
Decomposing RTT-Unfairness in Transport
Protocols

Eric Gavaletz and Jasleen Kaur
University of North Carolina at Chapel Hill

{gavaletz, jasleen}@cs.unc.edu

Abstract—In this paper, we consider RTT-unfairness in most
existing end-to-end congestion-control protocols, in which trans-
fers with smaller RTTs are allocated a higher share of the bottle-
neck bandwidth. We consider the congestion-control mechanisms
used by TCP NewReno and identify three aspects that introduce
an RTT-based bias in different ways. Past attempts at alleviating
RTT-unfairness mostly consider only one of these aspects. We use
a first-principles approach for deriving a set of simple scaling
factors that can be used to remove the RTT-bias. We conduct
empirical evaluations to study how fair in practice would be a
hypothetical protocol that employs all of these scaling factors.
We discuss the practicality of implementing such a protocol.

I. INTRODUCTION

A congestion-control protocol constantly probes the net-
work for the highest rate at which data can be transferred
without causing network congestion.1 All existing end-to-
end congestion-control protocols do this by fundamentally
operating at an RTT-long timescale: (i) they probe for a
candidate transfer rate by adopting it for an RTT-duration, and
(ii) depending on the feedback received, they increase/decrease
the probing rate adopted in the next RTT by some fac-
tor.2 Existing protocols differ mainly in two aspects—the
increase/decrease factors used as well as the feedback metric
used for detecting congestion. To date, however, all3 end-to-
end congestion-control attempts have retained the RTT-clocked
design framework.

The RTT-clocked design leads to the undesirable property
of RTT-unfairness. Since all transfers sharing a bottleneck link
operate at the scale of their respective RTTs, flows with shorter
RTTs have a higher probing frequency—consequently, these
are able to grow their sending rate at a faster pace and obtain
an unfairly large share of the bottleneck bandwidth. Thus,
even when Alice and Bob have purchased the same Internet
service plan from their local ISP, if Alice is downloading from
a server that is twice as far away as Bob, the throughput of
her download may be less than 20% of that of Bob!

1This material is based upon work supported by a National Science
Foundation CAREER Award CNS-0347814.

2The round-trip time (RTT) of a transfer is the total time it takes for a data
segment to transfer from the sender to the receiver, and for the corresponding
acknowledgment to make its way back.

3And we really mean all end-to-end protocols—this includes: (i) loss-
based protocols ranging from NewReno variants [1], [2] to HighSpeed [3],
Scalable [4], CUBIC [5], [6]; (ii) delay-based protocols such as Vegas [7],
FAST [8], Illinois [9], Compound-TCP [10]; and (iii) rate-based protocols
such as in [11], [12], [13] (which smooth out protocol behavior and operate
at even slower timescales).

While some recent protocols attempt to reduce the degree of
unfairness by adopting RTT-aware increase-factors [8], [10],
[14], [15], [16], [17], empirical evaluations show that most
of these simply reduce the degree of unfairness but do not
yield truly fair throughput for finite transfers. In this paper,
we attempt to understand why.

We carefully examine the congestion-control mechanisms
in TCP NewReno in order to better understand the RTT-based
bias in the throughput achieved by a transfer. We find that
there are at least four different aspects of current protocols that
introduce an RTT-bias. Unfortunately, existing proposals for
achieving RTT-fairness address only one of these. Specifically,
we find that the RTT-based throughput bias manifests itself
differently in the Slow-start phase, the Congestion-avoidance
phase, as well as in the setting of the Slow-start Threshold and
initial congestion-window. Furthermore, the nature of the bias
is different depending on whether the bottleneck link is heavily
utilized or not. We conclude that in order to address RTT-
unfairness for real-world transfers, protocol designers would
need mechanisms that (i) introduce an appropriate set of RTT-
based anti-bias scaling factors in the window-growth phases
as well as parameter settings, as well as (ii) estimate the
queuing delay at the bottleneck link—the latter is a challenging
requirement and is a somewhat open problem even today.

In order to assess the efficacy of these scaling factors,
we consider an ideal protocol that adopts these (we assume
that an oracle informs the protocol of the precise state of
the bottleneck queue). We run NS-2 simulations with such
a protocol and find that incorporating all of these factors does
indeed lead to a truly RTT-fair design.

In what follows, we examine the NewReno congestion-
control mechanisms in Section II. In Section III, we present
the design of an ideal RTT-fair protocol. In Section IV, we
implement and evaluate an oracle-assisted prototype of our
design. We end with a discussion of future work.

II. HOW MUCH BIAS DOES RTT INTRODUCE?

TCP congestion-control is defined by a collection of several
mechanisms, including Slow-start, Congestion-avoidance, Fast
Retransmit/Recovery, and Retransmission Timeouts [1]. While
each of these mechanisms gets invoked frequently and regu-
larly in real-world TCP transfers [18], most existing attempts
at alleviating RTT unfairness focus only on the Congestion-
avoidance phase and steady-state behavior. As our simple
analysis below shows, other mechanisms can introduce a

significant RTT-based throughput bias as well. While this
analysis is presented in the specific context of NewReno, the
framework and qualitative conclusions apply to most other
end-to-end congestion-control protocols.

A. RTT-bias in Slow-start

In Slow-start, a TCP sender increments its congestion-
window (cwin) by one segment for every ACK received,
effectively doubling its cwin every RTT. The window size,
wt, at time t can be approximated as:

wt = w0 ∗ 2
t
r (1)

where w0 is the initial cwin used by the transfer. The through-
put attained by a transfer at time t can be approximated as
Tt = wt

r , where r is the current RTT of the transfer.
Consider two transfers A and B that start simultaneously

and have different path RTTs: ra and rb, respectively. Then,
the ratio of their throughput, Ta and Tb respectively, at time
t is given by:

δ =
wa2t/ra/ra

wb2t/rb/rb

(2)

Since the initial cwin is independent of path RTT in TCP,
wa = wb. Hence:

δ =
rb

ra
· 2(t

ra
− t

rb
)

(3)

Note that when ra < rb, this ratio keeps growing with t. In
Figure 1(a), we show how this ratio grows with time and the
RTTs of two transfers—here, ra = 10ms, while rb is varied
up to 500ms. We find that due to the aggressiveness with
which cwin is updated in Slow-start, the throughput of the
two transfers can differ by several orders of magnitude within
a fraction of a second.

Figures 2(a) and 2(b), respectively, illustrate the growth of
Tt and wt for three transfers with RTTs of 20 ms, 30 ms, and
40 ms, respectively. Slow-start governs the initial phases of the
three transfers and results in significantly different throughput
values before they exit the phase.

B. RTT-bias in Congestion-avoidance

In Congestion-avoidance, a TCP sender effectively incre-
ments its congestion-window by one segment in every RTT.
The window size at time t can be approximated as:

wt = w0 +
t

r
(4)

where w0 is the window-size at t = 0 (in Congestion-
avoidance, assuming that the transfer has crossed the Slow-
start Threshold).

Consider the two transfers A and B. The ratio of their
throughput at time t is given by:

δ =
(wa + t

ra
)/ra

(wb + t
rb

)/rb

=
r2
b

r2
a

· wara + t

wbrb + t
(5)

where wa and wb are their respective window sizes at t = 0
(in Congestion-avoidance).

Note that when ra < rb, this ratio keeps growing with time.4

Figure 1(b) plots the value of this ratio as a function of time
and rb, when ra = 10ms. We find that even in the milder
Congestion-avoidance phase, the throughput of the transfers
can differ by several orders of magnitude within a few seconds.

Continuing our example of Figure 2, we find that the
throughput of the three transfers continue to diverge in
Congestion-avoidance. It is important to also note that since
the value of the Slow-start Threshold (SST) is independent
of path RTT in TCP, the transfers leave the Slow-start phase
after having achieved different levels of throughput—a smaller
RTT transfer benefits more from the rapid throughput growth
in Slow-start before entering the slower Congestion-avoidance
phase.

(a) Slow Start (b) Congestion Avoidance

Fig. 1. δ(rb, t), ra = 0.01

(a) Tt (pkts/sec) (b) wt (pkts)

Fig. 2. Standard AIMD (w0 = 1, and SST = 100)

C. RTT-bias With Persistent Queuing

All of the above assumes that RTTs remain stable; however,
in the case where the bottleneck link has persistent queuing,
it impacts the RTTs of A and B disproportionately. More
importantly, when the bottleneck link carries long transfers
over loss-based congestion-control protocols, it is often driven
to a state when its queue keeps building up (till buffers
overflow and prompt sources to slow down). When the queue
keeps building up persistently, the RTTs of the two transfers
grow disproportionately with time. Specifically, if at time t the
queuing delay experienced in this queue is q, then the RTTs
of the two transfers at time t would have grown to: ra +q and

4Note that when ra < rb, the right hand side of Equation 5 igrows with
t, but eventually flattens out as it approaches r2

b/r2
a.

rb + q, respectively. This also implies that:
wa

ra
=

wb

rb
9

wa

ra + q
=

wb

rb + q
(6)

Furthermore, since the queuing delay (and consequently, the
RTT of a transfer) keeps growing with time, the window
growth in Slow-start or Congestion-avoidance can no longer
be tracked using the equations in (1) and (4). The nature of
the bias introduced by the RTT differences becomes a more
complex function that includes the queuing delay and the rate
at which it grows—for brevity, we refrain from quantifying
this bias here.

Our analysis in this section clearly illustrates that sev-
eral aspects of TCP congestion-control contribute towards an
RTT-based bias in throughput allocation—these include the
window-growth in both Slow-start and Congestion-avoidance,
as well as the use of a common initial window and a common
Slow-start Threshold. Unfortunately, most attempts at alleviat-
ing RTT-unfairness focus only on the steady-state behavior of
Congestion-avoidance [15], [16]. Clearly, in order to be truly
RTT-fair, a congestion-control protocol would need to address
each of these sources of bias. In the next section, we attempt
to do so.

III. DESIGNING AN IDEAL RTT-FAIR PROTOCOL

In this section we derive a set of scalars that can be used to
offset the bias in throughput allocation that is introduced by
differences in path RTTs. As shown in Section II, the nature
of the bias for two given transfers A and B depends on a
set of several non-trivial functions of their path RTTs, ra and
rb. Clearly, the offsets for these bias would also need to be
a function of the path RTTs. Since senders are unaware of
the state of other transfers sharing the bottleneck link, we
instead rely on the notion of a common “reference” transfer,
REF, which has a path RTT of rref , a Slow-start Threshold of
SSTref , and an initial window of w0,ref . Simply put, our goal
is to have each transfer achieve the same throughput as what
would have been achieved by REF if it started at the same time
and experienced the same network conditions—each transfer
does so by appropriately scaling its window growth functions,
as well as the Slow-start Threshold and initial window.

A. Scaling in Slow-start

In all of the derivations in this section, we will rely on an
inductive approach—we will start by assuming that at some
reference time, the throughput of a given transfer is the same
as what would have been achieved by REF at that time. We
will then derive the manner in which the window should be
updated subsequently in order to continue maintaining equality
with the throughput of REF.
Initialization: In order for the throughput of a transfer to match
that of REF initially, we first select an initial window w0 as:

w0 = w0,ref · r

rref
(7)

Base-case: We assume that at a given time t, the throughput
of the transfer matches that of REF. This would imply that:

w

r
=

wref

rref
(8)

Induction-step: After an r worth of time, we would like to
update the window-size (to w′) so that the updated throughput
will continue to match that of REF. Note that due to the
exponential nature of Slow-start, wref would increase in an
exponential nature even within r time units. That is, we would
like:

w′

r
=

w′
ref

rref

=
wref · 2(r/rref)

rref

=
w·rref

r · 2(r/rref)

rref

w′ = w · 2(r/rref) = w · 2s (9)

where w′ is the updated window-size of the transfer after an
RTT worth of delay, and s = r

rref
. Instead of Equation (1), the

window-size can now be tracked over time with the function:

wt = w0,ref · s · 2(s· t
r) (10)

Further, in order to ensure that the transfer leaves the Slow-
start phase (and enters the Congestion-avoidance phase) with
the same throughput as that of REF, we also scale the Slow-
start Threshold as:

SST = SSTref · s (11)

B. Scaling in Congestion-avoidance

The Congestion-avoidance phase starts with a window size
equal to SST. From Equation (11), it follows that a transfer
enters this phase with a throughput matching that of REF. We
proceed with induction as follows:
Base-case: We assume that at a given time t, the throughput
of the transfer matches that of REF. This would imply that:
w
r = wref

rref
.

Induction-step: After an r worth of time, we would like to
update the window-size (to w′) so that the updated throughput
will continue to match that of REF. That is, we would like:

w′

r
=

w′
ref

rref

=
wref + r

rref

rref

=
w·rref

r + r
rref

rref

w′ = w +
(

r

rref

)2

= w + s2 (12)

where w′ is the updated window-size of the transfer after an
RTT worth of delay. Instead of Equation (4), the window-
growth over time can now be tracked using:

wt = s · SSTref + s2 · t

r
(13)

We make use of Equations 10, 11, and 13 to generate Fig-
ure 3—comparison to Figure 2 shows that the scaling factors
do help model RTT-independent throughput as desired.

(a) Tt (pkts/sec) (b) wt (pkts)

Fig. 3. Scaled AIMD (rref = 30ms)

C. Scaling in the Presence of Packet Losses

Most literature on TCP fairness analysis works under the
assumption that when the bottleneck buffers overflow, all
transfers using that link experience packet losses [19]. Indeed,
if packet loss events are not distributed across transfers in
an equitable manner, TCP and its AIMD variants would not
result in a fair throughput allocation even among similar RTT
transfers! Correspondingly, in this paper we are concerned
with the question: when packet losses do occur in all transfers
nearly simultaneously, how can one achieve fairness across
transfers with different RTTs?

Interestingly, with the above assumption, there is no need
to add any additional scaling factors. This is because if
the transfers detect the packet losses using Retransmission
Timeouts (RTOs), then they will all scale back to their initial
window—which are already scaled appropriately according to
Equation (7). If instead the losses are detected using Fast
Retransmit/Recovery (FR/R), the windows are scaled to half
of their value before the loss. Since the pre-loss windows are
scaled appropriately, applying the constant factor of 0.5 will
preserve the scale with respect to REF.

D. Scaling in the Presence of Persistent Queuing

In case the bottleneck queue grows persistently, the corre-
sponding queuing delay is encountered by all transfers that
traverse a bottleneck link, and increases their RTTs “equally”.
This would also be true for the hypothetical REF transfer.
We next derive scaling factors that would help maintain RTT
fairness even at times when the bottleneck queue is persistently
growing (which happens often with loss-based congestion-
control protocols). In this section, we use the notation r to
denote the round-trip time experienced by a transfer when the
bottleneck queue size is zero.

1) Slow-start: We assume that the initial sampled RTT
experiences zero-queuing at the bottleneck and simply use the
scalar s to set w0 as before. Then we use induction as follows:
Base-case: We assume that at a given time t, the throughput
of the transfer matches that of REF. We also assume that each
of these transfers experiences the same queuing delay, q, at
time t. This would imply that:

w

r + q
=

wref

rref + q
(14)

Induction-step: After an RTT worth of time, the transfer would
have received a full cwin of ACKs. Let the new RTT be equal
to r+q′, where q′ is the most recently sampled queuing delay
at the bottleneck link. At this point in time, we would like to
update our cwin to a value w′ such that the throughput of the
transfer matches that of REF. Thus, we want:

w′

r + q′
=

w′
ref

rref + q′

=
wref · 2(r+q′/rref +q′)

rref + q′

=
w·(rref +q)

r+q · 2(r+q′/rref +q′)

rref + q′

w′ = w · (r + q′)(rref + q)
(r + q)(rref + q′)

· 2

„
r+q′

rref +q′

«
(15)

The Slow-start Threshold is simply scaled as: SST = SSTref ·
r+q

rref +q , where q is the most recently sampled queuing delay.
2) Congestion-avoidance: Since the transfer enters

Congestion-avoidance with a throughput matching that of
REF, we start with the inductive derivation as follows:
Base-case: We assume that at a given time t, the throughput
of the transfer matches that of REF. We also assume that each
of these transfers experiences the same queuing delay, q, at
time t. Thus, we have: w

r+q = wref

rref +q .
Induction-step: And after an RTT worth of time, the transfer
would have received a full cwin of ACKs. Let the new RTT be
equal to r+q′, where q′ is the most recently sampled queuing
delay at the bottleneck link. At this point in time, we would
like to update our cwin to a value w′ such that the throughput
of the transfer matches that of REF. Note that after an r + q′t
worth of time, REF would have received (r + q′)/(rref + q′)
ACKs. Thus, we want to compute a w′ such that:

w′

r + q′
=

w′
ref

rref + q′

=
wref + r+q′

rref +q′

rref + q′

=
w·(rref +q)

r+q + r+q′

rref +q′

rref + q′

w′ = w · (r + q′)(rref + q)
(r + q)(rref + q′)

+
(

r + q′

rref + q′

)2

(16)

Note that a protocol that adopts the above scaling factors must
be able to reliably estimate the queuing delays q and q′.

IV. PROTOTYPING

One of the biggest challenges to prototyping the ideal RTT-
fair protocol developed in Section III, is estimating the degree
of persistent queuing at the bottleneck link. Indeed, it is fair
to say that detecting bottleneck queuing using only end-to-end
metrics is still an open problem despite having been considered
by several end-to-end congestion-control protocols [7], [8],
[10]. Addressing this problem is beyond the scope of this
paper.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

T
(t

)
as

 %
 o

f B
ot

tle
ne

ck
 C

ap
ac

ity

t (seconds)

50.0
100.0
150.0
200.0
400.0

(a) TCP NewReno

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50

T
(t

)
as

 %
 o

f B
ot

tle
ne

ck
 C

ap
ac

ity

t (seconds)

50.0
100.0
150.0
200.0
400.0

(b) SRF TCP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70

T
(t

)
as

 %
 o

f B
ot

tle
ne

ck
 C

ap
ac

ity

t (seconds)

50.0
100.0
150.0
200.0
400.0

(c) TCP Libra

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600

T
(t

)
as

 %
 o

f B
ot

tle
ne

ck
 C

ap
ac

ity

t (seconds)

50.0
100.0
150.0
200.0
500.0

(d) TCP Tarheel

Fig. 4. T (t) as % of Bottleneck Capacity in NS-2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

R
T

T
(t

)
(s

ec
on

ds
)

t (seconds)

50.0
100.0
150.0
200.0
400.0

(a) TCP NewReno

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50
R

T
T

(t
)

(s
ec

on
ds

)
t (seconds)

50.0
100.0
150.0
200.0
400.0

(b) SRF TCP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

R
T

T
(t

)
(s

ec
on

ds
)

t (seconds)

50.0
100.0
150.0
200.0
400.0

(c) TCP Libra

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

R
T

T
(t

)
(s

ec
on

ds
)

t (seconds)

50.0
100.0
150.0
200.0
500.0

(d) TCP Tarheel

Fig. 5. RTT (t) (seconds) in NS-2

Our analysis from Section III suggests that if a congestion-
control protocol could reliably estimate the bottleneck queuing
delays, then the derived scalars should help it in achieving
RTT-fairness. In this section, we evaluate the validity of this
claim by running NS-2 simulations [20]. In order to deal with
the issue of reliably estimating persistent queuing, we assume
the existence of an oracle that informs the protocol of the
exact amount of queuing delay it experiences at any given
time t.5 Equations 15, 11, 12, 15, and 16 then can be used to
implement an ideal RTT-fair prototype.

We run the resultant prototype, referred to as TCP Tarheel,
on a simple dumbbell topology in NS-2 in which 10 senders
share a 100 Mbps bottleneck link. All non-bottleneck links
have a 1 Gbps capacity, and the values of RTTmin for the
different senders varies from 50ms to 500ms. We also use
this topology for evaluating the fairness yielded by NewReno,
SRF [16], and Libra [15]. We ensure that all transfers expe-
rience packet loss nearly simultaneously, by forcing packet
drops in each of the transfers when the bottleneck buffers
approach full-occupancy.

Figures 4 and 5 plot as a function of time, respectively, the
throughput and the RTTs of the transfers (to avoid clutter, in
each plot we include curves for only a selected few of the 10
transfers). Also, for a fair comparison with other protocols,
we crop each plot after the first loss event occurs in a given
experiment. We find that:

• As expected, NewReno results in significantly different
throughput allocations to transfers with different RTTs.

• SRF and Libra (which is fairer of the two) do reduce
this degree of unfairness, but still result in throughput
allocations that can differ by up to a factor of 4. As
mentioned before, these protocols correct for the RTT-
bias introduced by only Congestion-avoidance. Figure 4
shows that because of this, these protocols retain a
significant penalty for large-RTT transfers in the initial
Slow-start phase.

• The oracle-assisted Tarheel is indeed able to achieve RTT-
fairness by relying on our analysis of Section III. This
fairness is achieved even in the presence of persistent
queuing (which starts at around 180 seconds, as illus-
trated in Figure 5(d)).

V. CONCLUDING REMARKS

There are several issues that need to be addressed before
an ideal protocol like Tarheel is realizable. First and foremost
is the issue of the robust estimation of bottleneck queuing
delay. Second, the analysis conducted here considers fairness
between transfers that start simultaneously—it is important to
define and achieve fairness even with a representative traffic
arrival pattern. Finally, we have not considered the impact
of the Fast Retransmit/Recovery and Retransmission Timeout

5In our simple NS-2 simulations on a dumbbell topology, queuing occurs
only at the bottleneck link. The bottleneck queuing delay is then indeed given
precisely by: q = RTT −RTTmin, where RTTmin is the round-trip time
experienced by the transfer initially (in the absence of queuing).

mechanisms on RTT-fairness. Each of the above is on our
agenda for future work.

REFERENCES

[1] W. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison
Wesley, 1994.

[2] K. Fall and S. Floyd, “Simulation-based comparisons of tahoe, reno, and
SACK TCP,” ACM Computer Communication Review, vol. 26, no. 3,
July 1996.

[3] S. Floyd, “Highspeed TCP and quick-start for fast long-distance net-
works,” Plenary Talk at the First International Workshop on Protocols
for Fast Long-distance Networks, February 2003.

[4] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area
networks,” in First International Workshop on Protocols for Fast Long-
distance Networks, February 2003.

[5] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, 2008.

[6] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
for fast, long distance networks,” in Proceedings of IEEE INFOCOM,
March 2004.

[7] L. Brakmo, S. O’Malley, and L. Peterson, “TCP vegas: New techniques
for congestion detection and avoidance,” in Proceedings of ACM SIG-
COMM, August 1994.

[8] D. Wei, C. Jin, S. Low, and S. Hegde, “FAST TCP: Motivation, architec-
ture, algorithms, performance,” IEEE/ACM Transactions on Networking,
vol. 14, no. 6, pp. 1246–1259, 2006.

[9] S. Liu, T. Başar, and R. Srikant, “Tcp-illinois: A loss- and delay-based
congestion control algorithm for high-speed networks,” Perform. Eval.,
vol. 65, no. 6-7, pp. 417–440, 2008.

[10] K. Tan and J. Song, “A compound tcp approach for high-speed and long
distance networks,” in In Proceedings of IEEE Infocom. Microsoft
Press, 2006.

[11] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” in Proceedings of ACM
SIGCOMM, August 2000.

[12] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stability,” Journal
of the Operational Research Society, vol. 49, pp. 237–252, 1998.

[13] S. Kunniyur and R. Srikant, “End–to–end congestion control schemes:
utility functions, random losses and ecn marks,” in Proceedings of IEEE
INFOCOM, March 2000.

[14] Y. Gu, “UDT: A high performance data transport protocol,” Ph.D.
dissertation, Chicago, IL, USA, 2005, chairperson-Robert L. Grossman.

[15] G. Marfia, C. Palazzi, G. Pau, M. Gerla, M. Sanadidi, and M. Roccetti,
“Tcp Libra: exploring rtt-fairness for tcp,” UCLA Computer Science
Department Technical Report# UCLA-CSD TR-050037.

[16] M. Fukuhara, F. Hirose, T. Hatano, H. Shigeno, and K. Okada, “SRF
TCP: A TCP-friendly and fair congestion control method for high-speed
networks,” Lecture notes in computer science, vol. 3544, p. 169, 2005.

[17] R. King, R. Baraniuk, and R. Riedi, “TCP-Africa: An adaptive and
fair rapid increase rule for scalable TCP,” in IEEE INFOCOM, vol. 3.
Citeseer, 2005, p. 1838.

[18] S. Rewaskar, J. Kaur, and F. Smith, “A performance study of loss
detection/recovery in real-world TCP implementations,” in ICNP ’07:
Proceedings of the 15th IEEE International Conference on Network
Protocols. Beijing, China: IEEE Computer Society, 2007.

[19] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks,” Comput. Netw.
ISDN Syst., vol. 17, no. 1, pp. 1–14, 1989.

[20] “Network simulator-2 ns2 (http://www.isi.edu/nsnam/ns/).”

