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Abstract — We develop an end-to-end model for packet inter-arrival times of flows in the Internet. Our model illustrates
that under asymptotic conditions of high network utilization, (1) packet inter-arrival times of flows become heavy-tailed after
they traverse a large number of hops, and (2) the aggregate of such flows is a long-range dependent self-similar process. We
validate our model through extensive simulations and derive the region of applicability—with respect to non-asymptotic settings
of network utilization, heterogeneity in traffic composition, and number of hops that a flow traverses—of our model. We find
that for flows that contribute significant amount ( � 10%) to the cumulative bit rate of the aggregate, the observations yielded
by the model hold at relatively low levels of network utilization (30-40%), small number of network hops (4-6), and moderate
levels of heterogeneity in packet sizes and bandwidth requirements of flows.

1 Introduction

Simplicity of implementation is central to the design of scalable, high-performance networks. Hence, high-performance
routers have traditionally used First-In-First-Out (FIFO) packet scheduling algorithm. FIFO scheduling, unfor-
tunately, does not provide isolation across flows; bursty traffic arrival from a flow can affect significantly the
performance—delay, jitter, and loss—observed by other flows.

A number of analytical models have been proposed for characterizing delay and jitter performance of flows in
FIFO networks [5, 17, 16, 20, 23, 22, 25]. However, primarily due to the complexity of the analysis involved, most
of these studies do not provide closed-form characterization of end-to-end delay and jitter properties (see Section 9
for a detailed discussion on related work).

The aim of this paper is to provide a closed-form end-to-end analysis for flows in FIFO networks. For the
remainder of this paper, we refer to a flow as a traffic stream, all packets of which traverse the same network path
from the source to the destination. A wide variety of traffic streams—such as label-switched paths (LSP) in Multi-
protocol Label Switching (MPLS) networks, Virtual Private Network (VPN) tunnels, and Virtual Circuits (VC) in
ATM networks—fit this definition of a flow. Even in the current Internet, TCP, UDP and other best-effort traffic
streams can be approximated as flows as long as route changes are not frequent.

We model the inter-arrival time between packets at the destination for individual flows under asymptotic condi-
tions of network utilization and number of hops. Our model yields the following key insights.

� The variance in inter-arrival times for individual flows tends to infinity in the asymptotic case, indicating that
flows become heavy-tailed after traversing a network of FIFO routers.

�
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� The aggregation of flows becomes a long-range dependent self-similar process.

A particularly interesting and deceptively simple type of flow is one that is shaped to a constant bit-rate (CBR)—
with constant packet inter-arrival times and packet sizes—at the source. It is widely believed that (1) shaping flows to
CBR at the source and (2) ensuring that the bandwidth available at each node to the CBR aggregate is at least as large
as the cumulative rate requirement of the CBR flows results in a satisfactory end-to-end delay and jitter. The above
philosophy, in fact, is the basis of the Virtual Leased Line service model proposed in the context of Differentiated
Services (DiffServ) networks [13, 19]. We demonstrate that, at high network utilization, even CBR flows become
heavy tailed after traversing a few hops. Hence, shaping flows to CBR benefits only in networks that operate at low
levels of utilization. We further show that at low network utilization, shaping sources to constant packet sizes is
sufficient to reduce the asymptotic burstiness; shaping sources to constant inter-arrival times is not necessary.

We validate our model through extensive simulations and derive the region of applicability—with respect to non-
asymptotic network and traffic parameters—of the model. We find that although the model predicts the behavior of
flows in the asymptotic case, for flows that contribute significant amount ( � 10%) to the cumulative bit rate of the
aggregate, the observations yielded by the model hold at relatively low levels of network utilization (30-40%), small
number of network hops (4-6), and moderate levels of heterogeneity in the packet sizes and bandwidth requirements
of the flows. We argue that, in many instances, a flow—such as one that represents a VPN tunnel between two sites
of an enterprise—does occupy significant fraction (10-20%) of the bit rate allocated for VPN services at routers.
Our simulation results predict that such flows will become heavy-tailed at relatively low levels of network utilization
and after traversing a small number of network hops; further, all of the micro-flows that get multiplexed onto such
tunnels will themselves become heavy-tailed.

Finally, we point out several important implications of carrying heavy-tailed flows and long-range dependent self-
similar aggregates in a network. We argue that a client receiving a heavy-tailed multimedia flow either perceives
poor performance or requires large amount of buffers to smooth out the heavy tails. Long-range dependence of traffic
aggregates, on the other hand, has several implications on network queuing delays and packet losses. We conclude
that operating a network so as to maintain its traffic outside the heavy-tailed and long-range dependence domain is
highly desirable.

The rest of the paper is organized as follows. We define related concepts in Section 2. In Section 3, we formulate
the problem of end-to-end analysis of packet inter-arrival times of flows. In Sections 4 and 5, we present the models
for individual flows and flow aggregates, respectively. We discuss the benefits, if any, of shaping sources to CBR in
Section 6. In Section 7, we describe our simulation setup and present simulation results. We discuss the impact of
heavy-tailedness and long-range dependence on the design of networks in Section 8. We discuss the related work in
Section 9, and summarize our conclusions in Section 10.

2 Background

In this section, we first summarize the concepts of self-similarity, long-range dependence and heavy-tailed flow and
then discuss the tests used to detect the presence of these properties in a time series.

2.1 Concepts

Self-similarity: Consider a time series
�������

.
�����	�

is self-similar iff,

���
�����������
�����
��

That is,
�������

is identically distributed as
�������	�

with a scaling factor
� �"!

, where
�$#&%

and ')(+* %�,.-0/ is
known as the Hurst parameter.

Let 1 ���	� define increments on Y(t): 1 �����324������56-7��89�����	� . If
�����	�

has stationary increments, then it can
be shown that 1;: �=<��"! 1?> , where 1@> 2A� 1 ��%B�C5 1 �D-7�FEGEGE 1 ���=�D�IHJ� . When ' #K-LHNM , it can be
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shown that the variance of 1 > dies out at a sub-linear rate with increase in
�

:�����N���	� ��
 �
� � ��������� �����
Self-similar processes are often long-range dependent – we define this concept next.

Long-range Dependence: Long-range dependence of a process �.1���� refers to the property that its auto-covariance
function does not sum up to a finite quantity. Let��� ������
 ������ ������� 
 ! �" �#
 ��� �����%$&�"�����(')$*�"�+��,-!%�
Then 1 is long-range dependent iff: . � " �/
10
The most commonly encountered form of such long-range dependent 2/3 in communication networks is hy-
perbolic and is given by: "54 
7698 � � ���;: 8�<=0
where ' # -LHNM and > is a constant. This form of 2%3 corresponds to that of a second-order self-similar process
[26].

Heavy-tailed Flows: A flow is said to be heavy-tailed iff? �A@CBED ��
76.�FD �GD ��H : DI<J0 :LKNMPOQMPR
(1)

where the random variable S denotes the packet inter-arrival time of the flow and > �UT � is a slowly varying
function as

T�V W
. Slow variation can be stated as:XZY\[]_^a` 6.��
UD �6.�FD � 
cb :ed 
fB K

For all practical purposes, > �UT � can be approximated by a constant. It can be shown that gihkj � S ��2lW .
If mon - , it can also be shown that p�*qS / 2�W . The association between heavy-tailedness and long-range
dependent self-similarity is discussed in Section 5.

2.2 Tests for Heavy Tails and Long-range Dependent Self-similarity

The literature contains the following tests for identifying heavy-tailedness and long-range dependent self-similarity.

1. LLCD Test: The log-log complementary distribution (LLCD) test is used to detect the presence of heavy tails
in a source. The complementary distribution of the packet inter-arrival time ( r�jts5u � S #vT � ) is plotted on a
log-log scale. From Equation (1), it can be seen that for a heavy-tailed source, after some value of

T
, the

distribution should look like a straight line with slope
8 m .

2. Hill Test: Let w < , w�x ,GEGEGEL, wzy denote the packet inter-arrival times of a given flow in ascending order. The Hill
function, {}|G~+~ �e�"� , for the flow is defined by:���U��� �A8 ��
�� �\� 4 �%�. �q�}' 8B�}� �������f� � �� � � 4�� �%�
A source is said to be heavy-tailed with parameter m if {}|G~+~ �e�"� stabilizes to m after some value of

�
.
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Figure 1: Network Model

3. Variance-time test: This test determines if a process �.1�� � is self-similar and long-range dependent. The
logarithm of the variance of the aggregated (averaged) process �.1 >� � is plotted versus the logarithm of the
aggregation level,

�
. A least-squares line is fitted on the data, and the slope (

M ' 8 M ) provides an estimate
of ' . If the slope is greater than

8J-
, then ' # -LHNM , indicating that the data is self-similar and long-range

dependent.

3 Problem Formulation

Consider a network that carries flows between source-destination pairs. In this paper, a flow is considered to be any
traffic stream, all packets of which traverse the same path, from the source to the destination, through the network.
We assume all flows in the network are independent of each other. This is a reasonable assumption in large-scale
networks with diverse routing. Let � � < ,GEGEGE.,�� ! � denote the routers along a path of length ' through this network.
We consider networks where each router

���
employs FIFO scheduling to arbitrate access to the link bandwidth.

Very large router buffers are assumed which guarantee no loss of packets. Let � � be the utilization of the output link
of router

���
.

Divide the time-axis into very small slots. Consider a flow � (referred to as tagged flow) that traverses the above
path. Let the random variable S � represent the inter-packet separation (IPS) of this flow as its packets leave router���

(see Figure 1). Let S
	 represent the inter-packet separation of the flow at the source. We assume that the meanp S�	 and the variance g�h�j � S�	 � for the inter-packet separation of the tagged flow at the source are finite.
Let the random variable 1�
� denote the time it takes to service the cross-traffic that enters router

���
during the ���

�
time-slot after the arrival of a packet of flow � . Then the following relationship exists between S � � < , S � and 1 
� :@���
������ �� ���������Q���� �!#" �%$� (2)

where, & represents the index of the last time-slot after the arrival of a tagged packet but prior to the arrival of the
next tagged packet, at which the queue becomes empty. We assume that 1 
� is independent of S � � < – which is a
reasonable assumption in a network with diverse routing and a large number of input links carrying independent
cross-traffic.

Note that p�1 
� 2 � � . For simplicity of analysis we assume that the cross-traffic characteristics are uniform over
all routers. Henceforth, for simplicity of exposition, we shall therefore denote 1'
� as 1 
 and � � as � . In the steady
state, let 1 
� :61 . Then � 2 p�1 . Let ( x 2 gIh�j � 1 � .

Let 2k3 denote the auto-covariance in the cross-traffic that arrives at time instances separated by
�

time-slots, that
is " 4 
 ��� ���*)�$C�"� ����),+ 4 $&�"�U��, !%�
Notice that with the assumed independence of flows, the auto-covariance of the cross-traffic at a particular lag

�
is

approximately the average of the auto-covariances at the same lag of the various cross-traffic flows present. Further,
for most flows, the auto-covariance is a decreasing function of

�
. Hence, if the cross-traffic aggregates a large

number of flows, then it is safe to assume that 2 3 is a strictly monotonically decreasing function of
�

. The following
lemma states how this assumption leads to a property of 2 3 that we use in our analysis.
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Lemma 1 If 2�3 is a strictly monotonically decreasing function, then � > 3�� < 2�3 is a sub-linear function in
�

.

Proof: � > 3�� < 2�3 cannot be super-linear due to the monotonically decreasing property. Suppose it is linear, that is, let� > 3�� < 2�3 2 > < � 5 >�x for some > < , >_x�( � , > < #6% . Differencing both sides w.r.t.
�

, we obtain: 2 > � < 2 > < , which
violates the strictly monotonically decreasing property.

Our objective in this paper is to model S � under these traffic and network conditions.

4 Model for a Tagged Flow

Let � 
 2 1 <C5 E E75 1 
 and � 2 S � 8 & . Then@�� +/� 
 ���Q� � �'� � ��� �  � $
 �����	�
It is easy to see that 1 and & (and therefore 1 and � ) are not independent. Due to multiplexing of traffic from
various links, the IPS of the tagged flow S � can be assumed to be independent of the cross-traffic intensity 1 and
therefore & . Then, �N@�� + � 
 � � �Q�
�	� (3)�����N�+@�� +/� � 
 ����� ���	� � � �a��� � �7� � R
� ��� ���	� : �N� (4)

Further, ���	� 
 . � ��� � � ��� � �Q� ��� � 
�� � � ���"�
 . � �}��� � � � 
�� � � ���"�
 ��� � � �
 ��� �A@ � $ �N�U� �
(5)����� ���	� �
 �i� �	� $*�
�	��� �
 �i� � � $ � ��� � � � �#� � ��� � � � ��$C��� � �Z�
 �i� � � $ � ��� � � � �\� � �Q��� � ��� � � � � $C��� � �Z�

� R ��� ��� � $ � �i� � � � � � � � ��� � � � ��$*�
� � �U�
(6)

The first term in (6) simplifies to: ��� ���P$ � ��� � � � �\� �
 . � � �� �.
) � � ��� ) $C��� � � � � ���� � � ���"�
 ��� � � � R � � $Eb0� " � �"!� �'� � � R " � �#!� �%� �e�a��� ��� � � �U� (7)

Here, 2�$&%('� 2 p�* � 1 ��) 
 8 p�* 1+* � /���� 1 
 8 p�* 1+* � /���/ H g hkj � 1,* � � . By the assumption that 2-$&%('� is a strictly mono-
tonically decreasing function of | , and using Lemma 1, we can show that (7) does not contain any gIhkj � � � term.

The second term in (6) simplifies to:��� � ��� � � � � $C���	�)� �
 ��� � ��� � � � ��$C��� � ��� � � � �\�\�Z�
 �a��� � � ��� � � � � �
 �a��� � �+@ � $ �N�G��� � � � � �
 �a��� �A@ � �e��� ��� � � �;�Z� ��� �N@ � �a��� ����� � � � � �
� �a��� � ����� � � � � � $ R.� ��� �A@ � ��� � � � � : ����� � � � � �

(8)
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The third term in (6) simplifies to:��� ��� � $ � �i� � � � � � � � ��� � � � � $*��� � �U�
 . � � � �
. �\� � � � $ � ��� � � � � � ���}��� � � � �k$*��� � ��� ���"�
 . � � � �
. �\� � ��� � $C��� � � � � � � ���}��� � � � �k$*��� � ��� ���"�
 K

(9)

From Equations (6), (7), (8) and (9), we have:�����N���	� �
 �a��� �A@��7�e��� ��� � � �;� � ��� �N@����a��� ����� � � � � � ������ � ����� � � � � ��$ R.� ��� �A@��;��� � � � � : ����� � � � � � ���� � � � R � � $ b � " � �#!� �'� � � R " � �"!� �}� �e����� ��� � � �+� (10)

From Equations (10) and (4), we have:����� �+@ � +/� �
 �a��� �A@ � �e��� �i� � � �;� � � �Q� @ � �����N�F��� � � �;� �
� �a��� � ����� � � � � � $ R.� ��� �A@ � ��� � � �;� : ����� � � �;� �
� ��� � � � R � � $Eb0� " � �#!� ��� � � R " � �#!� �%� � ����� ��� � � �U�� �a��� � �N� � R.� ��� ��� � : �7�

(11)

For the limiting distribution S 2 ����� ����� S � , we then have�a��� �A@ ��
 	 ��� : � : @ �b�$C��� �i� � � �;� � � (12)

where � � 1 , & , S � is the collection of all but the first term in the right-hand side of (11).
Consider the behavior of (12) as the utilization asymptotically approaches

-
. As p�1 V - , we have p�& V % . But

&�
 % always. Therefore, & V % . In this limiting scenario, several terms in � � 1 , & , S � go to zero. We then have:XZYZ[��
 ^ � ����� �+@ �
 XZYZ[��
 ^ � ��� �A@ � R �A@
$Eb0� " � � !� ��� ��� R " � � !� �}� �e�����N�����+�b�$ ���a��� �
 0
Thus, the variance of the tagged flow grows in an unbounded manner as it traverses a large number of hops ' in the
network with utilization � arbitrarily close to one. From Equations (3) and (5), we getXZYZ[��
 ^ � �N@ � +/� 
 XZYZ[��
 ^ � � ���Q�
� �� �%$
 XZYZ[��
 ^ � � ���Q�i� �+@���$ �7�G� �
 �N@ �
Thus, we see that XZYZ[��
 ^ � �N@ 
 �N@�'
Thus, the limiting distribution of the inter-packet separation of the tagged flow has a finite mean and infinite variance
under asymptotic conditions. Lemma 2 shows that when the marginal distribution of such a random variable S is
well defined, it is heavy-tailed.
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Lemma 2 If S #+%�, p S7n W and gihkj � S �32 W then,? �+@CBPD ��
 6.��DB�GD � H : DI<=0
where

- n m1n M and > �UT � is slowly varying.

Proof: Consider ��� ��DB��
�� ]]���� � � � � � �	� � K M D ' M D M 0
where, 
�� �
�"� is the probability density function for S . Observe that, for

�
, the inter-packet separation represented in

time slots: g�� �UT ��� g�� )�� �UT � ����#+%
(13)

Since p S n W and gih�j � S �32 W , we haveXZYZ[]�^�` � � ��DB� M 0 �
��� XZYZ[]_^a` � � �FD ��
10 (14)

From (13) and (14), we can conclude:��� � b M ��� R5: XZYZ[]_^a` ��� �FD ��
10 � ���d � B K5: XZYZ[]�^a` � � ��! ��DB� M 0 (15)

In [4](p.331,Th. 8.1.2) put m 26% and use the converse implication. i.e, let,XZYZ[]�^a` D ��" `] � � � � �#� ���� �FD � 
%$
We assume that 
 � �
�"� is well-defined so that & exists and

%'� & � W
. From [4] and (15), we then have? �A@�BEDB� 
 6.�FD �eD ��H : DI<=0

(16)O 
 �b ��$O ( � K5: � �
where, > �UT � is slowly varying. From (16), p SJn W , and gIh�j � S � 2 W , it can be shown that we must have- n m7n M . Thus, ? �A@CBPD � 
 6.�FD �GD ��H : Di<=0 : b M O MER

(17)

Hence the inter-packet separation of individual flows becomes heavy-tailed in the limit.
Let S �

be the limiting distribution of the inter-arrival time (time between the arrival of the first bits of two con-
secutive packets of the tagged flow). Let r represent the distribution of the time it takes to transmit a tagged packet
(for simplicity of analysis, all link capacities are assumed to be equal). Then,@�) 
 @��Q?�a���;@ ) 
7�����;@ � �����_? � R ��� @/? ��$ R �N@/�a?

(18)

Therefore, if pIr n W and gIh�jkS V W , then gIhkjkS � V W
.
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5 Aggregation of Flows

In [18, 27] it has been shown that the superposition of heavy-tailed on-off flows, with strictly alternating off- and
on-periods, converges to Fractional Brownian Motion (FBM) as the number of flows grows large. Our model shows
that individual flows become heavy-tailed under asymptotic conditions. The cross-traffic, which is a superposition
of such flows, therefore converges to FBM. FBM is a self-similar process with Hurst parameter

� 
 � $ OR
Since

- n m n M in (17), it can be seen that for the cross-traffic 1 ,
-�# ' # -LHNM . Thus the cross-traffic 1 is a

long-range dependent FBM process.
The auto-covariance of such a cross-traffic 2}3 , is [18]:" 4 
 � �F8 � b0�e� �P$ R 8 � � � �F8N$Eb0�e� �I� , R

6 Does it Help to Shape Sources to CBR?

We have seen that in the asymptotic limits, traffic arrival at a node in the network becomes very bursty. It is widely
believed that such burstiness can be eliminated or reduced by shaping individual flows to a constant bit-rate (CBR)
at the edge of the network, and ensuring that the sum of bit-rates of CBR flows at any node in the network does
not exceed the available bandwidth. In fact, this conjecture is at the heart of the design of the Virtual Leased Line
service model proposed in the context of Differentiated Services networks [13, 19]. Unfortunately, several recent
studies have shown that the lack-of-burstiness property of CBR flows is not maintained once the CBR flows traverse
a network of FIFO routers [10, 24]. In what follows, we analyze the CBR tagged traffic case using the model
developed in Section 4. For the analysis, we define the increasing convex ordering of two random variables, 

����� as
follows:

Definition 1 1 
a����� � iff for all increasing convex functions { � � , p�* { � 1 ��/ 
 p�* { ������/ .
Lemma 3 If p�1 2 p � and g�h�j � 26% , then 1 
N����� � .

Proof: Let { � � be a convex function. Then, p
{ � 1 � 2 � � { �UT � 
 �UT � 
 { � � �
T 
 �UT �D� 2 { � p�1 � 2 { � p ����2p
{ ����� . Hence, 1 
������ � .

From (18) and (12) we have:�����;@ ) 
 	 ��� : � : @ �b�$*�i� ��� � � � � � � � �����_?'� R ��� @/? ��$ R �N@/�a?
Notice that p�* p�* 1+* & / / 2 p�1 and gIh�j � p�1 � 2&% . Applying Lemma 3, we therefore get p�* 1,* & / 
������ip�1 . Since
the square function is increasing and convex, this implies that p�* p�* 1,* & / x / 
 � p�1 � x . It follows that�����;@�)	� 	 ��� : � : @ �b�$=�F����� � � �����_? � R ��� @/? ��$ R �N@/�a? (19)

For a CBR flow, gihkjtr 2 % and gihkjkS �	 2 % . Therefore, for CBR flows, we derive the following observations from
(19):

� When p�1 is large, the first term in (19) dominates the right hand side. gihkjtr affects the asymptotic inter-
arrival time only if p�1 is small. Hence, shaping sources to CBR is beneficial only in networks that operate at
low levels of utilization.

� gih�jkS �	 does not play a role in the asymptotic burstiness as long as it is finite, but gIhkjtr does. It follows
that at low network utilization, shaping sources to constant packet sizes is sufficient to reduce the asymptotic
burstiness; shaping sources to constant bit rate is not necessary.
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Figure 2: Simulation environment: network topology and router architecture

7 Experimental Validation and Analysis

We conduct a simulation study of networks with traffic inputs, with two objectives: (1) to validate under asymp-
totic conditions, the model developed in Sections 4 and 5; and (2) to identify the set of non-asymptotic network
settings (for various traffic compositions) where the predicted heavy-tailedness of individual flow becomes visible.
To conduct these experiments we have developed a network simulator using CSIM [2].

7.1 Simulation Environment

7.1.1 Network Topology

For our experiments, we consider a linear, multi-hop network topology (see Figure 2(a)). This network model is
fairly general and has been used in literature [11, 15, 16, 28]. Let � y denote a linear, multi-hop network topology
with � routers, and let

� � ( |�(9* -N, � / ) denote the | � � router in the topology. Given such a topology, we are interested
in the end-to-end performance of the tagged flow—a flow that enters the network topology at router

� < and traverses
the multi-hop network topology � y . While traversing the network, the tagged flow interacts with aggregates of
flows (referred to as the cross traffic) that enter and depart the network at each router along the path.

We model each router in this network as having 
 input ports ( & < ,GEGEGE , &�� ) and 
 output ports ( � < ,GEGEGE., ��� ). The
network topology � y consists of � routers such that, for all | (

- � | � � 8 - ), the output port � < of router
� �

is connected to the input port & < of router
� ��) < . The tagged flow enters the network through port & < of router

� < .
Through each port & x ,GEGEGEL, & � of router

� � , aggregates enter the network, and
-LH 
 of each of these aggregates are

routed to output port � < (see Figure 2(b)). In addition, the tagged flow entering input port & < of
� � is routed to

its output port � < . Thus, for each router, the traffic routed to the output port � < consists of: (1) The tagged traffic
(entering the router from port & < ); and (2)

-LH 
 of the flows entering from input ports &�x ,GEGEGE., &�� . All of the remaining
traffic entering through the input ports is routed to output ports, �Ix ,GEGEGE., ��� .

The above topology ensures that: (1) the tagged flow that enters the network at router
� < is routed all the way

through the multi-hop network � y , and (2) the cross traffic entering the network at router
� � ( | ( * -N, � / ) interferes

with the transmission of the tagged traffic for a single hop, and leaves the network at router
� ��) < . This topology

facilitates experimentation with different compositions of the cross traffic and different network depths. We have
conducted experiments for 
 ranging from � to � M . We present results for experiments with 
 2 � ; these results also
hold for higher values of 
 .

7.1.2 Traffic Sources

We consider two kinds of traffic flows.
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� CBR flows: CBR is one of the more popular traffic models. Flows with CBR transmissions have been used
commonly while transporting voice and video across packet networks, in ATM networks, and in the Virtual
Leased Line service in DiffServ networks.

� Non-CBR flows: Most traffic sources in the current Internet are not CBR in nature. In fact, the following
empirical evidence suggests that a sub-exponential distribution of packet inter-arrival times may model sources
in the current Internet well.

– WWW traffic forms a major portion of traffic on the Internet. The inactive off times that form the tail of
the inter-arrival times of the WWW traffic are shown to have a sub-exponential nature [7].

– telnet packet inter-arrival times have been shown to have a sub-exponential distribution [21].

For these traffic sources, m is chosen to be � , in order to ensure that the variance of the inter-arrival times at
the source is finite. We thus ensure that the input traffic to the network is not heavy-tailed.

7.1.3 Modeling Heterogeneity in Cross Traffic

The extent to which cross traffic entering each router affects the characteristics of tagged flows depends on the
burstiness of the cross traffic. Burstiness in cross-traffic results from: (1) super-positioning of flows, (2) traffic
distortions that result from flows traversing through multiple routers in a network, and (3) heterogeneity in the
average inter-arrival times across various flows.

To reasonably approximate traffic distortions, we model the cross traffic entering at each router in the network as
consisting of an aggregate of two types of flows: (1) flows that are at the beginning of their routes or have traversed
through a small ( � < or �1x ) number of routers, and (2) flows that are at the end of their routes or have traversed
through a large ( � x 	 ) number of hops. This model closely approximates the current Internet where each backbone
router is a small number of hops away from some set of hosts while being far away from some others.

To capture heterogeneity, we consider two classes of cross-traffic flows—flows with large and small average
packet inter-arrival times at the source. We quantify the heterogeneity in the cross-traffic flows in terms of inter-
arrival time ratio (IATR), which refers to the ratio of the average packet inter-arrival times at the source for these
two classes. We derive the two flow classes in three ways.

1. CBR flows with heterogeneous packet sizes: We consider CBR flows with same bandwidth requirement but
with packet sizes chosen uniformly from two intervals.

2. CBR flows with heterogeneous bit rates: We consider flows with fixed packet sizes but with bandwidth re-
quirements chosen uniformly from two intervals.

3. Flows with heterogeneous sub-exponential inter-arrival times: The average inter-arrival times of the flows are
chosen uniformly from two intervals. Packet sizes are chosen according to an empirically-derived distribu-
tion [1].

7.2 Model Validation Under Near-asymptotic Conditions

To validate the model presented in Sections 4 and 5, we simulate a network setting where the tagged flow traverses
a
MN%

hop topology with � % Mbps links operating at � %�� utilization. We select a tagged flow with 100 Byte packet
size and 4 Mbps bandwidth requirement. We consider cross traffic with an IATR of � % % .

Figure 3 shows the �����
	 plots of the inter-packet times of the tagged flow after it has traversed the network with
the three traffic settings. The slope (i.e., the value of m ) of the selected region on all of the �����
	 plots is between-

and
M
. Figure 4 plots the ' |G~+~ function for the inter-arrival times of the tagged flow obtained for the three traffic

settings. The figures illustrate that the ' |e~A~ plots stabilize to a value between
-

and
M
, indicating that the values of m
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(a) CBR: heterogeneous packet sizes (b) CBR: heterogeneous bit-rates (c) Sub-exponential-Empirical

Figure 3: LLCD plots
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Figure 4: Hill plots
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Figure 5: Variance-time plot for cross traffic
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Figure 6: Region of applicability of the model with heterogeneity of cross-traffic
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Figure 7: Region of applicability of the model with different bit-rates of tagged flow

are between
-

and
M

as the model predicts. These graphs demonstrate the heavy-tailedness of the packet inter-arrival
times of traffic, and thereby validate the predictions of our model.

Figure 5 depicts the variance-time plots of the cross-traffic, for all the three traffic settings. The slope of all of
the plots is greater than

8�-
(for comparison, a line with slope of

8�-
is drawn), indicating long-range dependence of

aggregates.

7.3 Non-asymptotic Region of Applicability

We now use the following dimensions of experimental settings to identify the non-asymptotic region of applicability
of the model in practice.

Network Utilization: To identify the network utilization levels above which flows exhibit heavy-tailed behavior,
we conduct experiments with link utilization varying from

MN%��
to � � � .

Network Depth: The greater the number of hops a flow traverses, the larger is the likelihood for its inter-arrival
time to approach the limiting distribution, S . We evaluate the effect of increasing the number of hops—fromM

to
MN%

—on the validity of the model for individual flows.

IATR: The greater the heterogeneity in the cross-traffic, the greater is its interference with the tagged flow. We
evaluate the effect of this parameter by varying the IATR of the cross-traffic from

-
to
-G% % %

.

We conduct experiments with network settings defined by each combination of specific parameter values for utiliza-
tion, network depth, and IATR. Any network setting that yields a heavy-tailed tagged flow (with m ( �D-N,�M � ) at the
destination is said to belong to the region of applicability of the model.

We vary the IATR of the cross-traffic for each of the three different cross-traffic settings. For the three respective
traffic settings, Figures 6(a), 6(b) and 6(c) plot the minimum utilization level versus the minimum number of router
hops at that utilization necessary for observing m ( �D-N,�M � for the tagged flow. In each of these experiments, the
tagged flow occupies

-G%��
of the total traffic sharing a link. For each value of IATR, the area above and to the

right of its corresponding curve identifies the region of applicability of the model. The following conclusions can be
drawn from these figures:

1. The greater the heterogeneity in the cross-traffic, the larger is the region of applicability of the model (i.e.,
tagged flows show heavy-tailed behavior with m ( �D-N,�M � for a larger set of network settings).

2. For same value of IATR, heterogeneity in packet-sizes results in a slightly larger region of applicability of the
model than heterogeneity in bit-rates.

3. More importantly, these figures demonstrate that flows can become heavy-tailed in large heterogeneous net-
works running at relatively low utilization levels (e.g.,

MN%��
), or after traversing as few as

M
hops for networks

running at high utilization levels.
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The above results hold for the case when the tagged flow occupies 10% of the link bandwidth. To investigate the
region of applicability of the model when the tagged traffic occupies smaller fractions of total link bandwidth, we
conduct the following sets of experiments. We fix the IATR of the cross-traffic to a value of

-G% %
. We vary the

contribution of the tagged flow to the cumulative bit rate of flows from
%�E % - �

to
-G%��

. For each of these values,
we plot the minimum utilization level versus the minimum number of router hops at that utilization necessary for
observing m ( �D-N,�M � for the tagged flow. Figures 7(a), 7(b) and 7(c) illustrate that when the tagged flow contributes
only a small fraction of the total bit rate of aggregate, m9( �D-N,�M � only at very high levels of utilization and only after
the flow has traversed a large number of hops. In fact, when the tagged flow contributes just

%�E % - �
of the bit rate of

the aggregate, even after traversing a 20 hop, highly loaded network, the value of m does not belong to the desired
interval.

8 Implications for Network Design

8.1 Impact of Heavy-tails

Heavy-tailed behavior of flows can be contagious. Consider for instance, a persistent HTTP session in which a client
waits for the server response prior to issuing subsequent requests. If the response traffic streams from the server is
heavy-tailed, future request generation from the client to the server also becomes heavy-tailed. Heavy-tailed behavior
thus spreads from the server traffic streams to the client traffic streams.

To cope with the heavy tailed distribution of inter-arrival times of packets from servers to clients, multimedia
clients either have to maintain a play-out buffer large enough to smooth out the variation in inter-arrival times, or have
to play out incomplete data. The latter deteriorates client performance, whereas the former requires provisioning of
very large buffers to smooth out the heavy tails. A client may, therefore, be willing to pay more for a network service
that does not result in flows becoming heavy-tailed. At the server end, managing heavy-tailed behavior of incoming
flows requires careful buffer management and request service procedures.

8.2 Impact of Long-range Dependence

Several researchers have studied the impact of long-range dependence on network queues using analytical models
and simulations (see [8, 9, 12] and the references there-in). In [12], it has been found that if the input traffic to a
network of queues has a large variance in service times, then the rate of approach to steady state can be so slow that
the steady state performance may not be of engineering interest. This raises interesting questions on stability in the
presence of such traffic. For network queues with a long-range dependent input, sharp increase in queuing delays at
fairly low levels of utilization and slow decay of queue lengths have been observed in [8, 9]. This implies that an
incremental improvement in loss performance requires a significant increase in buffer size. These raise important
questions on source traffic control and buffer/link dimensioning for satisfactory loss performance.

Observe that long-range dependence can occur even if the network backbones are not highly utilized. It is often
the case that edge routers run at high levels of utilization—hence, a flow may become heavy-tailed even after crossing
just the edge routers. Aggregation of such heavy-tailed flows in the backbone would induce long-range dependence,
even if the backbone network is not highly utilized.

In summary, long-range dependent traffic has severe implications on queuing performance. Hence, operating a
network so as to maintain traffic outside the long-range dependence domain is highly desirable.

8.3 Routing of Flow Aggregates

Recall that flows in our model could themselves be aggregates of micro-flows that traverse the same path from the
source (ingress edge router) to the destination (egress edge router)—examples include LSPs in MPLS networks, VPN
tunnels, and VPs in ATM Networks. As mentioned in Section 1, such flows can easily occupy a significant fraction of
the cumulative bit-rate (for example, around

-G%��
). Our simulation results predict that such flows (that is, aggregates
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of micro-flows) would become heavy-tailed at relatively low levels of network utilization and after traversing a small
number of network hops. It can easily be shown that, as a result, individual micro-flows constituting these flows also
become heavy-tailed.

To prevent such flows from becoming heavy-tailed, it may be desirable to create a large-capacity virtual tun-
nel (that may aggregate multiple micro-flows) between a source-destination pair as a collection of multiple lower
bandwidth tunnels (each carrying a subset of micro-flows) that traverse through different network paths. The lower
the bandwidth requirement of each of these tunnels, the smaller is the possibility of flows carried on these tunnels
becoming heavy-tailed.

8.4 Considerations for Deploying VLL Service in DiffServ Networks

In a differentiated services network, the Virtual Leased Line (VLL) service will utilize the Expedited Forwarding
(EF) per-hop-behavior (PHB). It has been suggested that a network could provide the low end-to-end delay requested
by the VLL service either (1) by providing bandwidth guarantees—possibly through the use of fair queuing algo-
rithms for bandwidth differentiation across flow aggregates—to the class of flows requesting the EF PHB; or (2) by
providing higher priority to flows requesting EF PHB.

If a fair queuing algorithm is used for allocating link bandwidth among flow aggregates, then even if the class
of traffic requesting EF PHB occupies a small fraction (e.g., 10-30%) of the total link bandwidth, the overall link
utilization can be quite high (due to the presence of flows from other classes as well as best-effort TCP flows—
which can utilize all of the available link bandwidth). Consequently, individual CBR flows requesting the VLL
service could become heavy-tailed and the total VLL traffic could become long-range dependent.

If, on the other hand, EF traffic is provided higher priority over other flow aggregates, then since EF PHB occupies
only a small fraction of the link bandwidth, individual CBR flows requesting VLL service are not likely to become
heavy-tailed—provided that individual flows do not occupy significant fractions of the bandwidth allocated to the
VLL service class. Hence, the CBR aggregates are likely to remain outside the domain of long-range dependence.
This argument suggests that, from the perspective of EF traffic, priority queuing is a better implementation option
than fair queuing. Unfortunately, however, with priority queuing, other flow aggregates as well as best-effort TCP
flows perceive the network as one with dynamically changing bandwidth. This may affect the throughput and
fairness observed by other flows. This may also introduce long-range dependence in the lower priority traffic if the
utilization perceived by the lower priority traffic becomes high due to starvation.

9 Related Work

Models for inter-arrival time (Jitter) for flows in general and CBR flows in particular in the ATM environment
(homogeneous on the packet size) can be found in [5, 17, 16, 20, 22, 23, 25]. In [17], the authors model a general
renewal source with some background traffic and derive expressions for the packet inter-arrival time (IAT) of the
renewal source after one hop. The IAT of the tagged renewal stream is expressed as the difference in queue lengths
seen by two consecutive packets of the same flow. Expressions are derived for the IAT in the frequency domain
under correlated and uncorrelated background traffic. In [16], the authors model the same network for multiple
nodes. In [22], the authors model CBR flows with a aggregated CBR background for one hop of the network and
extend it to the end-to-end case in [25] under high utilization. The main disadvantage of these models is that they
are very complicated, computationally intensive and do not yield any insights into the nature of CBR flows. Further,
these studies do not discuss the possibility of self-similarity and long-range dependence in such networks. Our work
is different from that of [17, 16, 22, 25] in the following ways: Firstly, our analysis yields closed form results for the
inter-arrival times of flows under high utilization. Secondly, it does not make any assumptions about the nature of
the cross-traffic entering the network, unlike [17, 16] where the authors evaluate their model for specific cross-traffic
models such as Markov Modulated processes.
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A more recent work on end-to-end jitter analysis can be found in [3], where it is shown that the jitter of a
renewal stream could grow unbounded in the particular example network family the authors consider. Based on
their observations, the authors propose a new definition called “Packet Scale Rate Guarantee” for the Expedited
Forwarding PHB in DiffServ. In [6, 14], the authors describe a deterministic approach to the end-to-end analysis of
renewal flows. They provide a bound on the end to end delays and buffer-sizes for an arbitrary network with FIFO
scheduling; but do not discuss end-to-end jitter.

10 Concluding Remarks

In this paper, we develop a simple end-to-end model for packet inter-arrival times of flows in the Internet. Our
model illustrates that at high network utilization levels: (1) the packet inter-arrival times of flows becomes heavy-
tailed once the flows traverse through a large number of hops, and (2) the aggregate of such flows is a long-range
dependent self-similar process.

We validate our model through simulations and examine the region of applicability—with respect to network
utilization, heterogeneity of traffic composition, and number of hops that a flow traverses—of our model. We find
that although the model predicts the behavior of flows in the asymptotic case, for flows that contribute significant
amount ( � 10%) to the cumulative bit rate of the aggregate traffic, the observations yielded by the model hold at
relatively low levels of network utilization (30-40%), small number of network hops (4-6), and moderate levels of
heterogeneity in the cross-traffic composition. We point out several important implications of carrying heavy-tailed
flows and long-range dependent self-similar aggregates in a network. We argue that a client receiving a heavy-tailed
multimedia flow either perceives poor performance or requires large amount of buffers to smooth out the heavy tails.
Long-range dependence of traffic aggregates, on the other hand, has several implications on network queuing delays
and packet losses. Hence, we conclude that operating a network so as to maintain its traffic outside the heavy-tailed
and long-range dependence domain is highly desirable.
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