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Packet-Scale Congestion Control Paradigm
Rebecca Lovewell, Qianwen Yin, Tianrong Zhang, Jasleen Kaur, and Frank Donelson Smith

Abstract— This paper presents the packet-scale paradigm for
designing end-to-end congestion control protocols for ultra-high
speed networks. The paradigm discards the legacy framework of
RTT-scale protocols, and instead builds upon two revolutionary
foundations—that of continually probing for available bandwidth
at short timescales, and that of adapting the data sending rate
so as to avoid overloading the network. Through experimen-
tal evaluations with a prototype, we report high performance
gains along several dimensions in high-speed networks—the
steady-state throughput, adaptability to dynamic cross-traffic,
RTT-fairness, and co-existence with the conventional TCP traffic
mixes. The paradigm also opens up several issues that are less of a
concern for traditional protocols—we summarize our approaches
for addressing these.

Index Terms— Communications technology, communication
systems, protocols, transport protocols.

I. INTRODUCTION

WHY Ultra-High-Speed1 Transport Protocols?
End-to-end data transfer rate requirements in the

computational science communities as well as within large
data centers involved in enterprise computing are soon
to approach the terabit-per-second regime [1]–[3]. While
high-speed network infrastructure is increasingly being
deployed [4], [5], such capacity can not be made available
on an end-to-end basis to applications if the underlying
transport protocols do not scale correspondingly. One of the
key components that determines the scalability of a transport
protocol is its congestion control protocol—such a protocol
should adaptively discover the end-to-end spare bandwidth
available for data transfer in a quick and non-intrusive manner.
In this paper, we consider the design of ultra-high-speed
congestion control.

State of the Art: Not-so-High Speed Congestion Control:
The design of high-speed congestion control protocols
has been a fairly vibrant area of research over the last
decade [6]–[14]. Existing designs focus mainly on two
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10Gbps to multi-terabit regime.

approaches for achieving scalability: (i) the use of more-
aggressive-increase and milder-decrease factors as com-
pared to the additive-increase-multiplicative-decrease of TCP
NewReno; and (ii) the use of “early” congestion indica-
tors (such as increase in end-to-end delays) in addition to
packet loss [6], [10], [11]. While these designs have signif-
icantly improved upon the scalability of NewReno, even the
best-performing designs struggle to achieve even 10Gbps of
steady-state throughput per stream2 without causing significant
congestion (as observed both in wide-area experiments and in
simulations [15]–[19]).

A New Paradigm: We argue that the state of the art offers
only limited scalability because all of the high-speed designs
retain the legacy design framework of RTT-scale protocol
operations3—as explained in Section II, this framework funda-
mentally limits the ability of a protocol to operate at ultra-high
speeds without nearly causing congestion collapse. Instead, we
show that if this legacy mindset is discarded, it is possible
to adopt a novel paradigm of packet-scale congestion-control,
in which the protocol operates at a frequency close to the
frequency of packet transmissions [22]. This paradigm allows
the congestion-control timescale to be shrunk by several orders
of magnitude over current protocols, especially in high-speed
networks. This reduced timescale can then be exploited to
probe for a wide range of rates within an RTT without
overloading the network. This is the most distinguishing
feature of the paradigm—existing “high-speed” protocols take
orders of magnitude longer to probe for a similar range; and
no existing protocol can do even that without overloading
the network once it gets close to the available-bandwidth
(henceforth, referred to as avail-bw). Additionally, discarding
of the RTT-scale framework allows the paradigm to address
as never before, two fundamental issues that have remained
elusive to protocol designers—RTT fairness as well as friendly
co-existence with conventional Internet TCP traffic.

Our experimental evaluation with a prototype of the par-
adigm illustrates that it has potential for high impact along
several dimensions:

• Speed/Overhead: While most RTT-scale “high-speed”
protocols struggle with the speed-overhead tradeoff, the
packet-scale paradigm could allow a protocol to detect

2It is important to emphasize that we are referring to single-stream through-
put here. Researchers have indeed demonstrated a much-higher aggregate
throughput using multiple simultaneous streams (e.g., in [15]). However, it is
gains in single-stream throughput that can truly benefit scientific applications
and infrastructure without requiring changes to the application code-base.

3There are some protocols, especially those targetted for real-time streaming
applications, that do not rely solely on an RTT-scale framework [20], [21]—
however, to the best of our knowledge, none of these are designed
for generic large data transfers, or have been evaluated on high-speed
networks.
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end-to-end avail-bw of up to multi-terabits within a few
RTTs, while causing negligible router queuing footprints!

• Adaptability: The fine timescale at which the paradigm
operates allows it to exploit efficiently short-timescale
changes in end-to-end avail-bw—this is true while most
existing protocols either do not achieve high utilization
or are able to do so only by maintaining very large packet
queues at the bottleneck router.

• Incremental Deployability/TCP Co-existence: Due to its
low-queuing footprint, the packet-scale paradigm allows
an ultra-high speed transfer to share a network with
highly-multiplexed aggregates of conventional low-speed
TCP transfers without affecting the performance of the
latter. None of existing “high-speed” protocols have been
able to achieve this property without sacrificing on their
efficiency.

• RTT-fairness: By shedding the RTT-scale legacy
framework of operation, the paradigm allows the design
of end-to-end congestion-control that is truly RTT-fair
and does not favor short-RTT transfers (again, unlike
any RTT-scale high-speed protocol).

In the rest of this paper, we examine the RTT-scale framework
of existing protocols in Section II. We present the packet-
scale paradigm in Sections III and IV. We describe a pro-
totype and present its experimental evaluation in Section V.
In Section VI, we describe the open challenges that need to be
addressed before the paradigm can be deployed. We conclude
in Section VII. All of the experiments presented in this paper
have been conducted using the ns-2 simulator [23]. While
some experimental results are discussed in Section II, the
experimental setup is described in detail only in Section V.

II. STATE OF THE ART: RTT-SCALE

CONGESTION PROBING

While several aspects of a transport protocol and its
configuration could influence the data transfer speeds
achieved by applications, one of the most significant factors
has been recognized to be its congestion-control protocol. For
large data transfers, a congestion-control protocol constantly
probes the network for the highest rate at which data can be
transferred without causing network congestion. Nearly all
existing end-to-end4 congestion-control protocols do this by
fundamentally operating at an RTT-long timescale5: (i) they
probe for a candidate transfer rate by adopting it for an RTT-
duration, and (ii) depending on the feedback received, they
increase/decrease the probing rate adopted in the next RTT by
some factor. Existing protocols differ mainly in two aspects—
the increase/decrease factors used as well as the feedback
metric used for detecting congestion. Research in designing
high-speed congestion-control has focused on: (i) designing
more aggressive combinations of increase/decrease

4The literature also contains several explicitly-guided protocols that rely
on explicit feedback from routers (that is not available in the current
Internet) [24]–[28]—in this project, we consider only protocols that do not
rely on such support and can be deployed in the Internet. In the rest of this
document, “congestion-control” refers to only end-to-end designs.

5The round-trip time (RTT) of a transfer is the total time it takes for a data
segment to transfer from the sender to the receiver, and for the corresponding
acknowledgment to make its way back.

factors [6]–[12], as well as (ii) relying on feedback
metrics that provide “early” indications of congestion
(such as increase in packet delays, in addition to packet
losses) [6], [10], [11]. To date, however, all attempts at
high-speed end-to-end congestion-control6 have retained the
RTT-scale design framework, which has been adopted (as a
never-before re-examined legacy) from the early TCP designs
of more than two decades ago. We argue below that this
design framework limits the scalability of protocols due to an
inherent speed-overhead tradeoff/dilemma.

The Speed-Overhead Dilemma: All end-to-end protocols
need to “create” at least some degree of network congestion
before they realize that their probing rate has exceeded the
end-to-end avail-bw. Because of this property, an RTT-scale
high-speed protocol can not afford to use very aggressive
increase factors during Congestion Avoidance, for fear of
severely overloading the network. To understand why, consider
a hypothetical RTT-scale protocol that aggressively doubles
its probing rate every RTT (which is fairly aggressive by
current standards). Compared to existing “high-speed” proto-
cols, the protocol would indeed be able to probe for a much
wider range of rates within a few RTTs. But the problem
occurs once the protocol has reached a probing rate close
to, but slightly lower than, the current path avail-bw—the
protocol is unaware of this and doubles its probing rate yet
again in the following RTT, thereby significantly overshooting
the avail-bw (by nearly 100%). With the RTT-scale frame-
work, this situation can cause significant overload in the
network—this is because the new higher rate is adopted for
a complete RTT-worth of duration. Consequently, the data
dumped in excess of what can be handled by the network
(= (probing-rate − avail-bw) ∗ RTT ) can be prohibitively
large—in high-speed networks, this can amount to tens-of-
thousands or even more of extra packets. To avoid such
congestion-collapse-like conditions from occurring, all high-
speed congestion-control designs rely on probing behavior that
is not sufficiently aggressive for scaling to upcoming ultra-high
speed networks.

In Fig 1 we plot the average link utilization achieved by a
single large transfer in 1-40 Gbps networks, in the presence
of a fiber error rate of 10−6.7 We find that while existing
protocols perform well in 1 Gbps networks, most can barely
utilize 10-40% of the available bandwidth at 10 Gbps and
higher speeds—Fig 2 shows that the few that can achieve
higher utilization, do so only at the cost of unreasonably large
queue occupancies (note the log-scale of the y-axis). These
simulation numbers match those reported even in wide-area
evaluations of prototypes of these protocols [16]–[18].

6Existing protocols that rely on RTT-scale framework include: (i) loss-based
protocols ranging from NewReno variants [29] to HighSpeed [7], Scalable [8],
CUBIC [9], [12]; (ii) delay-based protocols such as Vegas [30], FAST [6],
Illinois [10], Compound-TCP [11]; and (iii) rate-based protocols such as
in [31]–[33] (which smooth out protocol behavior and operate at even slower
timescales). Even Westwood [34], PCP [35], UDT [14], RBUDP, and NF-
TCP [36], which employ some form of short-scale probing every so often,
have not exploited the full potential of the concept—to be discussed more in
Section VII.

7The corresponding experiments were run on the ns-2 simulator, using a
path with 100ms RTT, and with a packet size of 1040 B.
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Fig. 1. Single-stream Utilization in 1G-40G networks (10−6 link error rate).

Fig. 2. Average Queue Occupancy: single stream in 1G-40G networks.

Other than limiting scalability, the RTT-scale framework
also leads to the following two significant limitations.

Poor RTT-Fairness: The RTT-scale framework also leads to
the undesirable property of RTT-unfairness. Since all trans-
fers sharing a bottleneck link operate at the scale of their
respective RTTs, flows with shorter RTTs have a higher rate-
updating frequency—consequently, these are able to obtain an
unfairly large share of the bottleneck bandwidth. While some
recent protocols reduce the degree of unfairness by adopting
RTT-aware increase-factors during Congestion Avoidance, to
the best of our knowledge, there is no existing window-
based protocol that is simultaneously efficient as well as truly
RTT-fair [6], [11], [14], [37]. Figures 3(a)-(e) plot the through-
put achieved by 3 transfers with RTTs ranging from 100ms to
200ms, when they use existing protocols—the transfers arrive
and depart the network at different times. We find that none
of these prominent protocols results in an equal allocation of
throughput for co-existing transfers.

Poor Deployability Aspects: Due to the speed-overhead
tradeoff, all recent high-speed designs are torn between the
desire to aggressively utilize large spare bandwidth, while
not degrading the performance of conventional low-speed
TCP traffic mixes that share the same network queues [38].
To illustrate the problem, we generate an Internet-derived
representative mix of TCP transfers8 and aggregate these on
a 1 Gbps shared bottleneck link. Fig 4(1a) plots the spare
bottleneck bandwidth left in the network by this aggregate—
Tmix validations have shown that this profile is fairly repre-
sentative of production Internet links [39]. We then transfer
a single large file through the bottleneck link using several
prominent protocols. Figs 4(2a)-(6b) plot (a) the throughput

8We use the Tmix [39] traffic generator for this experiment. Tmix has been
shown to reproduce traffic characteristics at fine timescales, as are observed
on production Internet links. More details are included in Section V-E.

achieved by the single large transfer, and (b) the bottleneck
queue occupancy. We find that these protocols can be fairly
intrusive in occupying the shared bottleneck queues, and their
throughput can significantly over-shoot the spare bandwidth
in the network—the amount of bottleneck bandwidth available
to low-speed TCP transfers may be reduced by up to 50%)!
Fig 5 plots the distribution of the response times observed by
the low-speed TCP transfers present within the traffic mix.
We find that, for the majority of the “mice” transfers, the
average response time increases by 50-100 ms. Recent studies
suggest that such increases can significantly impact user
retention and revenues for modern web-services [40]!

Once again, the RTT-scale framework limits the ability of a
protocol to address this issue. This is because both high-speed
protocols and low-speed TCP operate at the RTT-scale—the
only difference between the protocols lies in the aggressive-
ness with which they increase their probing rates in successive
RTTs. Since a high-speed protocol is more aggressive, it will
quickly occupy spare bandwidth (and more) before a low-
speed TCP transfer gets a chance to do so. While protocols
like FAST that additionally rely on delays as an indicator of
congestion, can be configured not to be aggressive to TCP,
they may not be able to efficiently utilize dynamically-varying
avail-bw, as is the case on production Internet links.

We next present the novel packet-scale paradigm that allows
us to rethink congestion-control designs that operate at con-
siderably smaller (and closer-to-optimal) timescales, and helps
in overcoming each of the above limitations.

III. THE PACKET-SCALE PARADIGM: KEY CONCEPTS

The packet-scale congestion control paradigm discards the
RTT-scale frequency and duration9 of probing for a candidate
transfer rate, which is characteristic of most existing protocols.
Instead, it introduces two novel and transformative concepts:

Fine-Scale Probing: It uses probing timescales that are
smaller by several orders of magnitude than existing protocols
(especially for transfers on long Internet paths). Specifically,
rather then sending packets at a given probing rate for an
RTT-worth of duration, this paradigm probes for a target
rate only for much smaller durations. It does so by send-
ing only a much smaller number of packets with carefully
controlled inter-packet gaps set according to the desired
probing rate. This feature has immediate consequences for
the speed-overhead tradeoff. First, the frequency with which
different rates are probed for, increases from once-per-RTT to
numerous-per-RTT (potentially tens or hundreds of rates)—
thus, the speed with which a wide range of candidate rates
can be probed for can be orders of magnitude higher in this
paradigm. Second, shrinking of the probing timescale also
shrinks the total amount of extra packets introduced in the
network when the probing rate exceeds the network avail-
bw—thus, a protocol can adopt fairly aggressive increase fac-
tors for selecting successive probing rates during Congestion
Avoidance, without causing significant congestion.

9It is important to clarify that the path RTT for a transfer represents the
minimum feedback delay—the sender can not get feedback on a probing rate it
has adopted before this time has elapsed. The packet-scale paradigm, instead
removes the dependence of the frequency and duration of probing on the RTT.
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Fig. 3. Intra-protocol Fairness (flow 1 (100 ms RTT): 0-100 s, flow 2 (200 ms RTT): 10-98 s, flow 3 (150 ms RTT): 20-34 s). (a) HighSpeed. (b) Scalable.
(c) CUBIC. (d) FAST. (e) Compound. (f) RAPID.

This framework evaluates the suitability of each probing rate
used by checking if the corresponding packets increased the
queue-buildup at the bottleneck link—this would be evident
when the inter-packet gaps consistently show an increasing
trend from their pre-set values by the time the packets
reach the receiver. This concept is based on the principle of
self-congestion, which has been used widely in the design of
bandwidth-estimation tools [41], [42].

Probing-Without-Overloading: Fine-scale probing reduces
significantly the overload caused when the probing rate
exceeds the network avail-bw. However, it does not eliminate
it—this overload can still add up to be a big concern in
highly-multiplexed ultra-high speed networks. This issue is
explicitly addressed by the probing-without-overloading fea-
ture, in which the paradigm attempts to probe for higher
transfer rates without overloading the network at reasonably
small sub-RTT timescales. This is done by sending successive
packets in short-length groups (p-streams), such that: (i) the
average rate of packets in a p-stream is no more than the
most recently discovered estimate of the end-to-end avail-bw
(no overloading at p-stream timescale), but (ii) some packets
within a p-stream are sent at rates that can be much larger that
this estimate (high-rate probing at sub-p-stream timescales).
Thus, while high rates used at sub-p-stream timescales
can cause small transient queues, the queues drain out at
p-stream (and larger) timescales. This is a unique feature
of the paradigm—no existing end-to-end protocol probes for
higher rates without causing some degree of congestion at
RTT-and-higher timescales.

Furthermore, in order to maintain the average rate at p-
stream timescales, the paradigm sends packets within the p-
stream at rates both larger as well as smaller than the most

recent estimate of the avail-bw—each p-stream, consequently,
simultaneously probes for the possibility that the avail-bw
might have increased or even decreased from the most-recent
estimate. This additional unique feature of the paradigm gives
it excellent agility in adapting to small-scale changes (whether
increase or decrease) in end-to-end avail-bw.

It is important to note that probing-without-overloading
can perhaps be attempted even in RTT-scale protocols—
for instance, by adopting low and high probing rates in
alternating RTT intervals. However, probing at high rates for
even an RTT-worth of duration would still cause prohibitive
congestion in ultra-high speed networks (especially if the high-
probing phases of multiple transfers overlap). The fine probing
timescales of the packet-scale paradigm help avoid this issue.

Buy Two, Get Four!: As detailed in Sections IV and V,
by shedding the RTT-scale framework, the paradigm is
also free from RTT-unfairness. Additionally, the combination
of fine-scale probing and probing-without-overloading allow
ultra-high-speed transfers using the paradigm to share the
network with conventional TCP traffic without impacting the
performance of the latter. Both of these issues have remained
elusive to existing protocols.

IV. REALIZING THE PARADIGM: MECHANISM DESIGN

The packet-scale paradigm introduces the concept of p-
streams, in which: (i) packets are transmitted by the sender
with controlled probing rates; (ii) the changes in the inter-
packet gaps are used to estimate the end-to-end avail-bw; and
(iii) the bandwidth estimates are used to shape future p-streams
in a probing-without-overloading manner. Below, we present
mechanisms for realizing each of the above.



310 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

Fig. 4. Performance with Tmix Cross Traffic.

A. Multi-Rate Based Packet Transmission at the Sender

Most existing congestion-control protocols rely on sliding-
window based packet transmissions, in which the sender sends
as many data packets as allowed by the congestion-window,

Fig. 5. Impact of high-speed transfer on TMIX Response Times.

Fig. 6. Illustration of a p-stream (gi = Pi
ri

).

and then waits for acknowledgements to arrive. This results
in “ack-clocked” packet transmissions, in which each arriving
ack triggers the transmission of new data packets.

In contrast, a packet-scale sender continuously10 transmits
data in logical groups, referred to as multi-rate probe-streams
(p-streams), in which packets are sent according to a pre-
determined rate. Specifically, the ith packet in a p-stream is
sent at a rate of ri—this is achieved by ensuring that the times
at which packets i and i−1 are sent differ by Pi

ri
, where Pi is

the size of packet i (see Fig 6).11 For all i > 1, ri ≥ ri−1.12

The sender explicitly controls the average sending rate of a
p-stream, which is given by:

ravg =
P1 + P2 + · + PN

P1
r1

+ P2
r2

+ · + PN

rN

(1)

where N is the number of packets in a p-stream. When all
packets have the same size, we get: ravg = N�

N
i=1 1/ri

.

B. Estimation of End-to-End AB

End-to-end congestion control protocols estimate the avail-
bw by searching for the largest sending rate that does not cause
congestion. Existing protocols detect congestion by looking
for signs of high bottleneck buffer occupancy—indicated by
either an inflated RTT [6], [10], [11], and/or by encountering
packet losses [6]–[12].

10As described in [43], if multiple probe-rate tools share network paths
with the same bottleneck router they will collectively overestimate the avail-
bw on the bottleneck if the probe streams are not sent out continuously, but
instead intermittently. Therefore, all probing should be done in a continuous
manner—even if it means sending shorter p-streams when sufficient packets
are not available to be sent.

11The rate for the 1st packet is achieved by setting the gap between it and

the last packet of the previous p-stream to P1
r1

12It is also possible to base bandwidth-estimation on a p-stream model in
which packet rates are non-increasing within a p-stream [44].
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The packet-scale paradigm instead only estimates if the
probing rate is larger than the avail-bw left over by
simultaneously-arriving cross-traffic at the bottleneck buffer—
it does not attempt to measure the bottleneck buffer occupancy
(which could have been built-up due to traffic that arrived
previously). Specifically, if the first byte of the ith packet of
a p-stream arrives at the bottleneck buffer at time ti, then the
paradigm attempts to measure: AB(t0, tN ) = C − B(t0, tN ),
where t0 is the time at which the last packet of the previous
p-stream arrived, B(t0, tN ) is the total amount of cross-traffic
that arrives during [t0, tN ), and C is the transmission capacity
of the bottleneck link.

To measure AB(t0, tN ), the paradigm relies on the principle
of self-induced congestion that has been used extensively in
the bandwidth-estimation literature [41], [42]. Intuitively, if qi

is the queuing delay experienced at a bottleneck link by the
ith packet of a p-stream, and if AB represents the (constant)
avail-bw encountered by the p-stream, then:

qi ≤ qi−1, if ri ≤ AB (2)

qi > qi−1, otherwise (3)

Thus, if i∗ is the first packet in a p-stream such that
ri∗−1 ≥ AB, then each of the packets [i∗, . . . , N ] will queue
up behind its previous packet at the bottleneck link (since
ri > ri−1, for all i > 1)—due to this “self-congestion”,
each of these packets will experience a larger one-way delay
(and a larger increase in the pre-set inter-packet gap) than
its predecessor. Thus, the smallest rate ri∗−1 at which the
receiver observes an increasing trend in the inter-packet gaps
can be used to compute an estimate of the current avail-bw as:
ABest = ri∗−1.13 The actual analysis uses several heuristics
to account for bursty cross-traffic—we refer the reader to [45]
for details and the precise formulation. In addition, transient
queuing can occur on multiple occasions as packets traverse
shared resources, and can introduce (sometimes significant)
noise in inter-packet gaps—in Section VI, we describe our
parallel work on handling such noise.

C. Probing-Without-Overloading

When the sender computes a new ABest value, it updates
the ravg of the next p-stream as: ravg = F(ABest), where
F(.) is a smoothing function. Thus, the transfer acquires
an average sending rate that closely follows the smoothened
avail-bw within an RTT. The sender then selects an appropriate
set of rates, r1, . . . , rN , for the next p-stream such that the
average of these is equal to ravg , as computed in Eqn (1).

The above mechanism helps simultaneously achieve two
desirable properties. First, by setting ravg equal to the
(smoothened) estimated avail-bw, the sender helps to ensure
that the average load on the bottleneck link does not exceed
its capacity—this is crucial for maintaining small and transient
queues at the bottleneck links. Second, by selecting a set of
rates which includes values larger (e.g., rN ) as well as smaller
(e.g., r1) than ravg , a p-stream is able to simultaneously probe

13If no increasing trend is detected in a p-stream, rN is taken as the AB
estimate. Also, if the increasing trends starts at the first packet (i∗ ≤ 1), r1

2
is returned as the AB estimate.

for both increase and decrease in the current end-to-end avail-
bw—this greatly helps the sender in quickly detecting and
adapting to changes in the avail-bw.

The use of probing-without-overloading is expected to
significantly reduce the number of congestion-related losses
that a sender experiences. However, losses may still occur.
Like in NewReno, packet losses are detected and recovered
from using either the retransmission timeout or the fast
retransmit/recovery mechanisms. Bandwidth probing is turned
off during loss recovery. After a retransmission timeout, the
sender reduces its sending rate to the initial sending rate, rinit,
and begins the bandwidth search process afresh. After loss
recovery with fast retransmit/recovery, the sender reduces ravg

by a multiple β and resumes the sending of p-streams.

D. Smoothing for Fairness and Robustness

We next consider two desirable properties of a congestion-
control protocol—the first of these is robustness to dynamic
network conditions. The packet-scale paradigm has excellent
adaptability to dynamically-varying avail-bw; but its short
p-streams could also be sensitive to transient, short-scale traffic
burstiness, especially at the timescales typically encountered
on high-bandwidth, highly-multiplexed links. The packet-scale
paradigm filters out the effect of such fine-scale transient
queuing at network links by using the smoothing function,
F(.)—such a function dampens out sudden changes in ABest
values that are caused by bursty cross-traffic.

The second property we consider is that of intra-protocol
fairness, which characterizes the ability of a protocol to
result in a fair allocation of bottleneck bandwidth among
co-existing transfers. For the packet-scale paradigm, this boils
down to the question: how do the p-streams of different
transfers interact—how can transfers obtain a fair share of the
avail-bw? In this section, we address two sources of unfairness
that have been identified in the literature [46], [47].

1) RTT-Fairness: Most window-based congestion con-
trol protocols have been shown, both experimentally and
analytically, to suffer from RTT-unfairness—transfers with
a long RTT get a lower throughput than short-RTT
transfers [6], [46], [47]. This happens because window-based
protocols update their sending rates once per RTT—in hetero-
geneous RTT environments, this RTT-dependence results in
differences in the rate updating frequency as well as rate incre-
ments, and results in a bias against long RTT transfers [47].

Fortunately, the p-stream-based design of RAPID is
not influenced by the value of RTT14—a RAPID sender
continuously send p-streams, for both long and short RTT
transfers. The rate-updating frequency (once per p-stream)
as well as rate updating amount (determined by ABest)
are independent of the RTT—consequently, and by design,
the packet-scale paradigm truly does not suffer from
RTT-unfairness. Our experiments with a prototype in
Section V confirm this.

14As noted before—for any congestion control protocol, the RTT represents
a minimum feedback delay; a sender can not get end-to-end feedback on a
probing rate that it has adopted before this amount of time has elapsed. What
the packet-scale paradigm instead does is that it removes RTT-dependency
from the frequency and duration of probing.
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2) Flow-Rate Fairness: The packet-scale sender computes
avail-bw estimates and updates its sending rate once per
p-stream. Depending on the length of theirs p-streams, two
competing flows may not get to do this with the same
frequency. Even if the two flows send equally-long p-streams,
their avail-bw estimates will depend on several factors,
including their average sending rates ravg , as well as the
offsets between when their p-streams arrive at the bottleneck
queue [43]. In general, this implies that when a low-rate
transfer is competing with a transfer that has already attained a
high sending rate, it will need additional mechanisms to ensure
that it achieves a fair share of throughput.

The packet-scale paradigm achieves this, again, by means of
the smoothing function, F(.), which dampens out changes in
the ABest values—in the packet-scale paradigm, the function
is additionally designed to give a relative advantage to transfers
with lower average sending rates (smaller ravg), against those
with higher rates. Specifically, the smoothing function ensures
that when the ABest values estimated by a flow increase
(or decrease), the change is dampened/smoothened by a factor
that is inversely (or directly) related to ravg—consequently,
flows with a lower ravg acquire spare bandwidth more aggres-
sively, and give up bandwidth less aggressively. Section V
describes the choice of F(.) for one prototype of the paradigm.

E. Co-Existence With Conventional Internet Traffic

By design, the packet-scale paradigm is expected to be
quite non-intrusive to regular low-speed TCP NewReno trans-
fers. The prime reasons for this are that: (i) it relies on
increased queuing delays for detecting congestion, whereas
TCP reduces its sending rate only on witnessing packet losses
(that occur only once the buffers fill up and overflow); and
(ii) the paradigm receives congestion-signals at a much higher
frequency (once per p-stream) than TCP. When a router
carrying both TCP and packet-scale transfers gets congested,
the latter would respond to the congestion (and reduce their
sending rates) much earlier than the TCP transfers would.
This would ensure that the performance of the low-speed TCP
transfers is not significantly impacted due to the presence
of high-speed packet-scale transfers.15 The downside is that
in the presence of long-lived TCP transfers, packet-scale
transfers would obtain lower throughput than the former.
However, this problem plagues any network that simulta-
neously runs fundamentally different congestion-control pro-
tocols [6]—a simple solution is to provision routers with
separate queues for traffic from different protocols.

F. Prototype Design Considerations

Within the packet-scale framework, there are several dimen-
sions along which a prototype could make design choices.

15It is important to note that some delay-based high-speed protocols that rely
on the RTT-scale framework also react to increased queuing delays [6], [11].
However, both the high-speed protocols and low-speed TCP operate at the
RTT-scale—the only difference between the protocols lies in the aggressive-
ness with which they probe for and acquire additional bandwidth. Since a
high-speed protocol is typically more aggressive, it will quickly occupy spare
bandwidth (and more) before a low-speed transfer gets a chance to do so.
We have conducted experiments with FAST under different combinations of
parameter settings and find that its performance is either as mild as in Fig 4,
or is as aggressive as the other protocols.

We discuss these below.
1) Setting [r1, . . . , rN−1]: For given values of ravg and N ,

there are infinite choices for the set of rates [r1, . . . , rN−1] that
satisfy Equation 1. However, the larger is the range [r1, rN ],
the faster would be the AB-search process—this is because a
single p-stream would now probe for a wider range of sending
rates. For a given N , on the other hand, the larger is this range,
the coarser would be the granularity of probing rates used (and
the avail-bw estimates obtained). Thus, while probing rates
that grow multiplicatively within a p-stream (ri = m.ri−1)
would yield a better range than rates that grow additively, the
latter would yield fine-grained/high-precision estimates.

The length of a p-stream is also faced by opposing consid-
erations. A larger value of N would improve the AB-search
range ([r1, rN ]); however, a larger p-stream would also be
more intrusive to cross-traffic (by sending more packets at
rates larger than ravg).

2) Speeding Up a Slow Start: The packet-scale paradigm
faces a dilemma similar to all congestion-control protocols—
how to obtain the initial ABest (or the initial ravg) for a
new transfer? The main concerns here are that the initial ravg

should neither be too high (larger than the avail-bw) for a given
network path, nor should it be too low for quickly estimating
and ramping up to the avail-bw. A packet-scale sender can
address this challenge in a manner similar to all existing
protocols—by defining two phases of protocol operation,
slow-start and congestion-avoidance. The goal of the slow-
start phase would be to quickly obtain a coarse estimate of
the avail-bw; fine-grained refinements can then be made in the
congestion-avoidance phase. Such a distinction between the
two phases can be implemented by selecting a much wider
(and coarse-grained) range of probing rates [r1, . . . , rN−1]
in the slow-start phase, and switching to a narrower and
fine-grained search range in congestion-avoidance.

3) Fixed-N vs. Fixed-L: There are at least two ways in
which a packet-scale sender can configure the length of its
p-streams—each p-stream can either consist of a constant
number of bytes (fixed-N ) or can be of a fixed length in
time (fixed L), where L =

∑N
i=1

Pi

ri
. Again, the choice is

guided by opposing considerations. On the one hand, fixing N
can create p-streams that probe at extremely small timescales
in high-bandwidth environments (and are, thus, prone to
getting impacted by noise). On the other hand, fixing L can
result in p-streams that carry large volumes of data in high-
bandwidth environments (by sending more packets at rates
larger than ravg , these are more intrusive to cross-traffic).16

4) The Smoothing Function, F(.): F(.) is used to achieve
both robustness to burstiness as well as intra-protocol fair-
ness. The “degree of smoothing” employed by such a func-
tion is guided by opposing considerations as well. While
more aggressive smoothing helps achieve greater robustness
and provides a greater opportunity for achieving fairness,
it also reduces the responsiveness of the paradigm in adapt-
ing quickly to bandwidth changes in dynamic network
environments.

16When L is as large as the RTT of a transfer, the sender get closer to
facing the speed-overhead dilemma in the same way as RTT-scale protocols.
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TABLE I

DEFAULT RAPID PARAMETERS

V. PROTOTYPE & EXPERIMENTAL EVALUATION

In this section, we present the design and experimental
evaluation of RAPID, a proof-of-concept prototype based on
the packet-scale paradigm [19].17

A. RAPID: A Prototype

1) Probing Rates: A RAPID sender uses fixed-N p-streams,
in which the probing rates follow a multiplicative relation
as in:

ri = mi−1 ∗ r1, 1 ≤ i ≤ N (4)

where m is a constant referred to as the spreadfactor [42].
The parameters m and N control the range and granularity
of the probing rates, as well as the p-stream length—as
discussed in Section IV-F.1, several considerations guide the
configuration of these. Table I summarizes the default settings
for all parameters used in RAPID.

2) F(.): The RAPID sender feeds the ABest values
through a set of exponentially-weighted moving-
average (EWMA) filters as follows. Just before sending
out a new p-stream, if the most-recently computed value of
ABest is larger than the current ravg , it updates ravg as:

ravg = ravg +
L

τ
(ABest − ravg) (5)

where L is the duration of the new p-stream to be sent and τ is
a time-based constant—τ represents (roughly) the time units it
would take for ravg to converge to an updated (higher) value
of ABest. If, instead, the most-recently estimated value of
ABest is smaller than the current ravg , it updates ravg as:

ravg = ravg +
1
η
(ABest − ravg) (6)

where η is a constant—it represents (roughly) the number of
p-streams it would take for ravg to converge to an updated
(lower) value of ABest.

It is important to note that, as intended, both of these
filters create a relative advantage for low-rate transfers (which

17The RAPID protocol has undergone some changes from the version
in [19]—the most noteworthy of these are the introduction of η and the
influence of terminating excursions in the AB-estimation analysis. Details
can be found in [45].

have longer-duration p-streams than high-rate transfers)—
when avail-bw increases, the factor L

τ is larger for low-rate
transfers; when avail-bw decreases, it takes longer for a
low-rate transfer to send η p-streams (and reduce its send-
ing rate). As discussed in Section IV-D, such a bias is needed
for achieving intra-protocol fairness. The use of the EWMA
filters also helps smooth out fine-scale transient burstiness.

3) Slow-Start: The RAPID sender adopts smaller p-streams
and a more aggressive spreadfactor in slow-start. The
slow-start phase ends with the first p-stream that yields an
ABest value that is less than the maximum probing rate (rN )
used by that p-stream.

The packet-scale design raises at least three types of
concerns: does fine-scale probing really help in accurately
estimating avail-bw, especially in high-speed and dynamic-
bandwidth environments? How do the p-streams of co-existing
transfers interact—do the flows get a fair share of the
avail-bw? The paradigm seems to explicitly create short-
scale burstiness at sub-p-stream timescales—is it friendly to
router queues and competing low-speed TCP traffic mixes?
In what follows, we experimentally study these issues using
the RAPID prototype. It is important to note that this prototype
is not meant to represent an optimal choice within the packet-
scale design space, but is merely a proof-of-concept used to
experimentally illustrate the benefits of the paradigm—indeed,
we do expect that further research will yield better choices.

B. Experimental Setup

We use the ns-2 simulator for our evaluations.
We have implemented RAPID in ns-2, reusing the NewReno
code base for handling packet loss detection and recovery.
Except where noted otherwise, we use version 2.34 of ns.
We also evaluate CUBIC, HSTCP, STCP, Compound, and
FAST using publicly-available ns-2 implementations [48].
The first three protocols are loss-based with fairly different
window growth functions, while the last two are additionally
responsive to increases in end-to-end delays. We use the
default ns-2 parameters for most protocols.18

In our experiments we use a simple dumbbell topology in
which multiple sources are aggregated at a single bottleneck
link (R1−R2 in Figure 7). The bottleneck link capacity is set
by default to 1 Gbps, but is enlarged in some experiments as
noted in their descriptions. All links other than the bottleneck
have a transmission capacity of twice the bottleneck speed. All
buffers are provisioned with a bandwidth-delay product (BDP)
of buffers, where the delay is the average round trip time for
transfers (specified for each experiment) and the bandwidth is
that of the bottleneck link.19 Unless mentioned otherwise, the
link-layer frame size is set to 1000 B in all experiments.

The main performance metrics we study are: (i) the through-
put obtained by transfers between sender and receiver nodes,
(ii) the bottleneck link utilization, and (iii) the queue build-up
at the bottleneck link. We sample each of these quantities at

18For FAST, we use α = 200 and β = 200—the default parameters resulted
in fairly poor performance overall.

19Experiments with smaller buffer sizes are included in [45].
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Fig. 7. Experimental Topology.

regular intervals of 50ms each. In what follows, we summarize
our experiments and observations.

C. Steady-State Throughput in High-Speed Networks

We first evaluate the ability of the packet-scale para-
digm to scale up to higher networks speeds. While only
up to 10 Gbps of transmission speed is offered by widely-
available commercial NICs today, ns-2 allows us to experiment
with higher speeds as well. In order to study the scalability
of transport protocols, we conduct several experiments across
which we: (i) simulate different topologies, across which we
vary the transmission capacity of the link R1 − R2 from
1 Gbps to 40 Gbps,20 (ii) instantiate a single large transfer
between a sender and a receiver, and (iii) simulate different
transport protocols that control the sending of data.

Figs 1 and 2 plot, respectively, the average throughput
achieved and the time-averaged queue occupancy for each
of the high-speed protocols considered. As noted before in
Section II, most existing protocols achieve only 10-40%
utilization in 10 Gbps and higher speed networks. The only
exception is FAST—Fig 2 illustrates, however, that even
this RTT-scale protocol maintains significantly large network
queues. RAPID, on the other hand, is able to scale well
to ultra-high speeds, without creating a noticeable queue
footprint. Thus, the small probing timescale, coupled with the
concept of probing-without-overloading, helps the packet-scale
paradigm in significantly alleviating the speed-vs-overhead
tradeoff.

D. Intra-Protocol Fairness

We next evaluate the ability of the packet-scale paradigm
to fairly allocate the bottleneck available bandwidth among
multiple competing transfers. We are specifically interested
in dynamic environments with heterogeneous RTTs—as noted
in Section II, RTT-scale protocols are infamous for allocating
lower throughput to transfers with larger end-to-end RTTs.
The experiments we present in this section are inspired by an
experiment conducted in [6] (in which FAST was shown to
achieve better fairness than HSTCP and BIC).

We simulate a topology in which the transmission capacity
of the link R1 − R2 is set to 800 Mbps. We introduce three
high-speed TCP transfers, each with a different RTT, according
to the following schedule: flow 1 (with 100 ms RTT) lasts from
0 - 100 s, flow 2 (with 200 ms RTT) lasts from 10 - 98 s, and
flow 3 (with 150 ms RTT) lasts from 20 - 34 s.

2040 Gbps ns-2 simulations need massive amounts of memory and may take
several days to complete even on high-end multi-core servers.

We run the experiment multiple times, each time using a
different underlying congestion-control protocol. Fig 3 plots
the throughput attained by the three transfers, with different
underlying protocols. The black, grey, and light grey lines
represent the throughput of the first, second, and third flow,
respectively. We find that:

• All existing protocols that maintain large persistent
bottleneck queues and use only packet losses as a prime
congestion indicator, allocate bandwidth unfairly among
the competing flows. The first flow, which has the
smallest RTT, dominates over the other two later-arriving
transfers (sometimes shutting them out completely, as is
the case with Scalable)—as noted earlier, this is because
transfers with shorter RTTs learn about (and react to)
spare bandwidth earlier, gaining an unfair advantage over
transfers with larger RTTs.

• After 34 s, there are only two remaining transfers that
last till nearly the end of the experiment. We find that
there is a great disparity in the throughput achieved
with loss-based protocols. Fig 3 suggests that CUBIC
and HIGHSPEED seem to be slowly reducing the gap
between the two remaining transfers after 34 s—we,
however, estimate using extrapolation that it would take
more than 1500 seconds to close the gap.

• FAST, which is a delay-based congestion-control proto-
col, also exhibits unfairness for a long period. It takes
more than 60 seconds to close the 300 Mbps throughput
gap between the two flows.

• RAPID allocates bandwidth fairly among co-existing
transfers, irrespective of their RTTs. Even when the first
transfer has already acquired high throughput, the freshly-
arriving second transfer is able to gain a fair share. This
indicates that that choice of the filter F(.) in Rapid
works well in allowing low-rate transfers to acquire a
fair bandwidth share even in the presence of pre-existing
high-rate transfers.

It is worth mentioning that while Rapid does achieve fair
allocation of throughput, it also seems to lower the overall
bottleneck utilization when multiple transfers co-exist. For
instance, in Fig 3, the aggregate utilization falls down to
87% during the interval (30-35 s) in which all three transfers
share bandwidth fairly. In Section V-G, we discuss the issue
of parameter configuration, which helps balance this tradeoff
between fairness and utilization in RAPID.

E. Efficiency in Dynamic Bandwidth Environments

Next, we simultaneously evaluate two important properties
related to dynamic cross-traffic encountered by a high-speed
protocol—first, how efficiently can RAPID work in the pres-
ence of representative, dynamic, and bursty cross-traffic? This
boils down to asking: (i) is RAPID able to estimate bandwidth
reliably even with bursty cross-traffic that introduces noise at
fine timescales, and (ii) is RAPID able to adapt in an agile
manner when the aggregate volume of competing cross-traffic
changes dynamically? The second property we study is—to
what extent does the presence of the high-throughput RAPID
transfer adversely impact the performance of conventional
TCP traffic that it co-exists with.
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In order to study these two aspects, we use the publicly-
available Tmix traffic generator for ns-2.35, which generates
an empirically-derived mix of TCP flows that is representative
of the mice-and-elephant TCP traffic aggregates observed on
production Internet links [39], [49]—these aggregates include
a majority of short transfers and some long transfers. Tmix
uses real-world header traces of TCP traffic and derives from
them the application-level socket-writing behavior for each
TCP flow—it then reproduces in ns-2, the inter-connection
arrival times, as well as the socket-level data generation
pattern. TCP NewReno (ns-2 implementation) is used to
transport the Tmix TCP data.

We simulate a topology in which the transmission capacity
of R1 − R2 is set to 1 Gbps, and the Tmix sources and
sinks clouds are attached to R1 and R2. We use a trace
collected on a campus access link to generate a corresponding
Tmix TCP traffic for a duration of 40 simulated minutes.
Th traffic mix is typical of that observed widely on the Internet
(majority of mice connections, but a few heavy elephants).
All statistics presented here are collected from (roughly) the
middle 15 minutes of the experiments (to exclude the ramp-up
and ramp-down behavior of the traffic generator). All queues
are allocated a BDP-worth of buffers (based on the RTT of
the single high-speed transfer).

In the first experiment, we simulate (only) the Tmix traffic
mix and observe the aggregate Tmix throughput (in consec-
utive 50 ms intervals) and queue size (sampled periodically
every 50 ms) at the bottleneck router. In Fig 4(1a), we plot the
spare bandwidth at the bottleneck (computed as the difference
between 1 Gbps and the corresponding Tmix throughput);
Fig 4(1b) plots the sampled buffer occupancy. It can be seen
that even though the bottleneck queues are small, the traffic is
fairly bursty and varies significantly around the average.21

We next conduct several experiments, in each of which,
we use a different high-speed congestion-control protocol to
additionally transfer, with a 60 ms RTT, a single large file
through the bottleneck link. Figs 4(2a-6a) plot the throughput
achieved by the single large transfer, and Figs 4(2b-6b) plot
the bottleneck queue occupancy observed in each experiment.
Figs 8(a-b) plot the same quantities when RAPID is used for
the large transfer. We find that:

• When loss-based congestion-control protocols (including
Compound, that has a predominantly loss-based reac-
tion to congestion) carry the large high-speed transfer,
they maintain high router buffer occupancy, and cause
significant packet losses. Consequently, they are able to
achieve a high throughput, albeit at the cause of causing
significant queuing delays and congestion.
It is important to note that the coexisting low-speed TCP
NewReno transfers in the Tmix aggregate also suffer
packet losses in the presence of an aggressive high-speed
transfer. These low-speed transfers, consequently, reduce
their sending rates. Fig 5 plots that cumulative distrib-
ution of the response times observed by the individual

21Fig 4(1a) is plotted at an observation timescale of 50 ms. The actual
traffic is significantly more bursty when observed at smaller timescales
(1 ms or less), which are the timescales at which cross-traffic interacts with
bandwidth-estimation within RAPID p-streams.

Fig. 8. Impact of high-speed RAPID transfer on TMIX Traffic. (a) RAPID
Throughput (with Tmix). (b) Tmix+RAPID Buffer.

TCP connections within the Tmix aggregate. We find that
in the presence of an aggressive high-speed transfer, the
median response time of the Tmix transfers increases by
100 ms (and more for higher percentiles).

• The high-speed transfer over FAST achieves a fairly low
throughput when it coexists with the Tmix cross traffic
aggregate. The early response of FAST to delay-based
congestion signals causes it to be too sensitive to the
presence of loss-based TCP transfers; FAST is unable to
adjust to, or effectively utilize, the dynamically-varying
available bandwidth on the bottleneck link.

• RAPID is able to dynamically adapt to the changing
available bandwidth left over by the low-speed TCP
flows, while maintaining fairly low buffer occupancy.
We conclude that RAPID is the only known high-
speed protocol that can be deployed on regular Internet
paths, without hurting the performance of conventional
low-speed Internet transfers.22

It is important to note again, however, that RAPID is
unable to fully utilize the bandwidth which is available
to it (as is evident by the “gap” between curves for
the available bandwidth curve and RAPID throughput).
As will be discussed in Section V-G, the utilization
achieved by RAPID can be controlled by adjusting its
parameters.

F. Co-Existence With Loss-Based TCP Transfers

Our experiments above show that RAPID can efficiently
co-exist with conventional Internet traffic—without adversely
slowing down the low-speed transfers, while utilizing the
dynamically-varying available bandwidth. Most of conven-
tional traffic mixes contain short-lived transfers—it is also
important to consider how RAPID works in the presence of
competing long-lived transfers that might use other protocols.

It is worth noting that no two high-speed congestion-control
protocols attain a fair share of bandwidth when they co-exist—
this is true even when both protocols are loss-based [51], [52].
When one of the protocols is a delay-based protocol, prior
studies have shown that due to their responsiveness to queue
buildups, delay-based protocols typically achieve significantly

22The literature also contains congestion-control designs for large
“background” transfers, that can also be used to transfer large data over regular
Internet paths without hurting short-lived Internet transfers (e.g., [50]—to the
best of our knowledge, however, none of these designs are targeted for high-
speed environments, and are generally even more sluggish than regular TCP.
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lower throughput than competing long transfers over loss-
based protocols [53]–[56].23 Note that, like most delay-based
protocols, RAPID also responds to bottleneck queue build-ups
much earlier and more frequently than loss-based protocols.
We next conduct experiments to study its co-existence with
long-lived transfers over loss-based protocols.

We ran a set of simple experiments in which a long RAPID
transfer co-existed with a long transfer run on a different
protocol—we experimented with each of the other high-
speed protocols from the literature and found that RAPID
attained only a significantly lower throughput. We conclude
that RAPID is unable to compete against aggressive loss-
based protocols that carry long-lived transfers. It is, however,
important to note again that RAPID can be fairly efficiently
co-deployed with conventional Internet traffic on shared Inter-
net paths (as shown in Section V-E), which typically do not
carry long-lived transfers over aggressive loss-based protocols.

G. Parameter Sensitivity

RAPID mechanisms are characterized by several parameters
(Table I). In [45], we include results from an extensive set
of controlled experiments that study the impact of these
parameters on the performance of RAPID. In this section,
we briefly discuss the parameters that are the most significant.

Our experiments reveal that the factor τ/(η ∗ N)
significantly influences the efficiency of RAPID in uti-
lizing dynamically-varying end-to-end available bandwidth.
A smaller value of τ allows RAPID transfers to quickly exploit
the availability of additional bandwidth; while a larger η ∗ N
makes RAPID more conservative about reacting to transient
drop in available bandwidth.

In contrast, though, our detailed experimentation reveals
that larger values of τ improve the fairness properties of
RAPID, when multiple RAPID flows co-exist simultaneously.
Thus, the parameter τ controls a tradeoff between the fairness
and utilization properties of RAPID. In environments, where
co-existence of multiple RAPID transfers is expected to be
rare, a larger value of τ may be adopted to yield higher
throughput.

Additionally, larger values of τ (and η) yield better stability
of the aggregate traffic when multiple RAPID flows co-exist—
this is to be expected, since τ and η control the low-pass filter
used to smooth out available bandwidth estimates that may be
highly variable.

Finally, the parameter m (spreadfactor) controls the range of
rates probed for within a single p-stream. A larger value of m
helps RAPID in quickly searching for avail-bw after a packet
loss, or at flow initiation. However, a larger m also makes
the p-stream structure more aggressive—the latter half of the
p-stream is sent at much higher rates than the network can
handle. On paths with limited bottleneck buffer space, such
p-streams can significantly strain the queues and cause heavy
packet losses, especially in dynamic traffic environments.

23Reference [56] demonstrates that it is possible to configure a given
set of delay-based and loss-based protocol such that the former achieves
higher throughput, but the configuration is highly sensitive to the operating
environment.

VI. OPEN ISSUES

All of the performance gains reported in Section V have
been observed with experiments conducted solely on the ns-2
simulator. There are at least three critical issues—the first two
of which do not even exist in a simulator environment—that
need further research to determine whether these gains are
realizable in practice.

A. End-System Support

The paradigm requires the sender-side networking protocol
stack to create high-precision and fine-grained inter-packet
spacing. For instance, in order to probe for an avail-bw
of 10 Gbps (and assuming a 1500 B path MTU), packets
may have to be sent with an inter-packet spacing as small
as a few microseconds—and this value reduces proportionally
as we consider higher network speeds. High-precision is
also needed in the receiver-side timestamping process that
measures gaps between packets received. Inaccuracy in either
of these processes can lead to incorrect conclusions about
the end-to-end avail-bw. In a 10G network, for instance,
an inaccuracy of the order of even 1μs could imply an
rate-estimation inaccuracy of 50%! Unfortunately:

• Creating fine-grained and high-precision inter-packet
gaps can prove to be fairly challenging in current
software-based end-systems. Most operating sys-
tems (OSes) use an interrupt-driven model for managing
and interleaving resources and computation.
In this model, the process sending out packets of a
p-stream may get interrupted at any arbitrary point of
time while “waiting” for the required time-gap between
two consecutive packets. Subsequently, the process may
not regain control of the CPU before the transmission
time of the next packet has elapsed. It is important to
note that disabling interrupts while the process is waiting
is a fairly inefficient option in servers that manage
several processes simultaneously.

• Accurately timestamping packets when they arrive at the
receiver is further complicated due to use of mechanisms
such as interrupt coalescence, in which a NIC may wait
for several packets to arrive before it interrupts the OS for
processing these [57]—such mechanisms destroy packet
gaps. Our evaluations in [58] show that such mechanisms
can introduce delays of more than hundreds of μs! This
is pretty disruptive for the fine-scale inter-packet gaps
needed to accurately estimate ultra-high speed bandwidth.

Our Approach: In ongoing research, we are evaluating
gap-creation using variable-sized dummy “gap” packets as
in [59]—these packets are instantiated as Ethernet PAUSE
frames, which are discarded by the first switch on the path that
encounters them. By sizing such a frame appropriately, we can
create the desired gap between two packets by inserting the
frame in between, and by ensuring back-to-back transmission
of all of the packets. Our evaluations suggest that this mech-
anism can help achieve inter-packet gap accuracy within 1μs,
even at 10 Gbps speeds.

For dealing with mechanisms that destroy gaps at small
scales, we have developed a mechanisms, referred to as
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Buffering-aware Spike Smoothing [58], that explicitly looks
for the boundaries of buffering events that bunch packets
up and destroy their inter-packet gaps—by averaging packet
gaps strictly within the boundaries of individual buffering
events, our mechanism is able to derive reliable bandwidth
signatures from receive gaps (within 10% estimation error),
without requiring the use of very large p-streams. We refer
the reader to [58] for details.

B. Impact of Noise

The packet-scale paradigm fundamentally relies on the
assumption that changes in inter-packet gaps of a small stream
of packets can be used to robustly detect congestion. There are
at least two phenomena that occur commonly in real systems
and that can challenge this assumption:

• Numerous occasions for non-bottleneck buffering in real
systems: Packets of a p-stream can be buffered at sev-
eral points in their transit through even non-bottleneck
resources. For instance, high-end switches often adopt
some form of “burst-switching” mechanism, in which an
incoming packet may not be switched immediately—the
input NIC may wait and buffer a few closely-arriving
packets before switching all of them to their correspond-
ing outgoing NICs. Such buffering can destroy the gaps
between packets of a p-stream, even before they reach
the bottleneck router, R.

• Transient queuing at the bottleneck link: In a packet-
switched network, traffic arrival can be fairly bursty at
several timescales [60]–[62]. Even though the avail-bw
may be large at longer timescales, the frequent arrival of
short-timescale bursts can lead to low estimates of avail-
bw by the p-streams these interact with. The packet-scale
paradigm is especially vulnerable to this happening due
to its ability to detect fine-scale changes in avail-bw.

Our Approach: In [58], we develop a noise-smoothing
mechanism that explicitly detects boundaries of buffering
events. Such events can be fairly diverse, and can include
those that introduce significantly large queuing delays (such
as interrupt coalescence as described before), as well as those
that introduce smaller transient queues (such as cross-traffic
burstiness)—consequently, we have found that detecting and
smoothing out noise that occurs at such different timescales
requires multiple passes of our mechanism, with each subse-
quent pass looking for buffering events that occur at larger
timescales. Our evaluations in [58] show that our approach
can help estimate bandwidth with less than 10% estimation
error. More recently, we have also explored the suitability of
machine learning approaches for bandwidth estimation that is
robust to the presence of noise [63].

C. Environments With Small Bandwidth-Delay Products

The packet-scale paradigm is designed to alleviate the
sluggishness of the RTT-scale framework in high speed envi-
ronments. It is important to note that the larger the bandwidth-
delay product of a network path, the larger would be the
performance benefit offered by the paradigm. In particular,
if data is transferred over a low speed path (with available

bandwidth less than 100 Mbps), or over a short RTT path
(as in data centers), there is little that the paradigm brings
in terms of performance benefits. In fact, with the default
configuration of probe-stream lengths in the RAPID prototype,
on paths with small bandwidth-delay products, the probe-
streams may well last longer than the path RTT!24 That would
make RAPID even more sluggish than RTT-scale protocols.

Our Approach: In order to run on RAPID only on paths
with high bandwidth-delay products, we propose to use two
simple mechanisms. First, on initiation, all transfers rely
on the default conventional window-based protocol config-
ured on the sender operating system—once the congestion-
window of the sender exceeds a threshold, thcwin, the
transfer switches to RAPID.25 Second, when the bandwidth-
estimation mechanism in RAPID consistenly returns band-
width estimates lower than thAB , RAPID is turned off
and the window-based default protocol takes over—when
congestion-window exceeds thcwin, RAPID is turned back on.
We are currently incorporating these mechanisms in a Linux-
based implementation of RAPID. In our implementation,
thcwin = 200Mbps∗ 100ms, and thAB = 200Mbps∗ 100ms

ravg
.

D. Stability and Fairness in Heterogeneous
and Dynamic Environments

The NS-2 experiments were conducted with only long-
lived RAPID transfers and studied up to 100 simultaneous
transfers sharing a bottleneck link. In practice, Internet links
can aggregate tens-of-thousands (or more) of simultaneous
transfers. Furthermore, these transfers can be fairly diverse in
length, path RTTs, packet-arrival patterns, as well as number
and types of links they traverse [64], [65]. It is crucial to
understand how the packet-scale paradigm will interact with
this heterogeneity and traffic dynamics. In particular, there are
three critical issues that are somewhat unique to this paradigm
(and may not impact RTT-scale protocols to the same extent):

• The packet-scale paradigm explicitly creates traffic bursti-
ness at even sub-p-stream timescales (since packets
within a p-stream are sent at fairly different rates).
Further, the small timescales at which the paradigm is
able to adapt the average rate of a transfer (once-per-
p-stream) is likely to also impact the small-scale traffic
dynamics of a mix of such transfers. For instance, Fig 3
shows that a mix of RAPID transfers creates a more
bursty footprint of steady-state throughput than RTT-scale
protocols. Before such a paradigm can be deployed
world-wide, it is important to study and address any
adverse impact this may have on Internet traffic dynamics
and router queue-buildups.

• The packet-scale paradigm is able to adapt to changes
in end-to-end avail-bw at fairly small timescales—this
need not be all good. For instance, protocols that are
very sensitive to load variations have sometimes also been
found to be unstable and exhibit oscillatory behavior [66].

24For example, with N = 90, and packet sizes of 1000 B, a probe stream
with ravg = 1Mbps, would last 720 ms.

25Note that this mechanism is identical to what is adopted in most proposals
for high-speed protocols.
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While we did not observe any oscillations in any of our
NS-2 experiments, this property can be guaranteed only
through formal analysis.

• Would a pre-existing high-throughput transfer always
yield to a newly arriving transfer (that initially samples
low avail-bw and hence starts with a low rate)? We ask
this question because while our NS-2 experiments yielded
good fairness among RAPID transfers in many experi-
ments (see Fig 3(b)), we also found some “aggressive”
combinations of the protocol parameters with which
simultaneous transfers would converge to an unequal
allocation of the bottleneck bandwidth.

Our Approach: Due to the nature of the paradigm, properties
such as stability, efficiency, and fairness can be comprehen-
sively studied only by conducting fine-scale and closed-loop
analysis of the interaction between p-streams as well shared
buffers. While the literature is rich in closed-loop analyses
of TCP-like protocols, such fine-scale analysis has not been
attempted before. Our ongoing research suggests that the
combination of simple small-scale models and experimental
evaluation can help shed valuable insights into these proper-
ties [43].

VII. DISCUSSION: TRULY, A PARADIGM SHIFT

Packet-scale congestion-control truly represents a paradigm
shift from most prior work. It sheds the RTT-scale protocol
operation; it sheds the ACK-based self-clocking that acts as
a safety latch for other protocols; and it does not rely on
estimation of buffer occupancy like most delay-based proto-
cols. Instead, it adopts fine-scale packet timing for bandwidth
probing as a first-order concept and holds the promise of being
able to operate its control loop with close to optimally-minimal
feedback delays (RTT). Needless to say, such a radically
different design also has potential risks associated with it,
which are being studied in our current research.

Related Protocols: It is important to clarify how some
components of the paradigm are related to recent protocols.
Some form of fine-scale probing has been adopted by West-
wood [34], PCP [35], UDT [14], and NF-TCP [36]—each
of these protocols, however, uses the idea to probe only
every so often in an intermittent (non-continuous) manner.
This can be fairly risky. For instance, when two transfers
share a bottleneck link and their fine-scale probes do not
overlap, each of them could conclude that a large amount
of spare bandwidth is available [43]—each of them would
end up sending huge volumes of traffic in the next RTT.
As mentioned before, in ultra-high speed networks this could
cause impairing network congestion. None of these protocols
have been evaluated in a setting where multiple transfers share
a multi-gigabit bottleneck link simultaneously—we believe
these will simply not scale.

The idea of using self-congestion to estimate the end-to-
end bandwidth has been developed in the bandwidth esti-
mation literature [41], [42]—in fact, the protocols mentioned
above also used this concept as one of their building blocks.
In addition, delay-based protocols, such as Vegas [30],
FAST [6], Illinois [10], and Compound [11] also use sim-
pler versions of this concept. However, none of these proto-

cols have successfully addressed the speed-overhead dilemma
that fundamentally limits their scalability to ultra-high speed
networks.
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