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Abstract. Tools for estimating end-to-end available bandwidth (AB)
send out a train of packets and observe how inter-packet gaps change over
a given network path. In ultra-high speed networks, the fine inter-packet
gaps are fairly susceptible to noise introduced by transient queuing and
bursty cross-traffic. Past work uses smoothing heuristics to alleviate the
impact of noise, but at the cost of requiring large packet trains. In this
paper, we consider a machine-learning approach for learning the AB from
noisy inter-packet gaps. We conduct extensive experimental evaluations
on a 10 Gbps testbed, and find that supervised learning can help realize
ultra-high speed bandwidth estimation with more accuracy and smaller
packet trains than the state of the art. Further, we find that when train-
ing is based on: (i) more bursty cross-traffic, (ii) extreme configurations
of interrupt coalescence, a machine learning framework is fairly robust
to the cross-traffic, NIC platform, and configuration of NIC parameters.

1 Introduction
End-to-end available bandwidth (AB) is important in many application domains
including server selection[1], video-streaming[2], and congestion control[3]. Con-
sequently, the last decade has witnessed a rapid growth in the design of AB
estimation techniques[4–6]. Unfortunately, these techniques do not scale well
to upcoming ultra-high speed networks [7]1. This is because small inter-packet
gaps are needed for probing higher bandwidth —such fine-scale gaps are fairly
susceptible to being distorted by noise introduced by small-scale buffering.

Several approaches have been proposed to reduce the impact of noise [8–10],
most of which apply smoothing techniques to “average-out” distortions. Due to
the complex noise signatures that can occur at fine timescales, these techniques
need to average out inter-packet gaps over a large number of probing packets—
this impacts the overhead and timeliness of these techniques.

In this paper, we ask: can supervised machine learning be used to auto-
matically learn suitable models for mapping noise-afflicted packet gaps to AB
estimates? We design a learning framework in which the sender and receiver
side inter-packet gaps are used as input features, and an AB estimate is the
output. Extensive evaluations are conducted, and find that a machine learning
framework can indeed be trained to provide robust bandwidth estimates, with
much higher accuracy and using much smaller number of probing packets than
the state of the art.

In the rest of this paper, we describe the challenges of AB estimation at ultra
high-speed, and the state-of-art in Section 2. We introduce our machine learning
framework in Section 3, and our data collection methodology in Section 4. In
Section 5, we experimentally evaluate our approach, and conclude in Section 6.
? This material is based upon work supported by the National Science Foundation

under Grant No. CNS-1526268, OCI-1127413.
1 We focus on 10Gbps speed in this paper, and use jumbo frames of MTU=9000B.



2 State of the Art
2.1 Background: Available Bandwidth Estimation
Main-stream bandwidth estimation tools adopt the probing rate model [11], which
sends out streams of probe packets (referred to as pstreams) at a desired probing
rate, by controlling the inter-packet send gaps as: gs

i = pi

ri
, where gs

i is the send
gap between the ith and i-1 th packets, ri is the intended probing rate, and pi

is the size of ith packet. The estimation logic is based on the principle of self-
induced congestion— if ri > AB, then qi > qi−1, where qi is the queuing delay
experienced by the ith packet at the bottleneck link, and AB is the bottleneck
available bandwidth. Assuming fixed routes and constant processing delays, this
translates to gr

i > gs
i , where gr

i is the receive gap between the ith and i-1 th
packets. Most tools send out multiple packets (Np) at each probing rate, and
check whether or not the receive gaps are consistently higher than the send
gaps. They try out several probing rates and search for the highest rate rmax

that does not cause self-induced congestion. There are two dominant strategies
for searching for rmax:
Feedback-based Single-rate Probing: The sender relies on iterative feedback-
based binary search. The sender sends all packets within a pstream at the same
probing rate, and waits for receiver feedback on whether the receive gaps in-
creased or not. It then either halves or doubles the probing rate for the next
stream accordingly. Pathload is the most prominent of such tools [4].
Multi-rate Probing: The sender uses multi-rate probing without relying on
receiver feedback—each pstream includes N = Nr × Np packets, where Nr is
the number of probing rates tried out. The sender then looks for the highest
probing rate that did not result in self-congestion. Fig 1(a) illustrates a multi-
rate pstream with Nr = 4, Np = 16. The receive gaps are consistently larger than
the send gaps since the third probing rate, so the second probing rate (rmax)
is taken as an estimate of the AB. Multi-rate probing facilitates the design of
light-weight and quick tools [7]. Pathchirp is the most prominent of such tools [5].
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(c) At Receiver

Fig. 1: Inter-Packet Gaps Nr = 4, Np = 16

2.2 Challenge: Noise in Ultra High Speed Networks
End-to-end bandwidth estimation tools face three major challenges at ultra high-
speed: accurately creating fine-scale inter-packet gaps at the sender, dealing with
the presence of noise along the path, and precisely timestamping packet arrival
at the receiver. 2 To address the first challenge, we use the framework described
in [10], in which approporiate-sized IEEE 802.3x PAUSE frames — “dummy”
frames that get dropped by the first switch on the path, are inserted for creating
fine-scale inter-packet gaps. We focus on the remaining two allenges in this paper.
2 The first and thrid can be well addressed with specialized NICs [12], or with recent

advances in fast packet I/O frameworks such as netmap [13]. In this study, however,
we focus on end systems with standard OSes and commodify network hardwares.
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Fig. 2: BASS-denoised Gaps

Any resource that is shared can be tem-
porarily unavailable, even if it is not a bottle-
neck resource over larger timescales—a packet
may have to wait in a transient queue at such
a resource. In ultra-high speed networks, the
magnitude of distortions created by queuing-
induced noise are comparable to (or even
larger than) the changes in inter-packet gaps
that need to be detected for bandwidth esti-
mation. [10] identifies two main noise sources:
Bursty cross-traffic at bottleneck resources. If the cross-traffic that shares
a bottleneck queue varies significantly at short timescales, then all packets sent
at a given probing rate may not consistently show an increase in receive gaps. For
instance, Fig 1(b) plots the inter-packet gaps observed right after the bottleneck
queue, for the same pstream as in Fig 1(a). Due to the bursty cross-traffic, the
receive gaps are consistently larger than the send gaps only for the 4th probing
rate (resulting in an over-estimation of AB).
Transient queuing at non-bottleneck resources. Even though a resource
may not be a network bottleneck, it can certainly induce short-scale transient
queues when it is temporarily unavailable while serving competing processes or
traffic. Interrupt Coalesence is a notable source of such noise [14, 8]. It is turned
on by default at receivers, forcing packets to wait at the NIC before being handed
to OS for timestamping, even if the CPU is available—the waiting time (a.k.a
interrupt delay) can be significant compared to the fine-scale gaps needed in ultra
high-speed networks. Fig 1(c) plots the inter-packet gaps observed at the receiver
(gr

i ) for the pstream in Fig 1(a). We find that these gaps are dominated by a
“spike-dips” pattern—each spike corresponds to the first packet that arrives
after an interrupt and is queued up till the next interrupt (thus experiencing the
longest queuing delay). The dips correspond to the following packets buffered in
the same batch. With the “spike-dips” pattern, an consistently increasing trend
of queuing delays will not be observed in any pstream, leading to persistent
over-estimation of AB.

2.3 State of the Art: Smoothing Out Noise
Several approaches have been proposed to deal with the impact of noise on band-
width estimation [4, 8–10]. In general, all of these approaches employ denoising
techniques for smoothing out inter-packet receive gaps, before feeding them to
the bandwidth estimation logic. The recently-proposed Buffering-aware Spike
Smoothing (BASS) [10] has been shown to outperform the others on 10 Gbps
networks with shorter streams, and is summarized below.

BASS works by detecting boundaries of “buffering events” in recvgaps— each
“spike” and the following dips correspond to packets within the same buffering
event. Based on the observation that the average receiving rate within a buffering
event is the same as that observed before the buffering was encountered, BASS
recovers this quantity by carefully identifying buffering events and smoothing
out both sendgaps and recvgaps within each. The smoothed gaps are then fed
into an AB estimation logic. Fig 1(c) plots the BASS-smoothed gaps for the
pstream in Fig 2. In [10], BASS was used within both single-rate and multi-rate
probing frameworks. For single-rate probing, BASS helped achieve bandwidth
estimation accuracy within 10%, by using pstreams with at least 64 packets. For



multi-rate probing, BASS-smoothed gaps were fed to a variant of the Pathchirp
bandwidth estimation logic, and estimation accuracy of mostly within +/-10%
was achieved using multi-rate pstreams with N=96 packets and 50% probing
range3.

For many applications of bandwidth estimation, that need to probe for band-
width regularly and frequently, large probe streams pose a significant issue in
terms of timeliness, overhead and responsiveness— both the duration for which
each pstream overloads the network, and the total time needed to collect AB
estimates, increase linearly with N (when Nr is fixed). Even a 96-packet pstream
can last several milliseconds in a gigabit network—such a duration is too long
in the context of ultra-high speed congestion control [3].

3 A Learning Framework for Bandwidth Estimation

It is important to note that noise can distort gaps within a pstream with several
different signatures, each with its own magnitude of gap-distortion, and each
with its own timescale and frequency at which it manifests itself (as exemplified
in Figs 1(b) and 1(c)). When simple smoothing heuristics are used by the state
of the art for dealing with such diversity in noise, they result in an underfit
model—expectedly, these techniques need to smooth over a large number of
probe packets in order to be robust. The main hypothesis of this work is that
machine learning (ML) can improve our understanding of the noise signature in
gaps, with even shorter probe streams than the state of the art.

In this paper, we propose to use supervised learning to automatically derive
an algorithm that estimates AB from the inter-packet send and receive gaps
of each pstream. Such an algorithm is referred to as a learned “model”. We
envision that the model is learned offline, and then can be incorporated in other
AB estimation processes. Below, we briefly summarize the key components of
this framework.

Input Feature Vector The input feature vector for a pstream is constructed
from the set of send gaps and receive gaps, {gs

i } and {gr
i }. Fourier transforms

are commonly used in ML applications, when the input may contain information
at multiple frequencies [15, 16]—as discussed before, this certainly holds for the
different sources of noise on a network path. Hence, we use as a feature vector,
the fourier-transformed sequence of send and receive gaps for a pstream of length
N : x = FFT (gs

1, ..., g
s
N , g

r
1, ..., g

r
N ).

Output The output, y, of the ML framework is the AB evaluation. For single-
rate pstreams, the AB estimation can be formulated as a classification problem:
y = 1 if the probing rate exceeds AB, otherwise y = 0. For multi-rate pstreams,
it can be formulated as a regression problem, in which y = AB.

Learning Techniques We consider the following ML algorithms—ElasticNet [17],
which assumes a polynomial relationship between x and y; RandomForest [18],
AdaBoost [19] and GradientBoost [20], which ensemble multiple weak models
into a single stronger one; Support Vector Machine(SVM) [21], which maps x
into a high dimensional feature space and constructs hyperplanes separating y
values in the training set.4
3 Probing range is given by: rN

r1
− 1.

4 Our evaluations revealed that models trained with ElasticNet and SVM result in
considerable inaccuracy. For brevity, we don’t present their results.



Training-and-testing The success of any ML framework depends heavily on
good data collection—data that is accurate as well as representative. Section 4
describes our methodology for generating hundreds of thousands of pstreams un-
der a diverse set of conditions—it also describes how we collect the ground-truth
of AB, ABgt, for each pstream. The knowledge of ABgt allows us to compute an
expected value, yexp, of the output of the ML framework—both for single-rate
as well as multi-rate pstreams.

We use data from the above pstreams to “train” each of the learning tech-
niques, and then “test” them on pstreams not included in the training set. In
each experiment in Section 5, we generate more than 20000 pstreams, of which
10000 are used for training and the remaining for testing.5

Metrics Each “test” that is run on a pstream, yields an estimate of the output,
y. For single-rate pstream, the accuracy of the model is quantified by the decision
error rate, which is the percentage of pstreams, for which: y 6= yexp. For multi-
rate pstream, we quantify relative estimation error as: e = y−ABgt

ABgt
.

4 Data Collection

Fig. 3: Testbed Topology

The success of a ML framework
depends on its ability to work
with a diverse and representa-
tive set on input data. We use
a carefully-designed experimental
methodology for obtaining such
data. A salient feature of our
methodology is that all evaluations are performed on a 10 Gbps testbed.

Testbed We use the dedicated network illustrated in Fig 3 in this study. The
switch-to-switch path is a 10Gbps fiber path. The two end hosts involved in
bandwidth estimation are connected to either side of the switches using 10Gbps
Ethernet. The testbed includes an additional 10 pairs of hosts, each equipped
with a 1Gbps NIC, that are used to generate cross traffic sharing the switch-
to-switch link. For each experiment, we collect packet traces on the switch-to-
switch link using fiber splitters attached to an Endace DAG monitoring NIC
which provides timestamps at 10 nanosecond accuracy.

Pstream Generation We use the Linux kernel modules implemented in [10]
for sending and receiving pstreams. An iperf client is first used to generate data
segments with an MTU size of 9000 bytes. A sender-side Linux Qdisc sched-
uler then turns the stream of these data segments into pstreams of a specified
size and average probing rate. Inter-packet sendgaps are enforced by inserting
appropriately-sized Ethernet PAUSE frames sent at link speed. [10] shows that
these modules ensure gap accuracy within 1µs, even when probing at 10Gbps.
At the receiver, packet arrival timestamps are recorded in an ingress Qdisc with
microsecond precision. In each experiment summarized in Section 5, more than
20000 pstreams are generated, with their average probing rate ranging from 5
Gbps to 10 Gbps.
5 In our Python implementation with scikit-learn [22] library, we use its automatic

parameter tuning feature for all ML methods, and use 5-fold cross-validation to
validate our results.



Calculating ABgt The first and last packet from every pstream are located
in the packet trace, the bytes of cross traffic between those two packets are
counted and then cross traffic throughput is computed. ABgt, the groundtruth
of AB for that pstream is calculated by subtracting cross traffic throughput from
the bottleneck capacity.
Cross Traffic Generation: Incorporating Diversity in Burstiness One
major source of noise considered in this paper is fine-timescale burstiness in
cross-traffic encountered at the bottleneck. In order to incorporate diversity in
such burstiness in our data set, we generate serveral cross-traffic models.
BCT: We first ran a modified version of SURGE [23] program to produce bursty
and synthetic web traffic between each pair of cross-traffic generators. An impor-
tant consideration is that to study the impact of other factors, cross traffic should
be consistently repeated across experiments. Thus, we record packet traces from
each of the SURGE senders, and then replay these in all experiments on the
same host using tcpreplay [24]. We denote the aggregate traffic of the replayed
traces as “BCT”. The average load of BCT is 2.4 Gbps.
SCT: We then generate a smoother version of BCT by running a token bucket
Qdisc on each sending host. The resultant aggregate is referred to as “SCT”.

Table 1: Cross Traffic
Burstiness

label Burstiness
5-95% Gbps

BCT 1.15 – 3.94

SCT 1.78 – 3.31

UDP range ∼ 0.51

UNC1 2.23 – 4.05

UNC2 1.84 – 3.77

UNC3 2.31 – 4.29

CBR: To obtain the least bursty cross-traffic (constant
bit-rate, CBR) on the switch-to-switch link, we use iperf
to create UDP flows between host pairs. We experiment
with CBR traffic generated at 50 different rates, ranging
from 1 Gbps to 5 Gbps.
UNC1-3: We also use three 5-minute traces collected
at different times on a 1 Gbps egress link of the UNC
campus network. For each trace, we run a corresponding
experiment in our testbed, in which the trace is replayed
concurrently by 10 cross-traffic senders (with random jit-
ter in their start times). We label the resultant aggregate traffic aggregates as
UNC1, UNC2, and UNC3, respectively. The average load of UNC1 is 3.10Gbps,
UNC2 is 2.75Gbps, and UNC3 is 3.28Gbps.

Table 1 quantifies the burstiness of each of the above traffic aggregates, by
listing the 5th and 95th percentile load offered by each on the bottleneck link.
In most experiments reported in Section 5, we use BCT as the cross-traffic—
Section 5.2 considers the others too.6
Incorporating Diversity in Interrupt Coalescence Section 5 describes
how we also experiment with diversity in the other major source of noise—
receiver-side interrupt coalescence. We rely on two different NIC platforms in
this evaluation: NIC1, a PCI Express x8 Myricom 10 Gbps copper NIC with the
myri10ge driver, and NIC2, an Intel 82599ES 10Gbps fiber NIC.

5 Evaluation
The two major sources of noise considered in this study are cross-traffic bursti-
ness and receiver-side interrupt coalescence. In this section, we first present ex-
periments conducted under conditions (BCT cross-traffic, and default configura-
tion of interrupt coalescence on NIC1) similar to those used to evaluate BASS.
6 Note that replayed traffic retains the burstiness of original traffic aggregate, but does

not retain responsiveness of individual TCP flows. However, the focus of this paper
is to evaluate denoising techniques for accurate AB estimation —this metric is not
impacted by the responsiveness of cross traffic, but only by its burstiness.



Later, we explicitly control for, and consider the impact of cross-traffic burstiness
and interrupt coalescence. ‘

5.1 Performance with BCT, and default interrupt coalescence
BASS has been shown to yield good bandwidth estimates on 10 Gbps networks,
when used with single-rate pstreams of length N = 64, and multi-rate pstreams
with N = 96, Nr = 4 [10]. In this section, we first evaluate our ML model under
similar conditions, and then consider even shorter pstreams.
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Single-Rate Probing:
We first train models of
different ML algorithms
with N = 64, and test
them on pstreams prob-
ing at 9 discrete rates,
ranging from 5-9 Gbps
(with BCT, the average
AB is around 7.6 Gbps).
The bandwidth-decision errors observed at each rate are plotted in Fig 4. We
find that (unlike BASS) each of the three ensemble methods leads to negligi-
ble error when probing rate is far below or above avail-bw. When probing rates
are close to the AB , both BASS and the ML models encounter more ambigu-
ity. AdaBoost and GradientBoost perform comparable to BASS. RandomForest
performs worse than the two boosting methods, which agrees with the findings
in [25].7 In the rest of the paper we focus our discussion on GradientBoost.
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Fig. 6: GradientBoost (single-rate)
We then consider shorter pstreams by reducing N to 48 and 32, respectively,

and compare the accuracy in Figs 5 and 6. We find that the performance of
BASS degrades drastically with reduced N : for N = 32 error rate can exceed
50% when the probing rate is higher than 8Gbps! Although GradientBoost also
yields more errors with smaller N , the error rate is limited to within 20% even
with N = 32.
Multi-Rate Bandwidth Estimation We next train models with multi-rate
pstreams of N = 96, Nr = 4 and probing range 50%. Fig 7 plots the distributions

7 Each weak model in RandomForest is learned on a different subset of training data.
The final prediction is the average result of all models. AdaBoost and GradientBoost
follow a boosting approach, where each model is built to emphasize the training
instances that previous models do not handle well. The boosting methods are known
to be more robust than RandomForest [25], when the data has few outliers.



of relative estimation error using BASS and the learned GradientBoost model—
ML significantly outperforms BASS by limiting error within 10% for over 95%
pstreams! We further reduce N to 48 and 32, and find that N = 48 maintains
similar accuracy as N = 96, while N = 32 leads to some over-estimation of
bandwidth.
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Based on our experiments so far,
we conclude that our ML frame-
work is capable to estimating bandi-
width with higher accuracy and small
pstreams than the state of the art, both
with single-rate as well as multi-rate
probing techniques. In what follows,
we focus on multi-rate probing with
N = 48 and Nr = 4.

We next consider the impact of
prominent sources of noise, namely,
cross-traffic burstiness, and receiver-side interrupt coalescence. It is worth noting
that the literature is lacking in controlling for and studying the following factors,
each of which is a significant one for ultra-high-speed bandwidth estimation—
this is a novelty of our evaluation approach.

5.2 Impact of Cross-traffic Burstiness

We repeat the experiments from Section 5.1, with BCT replaced by each of the
other five models of cross-traffic. Fig 8 plots the results—the boxes plot the 10-
90% range of the relative estimation error, and the extended bars plot the 5-95%
ranges. The left two bars for each cross-traffic type compare the performance of
BASS and our ML model. We find that the performance of both BASS and
our ML model is relatively insensitive to the level of burstiness in cross-traffic.
However, in each case, ML consistently outperforms BASS.
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Fig. 9: Train with Smoother Traffic

In the above experiments, the ML model was trained and tested using pstreams
that encounter the same type of cross-traffic model. In practice, it is not possible
to always predict the cross-traffic burstiness on a given network path. We next
ask the question: how does our ML framework perform when burstiness encoun-
tered in the training vs testing phases are different? Intuitively, a model learned
from bursty cross-traffic is more likely to handle real-world cases where traffic
is bursty; however, it is more subjective to overfitting — the model may try to
“memorize” the noisy training data, leading to poor performance for conditions
with smoother traffic.



Training With Smoother Traffic We next employ the models trained with
each cross-traffic type to test pstreams that encounter the more bursty BCT in
Fig 9. We find that, ML outperforms BASS in all cases; but models learned with
smoother traffic lead to higher errors than the one learned with BCT. This is to
be expected—bursty traffic introduces a higher degree of noise. We conclude that
it is preferable to train an ML model with highly bursty cross-traffic, to prepare
it for traffic occuring in the wild.
Testing With Smoother Traffic We use the model trained with BCT, to
predict AB for pstreams that encounter other types of cross-traffic. In Fig 8, we
find that the BCT-derived model gives comparable accuracy as the one trained
with the same cross-traffic type as the testing set. Thus, a model learned from
more bursty cross traffic is robust to testing cases where cross traffic is less bursty.

5.3 Impact of Interrupt Coalescence Parameter
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Fig. 10: Impact of ICparams in Training Set

Interrupt coalescence by
a NIC platform is typi-
cally configured using two
types of parameters (IC-
param): “rx-usecs”, the
minimum time delay be-
tween iterrupts, and/or
“rx-frames”, the number
of packets coalesced be-
fore NIC generates an in-
terrupt. By default, NICs
are configured to use
some combination of both of these parameters—our experiments presented so
far use the default configuration on NIC1, which roughly boils down to a typical
interrupt delay of about 120µs.

Different ICparam lead to different “spike-dips” patterns in the receive gaps,
in terms of the heights of the spikes, as well as the distances between neighboring
spikes. We next study the impact of having different ICparam in the training
vs testing data sets—a model learned with one parameter may fail on pstreams
that encounter another. We first apply the previously learned ML model (with
ICparam=default) to testing scenarios when rx-usecs is set to a specific value—
ranging from 2µs to 300µs. Fig 10 compares the estimation accuracy of BASS and
the ML model (left two bars in each group). The box plots the 10%-90% relative
error, and the extended bar plots the 5%-95% error. We find that BASS severely
over-estimates AB when interrupt delay is significant (rx-usecs ≥ 200µs), while
the ML model yields better accuracy. This highlights the model of carefully
studying the impact of ICparam—this factor was not considered in the BASS
evaluations in [10]. We also find that the ML model consistently under-estimates
AB when rx-usecs=300µs.

Machine learning performs best when the training set is representative of
conditions encountered during testing. To achieve this, we create a training set
that for each ICparam, include 5000 pstream samples that encounter it—we
denote this as “ALL-set”. As shown in Fig 10, the model learned from “ALL-
set” reduces error to within 10% for most pstreams that encounter extreme
rx-usecs values. In practice, however, all possible configurations of ICparam at
a receiver NIC may not be known. We next ask: does there exist a model, which



is trained with only a limited set of ICparams, but which manages to apply to
all configurations? To study this, we minimize the training set to only include
two extreme values (2us and 300us), in addition to the default setting. We refer
to this set as “3sets”. Fig 10 shows that “3sets” is sufficient to train an accurate
ML model, which provides similar accuracy as “ALL-set”.

5.4 Robustness and Portability across NICs
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Different NIC platforms may interpret
and implement interrupt coalescence
differently. For instance, NIC-2 relies
an adaptive interrupt behavior, even
though it allows us to specify “rx-
usecs” and “rx-frames”. Fig 11 illus-
trates that on this NIC by plotting
the distribution of number of frames
coalesced per interrupt—we find that
“rx-frames” takes no effect when rx-
usecs ≤ 12µs. But “rx-usecs” is not
respected once it exceeds 12µs; the distribution mainly depends on rx-frames.
This unpredictability is quite different from what we observed on NIC1—we next
study if our ML framework will work on such a NIC as well.
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Fig. 12: Impact of ICparams on NIC-2

We repeat the experi-
ments of Section 5.3, but
use NIC2 instead of NIC1
for collecting both the
training and testing data.
We consider the follow-
ing ICparams for NIC-2:
rx-usecs from 2 to 10µs,
and rx-frames from 2 to
20 (rx-usecs=100). Mod-
els are learned from train-
ing sets consisting of dif-
ferent combinations of ICparams in training scenarios, namely, the “Default”,
“All-set”, and the “3sets”(default,rx-frames=2 and rx-frames=20). Fig 12 plots
the estimation errors for these three environments. We find that compared with
Fig 10, the estimation error is generally higher on NIC-2 than NIC-1, presum-
ably due to greater unpredictability in its interrupting behavior. As before, the
“3sets” on NIC-2 outperforms BASS significantly, and gives comparable accu-
racy as “All-set”—which agrees with our observation with NIC-1.

Cross-NIC Validation To investigate the portability of a learned model across
NICs, we next perform a cross-NIC validation: the model trained with data
collected using one NIC is tested on data collected on a different NIC. We use
only ICparam=3sets, and plot the results in Figs 13(a) and 13(b). In general, we
find that the cross-NIC models generally give comparable accuracy as models
trained on the NIC itself. The notable exceptions occur for extreme values of
ICparam— rx-usecs=300µs on NIC1 and rx-frames=20 in NIC2.

5.5 Implementation Overhead
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Fig. 13: Cross-NIC Evaluation

Table 2: Per-pstream Evaluation Overhead

single-rate
N=48

BASS
Random
Forest

AdaBoost
Gradient

Boost

CPU Time(s) 1.7e-6 2.1e-6 1.0e-4 7.7e-6

Memory - 3.8MB 3.3MB 248KB

multirate
N=48

BASS
Random
Forest

AdaBoost
Gradient

Boost

CPU Time(s) 8.1e-6 2.5e-5 6.3e-5 7.2e-6

Memory - 237MB 2.5MB 260KB

The benefits of our ML frame-
work are achieved at the cost
of system overhead in the test-
ing phase8—the whole model
has to be loaded into memory,
resulting in more memory us-
age; also, the estimation time
in testing phase increases with
model complexity. Table 2 lists
the memory and CPU cost in-
curred by different models trained with ICparam=3sets, for generating a single
estimate. The memory usuage shown is the relative increment compared with
BASS. We find that GradientBoost reports similar costs for both single-rate and
multi-rate probing frameworks. For multi-rate probing, it takes comparable CPU
usuage as BASS, and only 260KB more memory, which is negligible for modern
end hosts with gigabits of RAM.

Although the above numbers are implementation-specific, it is important
to understand the implementation complexity. In our evaluations, the offline-
learned GradientBoost model consists of 100 base estimators, each with a deci-
sion tree with height less than 3— the memory cost of maintaining 100 small
trees, as well as the time complexity in tree-search (upper-bounded by 300 com-
parisons), are both affordable in modern end-systems, in both user and kernel
space. In practice, network operators can program the training process with any
preferred ML library and store the learned model. The stored model contains
parameters that fully define the model structure —thus, it can be easily ported
to other development platforms. Even a Linux kernel module, such as the ones
used in bandwidth-estimation based congestion-control [3], can load the model
during module initialization, and can faithfully reconstruct the entire model in
order to estimate AB.

6 Conclusion
In this paper we apply ML techniques to estimate bandwidth in ultra-high speed
networks, and evaluate our approach in a 10Gbps testbed. We find that super-
vised learning helps to improve estimation accuracy for both single-rate and
multi-rate probing frameworks, and enable shorter pstreams than the state of
the art. Further experiments show that: (i) a model trained with more bursty
cross traffic is robust to traffic burstiness; (ii) the ML approach is robust to
8 Since models are trained off-line, the training overhead is not of concern.



interrupt coalescence parameters, if default and extreme configurations are in-
cluded in training; and (iii) the ML framework is portable across different NIC
platforms. In further work, we intend to conduct evaluations with more NICs
from different vendors, and investigate the practical issues of generating training
traffic in different networks.
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