues grow undesirably large. In contrast, RAPID is

able to quickly recover from each loss within a few RTTs,

while also maintaining negligible queues.

B. Impact on TCP Traffic

Finally, we evaluate the impact of high-throughput RAPID

transfers on a realistic mix of regular TCP transfers that co-

exist on a bottleneck link. For this, we use the publicly-

available Tmix traffic generator code for ns-2, which generates

an empirically-derived TCP traffic mix [10]. We generate

traffic at an average offered load of 90Mbps for 40 minutes

and drive it through a bottleneck link of 120 Mbps. We log

the time it takes to complete each TCP transfer—referred to

as the response time of the transfer. We collect logs after 20

minutes of simulation time (to allow the traffic-generator to

reach a steady-state of connection arrivals and departures).

We then re-run the Tmix experiment with a long-lived

RAPID transfer sharing the network. In Fig 4(a), we plot

the complementary cumulative distribution of response times

of the TCP transfers in both experiments. We find that the

presence of an RAPID transfer has a visually-indistinguishable

impact on the response times of both short and long TCP

transfers. We also find that the RAPID transfer is able to

well-utilize the spare bandwidth—it achieves nearly 100% link

utilization. Fig 4(b), which plots the distribution of queue sizes

in the two experiments, shows that it does so without causing

significant additional queuing at the bottleneck link.

V. CONCLUDING REMARKS

In this paper, we propose the notion that a congestion-

control protocol can boldly probe for an exponentially-wide

range of sending rates by limiting the impact of each probe. We

realize this notion by: (i) relying on a rate-based transmission

where the inter-packet spacing is carefully controlled to probe

for a wide range of rates, and by (ii) relying on one-way delays

for estimating whether a probing rate is larger than the avail-

bw.

We use these ideas to design a novel protocol, RAPID,

that exhibits two significantly desirable characteristics. First,

it reduces by more than an order of magnitude the time it

takes for a transfer to acquire spare bandwidth. Second, it

maintains small and transient queues at bottleneck links and

has a negligible impact on the performance of regular TCP

transfers.

We are currently conducting large-scale evaluations to un-

derstand the sensitivity of RAPID to the values of its pa-

rameters, especially as network topologies and link capacities

scale up. We are also designing mechanisms for ensuring intra-

protocol fairness when several RAPID transfers co-exist.
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