
Can Android Applications Be Identified Using Only
TCP/IP Headers of Their Launch Time Traffic?∗

Hasan Faik Alan
Department of Computer Science

UNC - Chapel Hill, NC, USA
alan@cs.unc.edu

Jasleen Kaur
Department of Computer Science

UNC - Chapel Hill, NC, USA
jasleen@cs.unc.edu

ABSTRACT
The ability to identify mobile apps in network traffic has
significant implications in many domains, including traffic
management, malware detection, and maintaining user pri-
vacy. App identification methods in the literature typically
use deep packet inspection (DPI) and analyze HTTP head-
ers to extract app fingerprints. However, these methods can-
not be used if HTTP traffic is encrypted. We investigate
whether Android apps can be identified from their launch-
time network traffic using only TCP/IP headers. We first
capture network traffic of 86,109 app launches by repeatedly
running 1,595 apps on 4 distinct Android devices. We then
use supervised learning methods used previously in the web
page identification literature, to identify the apps that gen-
erated the traffic. We find that: (i) popular Android apps
can be identified with 88% accuracy, by using the packet
sizes of the first 64 packets they generate, when the learn-
ing methods are trained and tested on the data collected
from same device; (ii) when the data from an unseen device
(but similar operating system/vendor) is used for testing,
the apps can be identified with 67% accuracy; (iii) the app
identification accuracy does not drop significantly even if the
training data are stale by several days, and (iv) the accuracy
does drop quite significantly if the operating system/vendor
is very different. We discuss the implications of our findings
as well as open issues.

Keywords
Network Traffic Analysis; Android Apps; Privacy

1. INTRODUCTION
The problem of identifying applications, by analyzing just

the TCP/IP network traffic they generate, has received sig-
nificant attention in the literature over the past decade and
a half. This is for two compelling reasons. First, the ability

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS-1526268.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WiSec’16 , July 18-20, 2016, Darmstadt, Germany
c© 2016 ACM. ISBN 978-1-4503-4270-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2939918.2939929

to identify client applications from network traffic is tremen-
dously useful in several domains—including malware detec-
tion, traffic management, network capacity planning, as well
as, understanding the degree of user privacy leakage [1–4].
Second, with growing adoption of encryption and compres-
sion, as well as stronger Internet privacy legislation, HTTP
payloads are increasingly becoming inaccessible to traffic
monitors [5, 6]—consequently, analysis that relies on only
TCP/IP headers is most useful.

The above trends have been well recognized in the liter-
ature on web page identification. Indeed, significant leaps
have been made over the past several years in accurately
identifying from TCP/IP headers, which web pages are be-
ing visited by a web client [4, 7, 8]. However, there has been
little work in the domain of identifying mobile apps. While
there has been some preliminary evidence collected using
40-70 apps [9, 10], there has been no comprehensive study
of the identifiability of apps. Given the exponential rise of
mobile app usage [11], we address this need in this paper.
Specifically, we present the following key innovations:

• Data Collection: We set up 4 different Android devices
(2 tablets and 2 phones) and select 1,595 most popu-
lar apps that use networking, as well as are compatible
with all 4 devices. We then repeatedly run these apps
over a duration of 25 days, and capture network traffic
across 86,109 app launches. To the best of our knowl-
edge, this is the largest data set considered to date.

• Identifiability Evaluation: Since mobile apps use mostly
HTTP/HTTPS for networking [12], we next select learn-
ing algorithms and features that have worked well in
the past for identification of web pages in web traffic.
Specifically, we consider the packet sizes found in the
initial launch time traffic of mobile apps, and evaluate
three classifiers from the web page identification liter-
ature. We find that the mobile apps in our dataset do
generate distinctive TCP/IP traffic, and just 32-64 ini-
tial packets from their launch time traffic can be used
to identify them with up to 88% accuracy.

• Robustness Evaluation: The large number of app launches
included in our data set also enables us to consider
the impact on identification accuracy of several fac-
tors, including the training set size, frequency of train-
ing, app updates, and device differences. We find that
the app identification accuracy does not drop signif-
icantly, even if the training data is stale by several
days. However, when data from an unseen device is
used for testing, the identification accuracy drops to
around 67% (with similar operating system/vendor)

or to even around 28% (with very different operating
system/vendor).

2. DATA COLLECTION
For data collection, we use 4 different Android devices

(Table 1) and capture the network traffic generated by run-
ning 1595 apps on them. In the remaining of this section,
we explain how we determined the 1595 apps that we ex-
perimented with and how we captured the network traffic of
these apps. We also describe the dataset we collected.

Table 1: Android Devices

ID Device Type Android Version

S7 Samsung Galaxy Tab 4 7.0 tablet 4.4.2

S4 Samsung Galaxy S4 mini phone 4.4.4

N5 Nexus 5 phone 6.0.1

N7 Nexus 7 tablet 6.0.1

App Selection There are around 2 million apps on Google
Play, the Android application distribution platform [13]. We
rely on the GooglePlayAppsCrawler.py project [14] to iden-
tify the 2000 most popular (most installed) free apps as of
November 2015. We next identify the subset of these apps
that are compatible with all 4 of our devices. The Google
Play page for a given app lists all compatible devices used by
the same account—using this, we determined that 1655 of
the above 2000 apps are compatible with all of our devices.

The goal of this paper is to study identifiability of apps
from the network traffic they generate. We analyze the An-
droid application package files of the above 1655 apps to
find that 1595 of these explicitly request network access by
using the “android.permission.INTERNET” permission—we
consider all of these apps in our study. Please note that the
above permission is necessary but not sufficient for an app
to generate network traffic [15]—an app may simply not use
networking even though it has the permission.

Network Traffic Capture We use a USB WiFi adapter in
access point (AP) mode to provide Internet connectivity for
multiple Android devices. We capture the network traffic on
the AP interface using tcpdump [16], while running apps on
the devices. We capture only the first 100 bytes of network
packets, which contain TCP/IP headers.

Android Debug Bridge (ADB) is a command line tool
that allows us to communicate with Android devices [17].
It provides commands for performing several tasks such as
installing, starting and stopping, and uninstalling an app.
We use ADB commands and automate the process of cap-
turing the network traffic of an app while the app is running
concurrently on multiple devices. First, we install the same
app on each of the devices. We then start tcpdump for net-
work traffic capture and run the app for 20 seconds on the
devices. Finally, we stop tcpdump and uninstall the app
from the devices. We repeat this process for each of the
apps to be analyzed. We log the times when an app was
started and stopped, and the IP address of the device that
the app was running on.

We extract the network traffic generated by an app while
it is running on a specific device using the information avail-
able in the logs. We consider all of the TCP connections that
were initiated between start and stop times of the app and
are associated with the IP address of the device that the app

was running on.

Dataset We conducted 14 data collection sessions, which
lasted over 25 days (Table 2). In each session, we ran each
of the 1,595 apps for 20 seconds on all of our 4 devices using
the methodology described above. To minimize interfering
traffic, we had disabled the automatic updates of apps and
Android OS—after the 7th session, we manually updated the
515 apps that had a new version and conducted 7 additional
data collection sessions using the latest versions of the apps.
In total 86,109 successful app launches were performed, and
network traffic was generated in 83,606 of them.

3. TRAFFIC FEATURES & CLASSIFIERS
We model the app identification problem as a multi-class

supervised machine learning problem. A supervised machine
learning algorithm is first trained with samples each in the
form of a pair (x, y) where x and y are the feature vector
and the class of a sample, respectively. The algorithm is
then expected to predict the class of an unseen sample given
its feature vector. In our problem, app launches are the
samples, and the app package names are used as the classes
of the samples. The feature vector belonging to an app
launch is extracted from the TCP/IP headers of the packets
generated during the launch.

Why Do We Consider Packet Sizes of App Launch
Time Traffic? Many apps use networking immediately
upon their launch for several reasons. They retrieve new
ads from ad-networks or send information to analytics ser-
vices. They also perform app specific communication—for
example, an email app may check for new emails when it
is launched. Results established previously in the field of
non-mobile traffic classification suggest that, packet sizes
observed within such launch time traffic may yield good fea-
ture sets for app identification. Specifically, [18] shows that
the first few packets of TCP flows can be used to classify
Internet applications into categories such as Web, FTP, and
Games. More relevantly, [8] shows that web page identifica-
tion can be performed solely using packet sizes.1

Classifiers Considered We select three methods from the
web page identification literature that have been shown to
achieve high accuracies using packet sizes. These methods
mainly differ in the way feature vectors are extracted from
packet sizes and the classification algorithms used, and are
briefly summarized below (in chronological order).2

Method 1 (Sun et al. [19]): This method first groups
contiguous incoming or outgoing packets within a TCP con-
nection into “bursts”. Given a traffic sample, incoming burst
sizes are extracted from TCP connections and each of them
are rounded to the nearest 32 bytes. A traffic sample is con-
sidered as a multiset of burst sizes. Similarity between two
samples is measured using Jaccard’s coefficient (Sim(X,Y) =

1The server IP addresses may seem to be a tempting fea-
ture to rely on. However, in our pilot studies we attained
a lower accuracy (60-65%) compared to the methods that
we discuss later (88%), when we use a bag-of-words model
with the frequencies of IP addresses found in a traffic sam-
ple. Furthermore, using the packet sizes and IP addresses
together did not improve the accuracies we attain by us-
ing only the packet sizes. This may be because many apps
use the same third party services such as advertisement and
analytics services.
2We only consider TCP packets with a payload.

Table 2: Dataset Summary

Nexus 5 Galaxy S4 Galaxy Tab 4 Nexus 7

session start end
duration
(days)

Days Since
Beginning

S N S N S N S N

1 01/30 06:13 01/31 12:26 1.3 0.0 1552 1547 1555 1486 1522 1486 1539 1533
2 01/31 13:50 02/01 20:21 1.3 1.3 1563 1558 1558 1505 1541 1533 1564 1561
3 02/02 13:22 02/03 19:17 1.2 3.3 1566 1560 1555 1496 1539 1532 1564 1560
4 02/03 20:57 02/05 11:12 1.6 4.6 1560 1557 1553 1495 1538 1528 1559 1555
5 02/06 16:15 02/07 20:23 1.2 7.4 1466 1348 1455 1315 1444 1329 1465 1350
6 02/08 14:13 02/09 21:14 1.3 9.3 1492 1488 1488 1429 1467 1454 1491 1489
7 02/10 13:44 02/12 00:57 1.5 11.3 1490 1475 1486 1395 1468 1445 1492 1476
8 02/13 20:18 02/15 03:41 1.3 14.6 1550 1543 1539 1473 1522 1519 1551 1544
9 02/15 08:40 02/17 00:23 1.7 16.1 1567 1558 1549 1442 1533 1523 1566 961
10 02/17 18:57 02/19 00:03 1.2 18.5 1566 1562 1558 1492 1549 1535 1564 1556
11 02/19 00:23 02/20 07:36 1.3 19.8 1565 1555 1558 1324 1550 1545 1565 1561
12 02/20 10:11 02/21 15:03 1.2 21.2 1567 1562 1556 1491 1552 1545 1567 1559
13 02/21 17:46 02/22 22:46 1.2 22.5 1567 1563 1558 1498 1551 1542 1567 1563
14 02/23 01:03 02/24 13:52 1.5 23.8 1565 1553 1559 1455 1550 1541 1566 1556

Notes. S: Successful app launches. N: App launches that generated network traffic.

X∩Y
X∪Y). A test sample is identified by finding the most similar
sample among the training samples.

Method 2 (Liberatore et al. [8]): Given a traffic sam-
ple, packet sizes are extracted. Minus sign is used to rep-
resent incoming packet sizes. A traffic sample is considered
as a multiset of packet sizes. The Gaussian Naive Bayes
classifier is used for classification.

Method 3 (Herrmann et al. [7]): Given a traffic sam-
ple, multisets of packet sizes are extracted as in Method 2.
Term frequency - inverse document frequency transforma-
tion and normalization are applied to feature vectors. The
Multinomial Naive Bayes classifier is used for classification.

4. EVALUATION
In this section, we use the methods described in Section 3

to evaluate the identifiability of the apps in our dataset.

App Identification From Launch Time Traffic The
number of packets generated by an app during launch time
depends on the Internet speed and the application logic of
the app. Two reasons motivate us to minimize the number
of packets used for app identification. First, less number
of packets to process means less computational resource re-
quirements for an identification method. Second, and more
importantly, a user may start performing actions in an app
such as tapping buttons or entering text immediately after
the user interface of the app is available. Such actions may
generate additional network traffic which would add noise to
the launch time traffic of the app. By minimizing the num-
ber of packets considered as launch time traffic, we ensure
that there will be minimal interference from user actions.

To find the minimum number of packets to consider as
launch time traffic, we train the methods multiple times,
varying the number of packets used. We consider only those
apps that generated network traffic every time when they
were launched in the first 7 sessions (i.e., 28 times) to en-
sure that there are equal number of app launch samples from
each app—there were 1046 such apps. We first use the 20920
samples from the first 5 sessions for training the methods.
We then use the 4184 samples from the 6th session for valida-
tion and determine when the methods perform best. Figure
1a plots the validation accuracies of the methods. We find
that the accuracies of the methods increase significantly as
larger number of initial packets are used by them. However,

the gain in accuracy seems to taper down considerably after
32-64 packets are considered.

Another consideration that should drive the choice of num-
ber of packets to use is whether the apps are likely to gen-
erate these many packets quickly. As explained before, the
goal is to minimize the user action interference on the traffic.
To investigate this issue, we consider the apps that gener-
ated network traffic every time when they were launched in
the first session. There are 1384 such apps, yielding 5536
app launches. We find that more than 8 packets were gen-
erated in the 99% of these launches (see Fig. 1b) and the
median time to generate 64 packets is under 5 seconds (see
Fig.1c3). Based on these findings, in the rest of this paper,
we decide to limit the launch time network traffic of apps to
the first 64 packets they generate.

After determining the optimal number of packets to use
as 64, we train the methods using the first 6 sessions (25104
app launches of 1046 apps) and test them on the 7th session
(4184 app launches).4 We obtain app identification accura-
cies of 87%, 82% and 74% for the methods Herrmann, Lib-
eratore and Sun, respectively. An identification accuracy of
87% is significantly high, given that there are 1046 different
apps (i.e., classes) that each of the 4184 app launch samples
can be identified as.

How Much Training Data is Needed? We achieved
a high identification accuracy above when we use the first
6 sessions for training and the 7th session for testing. We
next study the impact of using smaller training sets on the
accuracy. For this purpose, we train the methods using the
most recent k sessions, where k ranges from 1 to 6, and
test them on the 7th session. Figure 2a plots the identifi-
cation accuracy versus the sessions used for training. We
find that the methods do benefit from using multiple ses-
sions for training. However, the contribution of each added
session decreases. In particular, even when only the 6th
session is used for training, Herrmann yields 80% identifi-
cation accuracy. Furthermore, the performance of all three

3The boxes extend from the lower to upper quartile; median
and mean are shown with line and square respectively (using
matplotlib).
4Please note that in order to measure the generalization of
the methods, we test them on samples unseen during train-
ing and validation.

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

Number of Packets

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
a
lid

a
ti

o
n
 A

cc
u
ra

cy
 (

o
n
 t

h
e
 6

th
 S

e
ss

io
n
)

sun

liberatore

herrmann

(a)

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

Number of Packets

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
t

o
f

A
p
p
 L

a
u
n
ch

e
s

(b)

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

Number of Packets

0

5

10

15

20

25

T
im

e
 E

la
p
se

d
 S

in
ce

 A
p
p
 L

a
u
n
ch

 (
se

co
n
d
s)

(c)

Figure 1: (a) Validation for Tuning Number of Packets; (b) Cumulative Histogram of Packets Per App Launch (Session 1);
(c) Box Plot of Time Taken to Generate Certain Number of Packets (Session 1)

methods hardly improves once more than 4 sessions are used
for training. These findings suggest that app identification
methods can sustain a high level of accuracy by keeping only
a small number of most recent sessions for training, in this
experiment 4, and discarding the older ones.

How Frequently Do the Classifiers Need to Be Re-
trained? To answer this question, we use one of the first 6
sessions for training, and the 7th session for testing—Figure
2b plots the accuracy of each method. The best identifi-
cation accuracy is achieved when the 6th session, the most
recent session which contains samples just 2 days older than
the test session, is used for training. The accuracies of the
methods decrease gradually when older sessions are used for
training—when samples that are 6 days older are used, the
accuracy drops by only around 3%. The lowest accuracy (5-
7% drop in accuracy for all methods) is attained when the
first session, which contains samples 11 days older than the
test samples, is used for training. These results indicate that
launch time traffic of apps does change over time—however,
the decrease in accuracy is not severe for samples collected
within the past week. This allows us to collect training sam-
ples several days before testing.

How Do App Updates Impact Identification Accuracy?
Mobile apps are regularly updated—app updates may im-
pact the nature of launch time traffic as well. To study this
issue, we updated the apps in our data set after the 7th ses-
sion (515 of the apps had a new version). We then tested
the methods using each of the sessions from 7 to 14 to in-
vestigate the effect of app updates—we trained the methods
using the most recent 6 sessions before each test session. In
this scenario, the 7th session is the only test session which
contains samples from the original versions of the apps.

Since this evaluation involves all 14 sessions, we select
the apps considered slightly differently—this is necessitated
in part by the 9th session, in which Nexus 7 lost Internet
connectivity and only 961 apps generated network traffic
(Table 2). Specifically, we consider the apps that generated
network traffic in at least 3 of the 4 launches in each of the
14 sessions—there are 1177 such apps. Figure 2c plots the
accuracies of the methods, as a function of the test session.

We find that the accuracies of the methods drop at the 8th

session (by 5% for Herrmann) and then gradually increase on
subsequent sessions. The reason is that the training set does
not contain any launch samples from the new versions of the
apps when we use the 8th session for testing. However, when
we use the subsequent sessions for testing, the training set
contains more and more samples from the new versions of
the apps (since we use the most recent sessions for training).
This result suggests that apps need to be updated regularly
and identification methods should be retrained with samples
from the latest versions of the apps to keep them accurate
over time.

How Do Device Differences Impact Identification Ac-
curacy? There are over 24000 distinct Android devices
[20]. It is not feasible to run apps on each of these devices
for the purpose of training an app identification method.
Thus, we evaluate the methods with samples from a device
that is unseen during training. For comparison, we also test
them using samples from the same device. In all of these
scenarios, we use the samples from the first 6 sessions for
training and the 7th session for testing. Table 3 summarizes
the experiments, and shows the respective accuracy of each
method.

We find that the methods perform significantly better
when they are trained and tested using the samples from the
same device (see highlighted rows in Table 3)—Herrmann
yields 88% identification accuracy, on average. The methods
also perform better when both training and testing sets con-
tain different devices but with a similar vendor/OS (Nexus/
Android 6.0.1 or Samsung/Android 4.4.x).5 However, when
a similar vendor/OS is not included in the training set,
the performance drops quite significantly (to around 28%)—
compare the rows with a star.

To further investigate the vendor/OS differences, we down-
grade the OS version of N7 (6.0.1) to the OS version of S7
(4.4.2). We collect new app launch samples. We use the
samples from S7 for testing. The classification accuracies are
38%, 67% and 88%, when Herrmann is trained on samples
from N5 (different OS & device), N7 (same OS & different
device), and S7 (same OS & device), respectively. This re-

5The Nexus devices have the same Android version and the
Samsung devices have very similar versions (see Table 1).

6 6,5 6,5,4 6,5,4,3
6,5,4,3,2

6,5,4,3,2,1

Training Session(s)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

T
e
st

 A
cc

u
ra

cy
 (

o
n
 t

h
e
 7

th
 S

e
ss

io
n
)

sun liberatore herrmann

(a)

S1 S2 S3 S4 S5 S6
Training Session

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

u
ra

cy
 (

o
n
 t

h
e
 7

th
 s

e
ss

io
n
) sun liberatore herrmann

(b)

7 8 9 10 11 12 13 14

Test Session

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

sun liberatore herrmann

(c)

Figure 2: Evaluation of the methods, effect of: (a) training set size, (b) time, and (c) app updates on the accuracies

Table 3: Device Differences

test training herrmann liberatore sun
N5 N5 0.90 0.89 0.52

* N5 N7 0.66 0.59 0.47
* N5 S4 0.28 0.18 0.33
* N5 S7 0.28 0.14 0.33

N5 N7,S4,S7 0.70 0.61 0.49
N7 N5 0.67 0.58 0.45
N7 N7 0.88 0.88 0.49
N7 S4 0.26 0.16 0.28
N7 S7 0.29 0.15 0.30
N7 N5,S4,S7 0.68 0.59 0.47
S4 N5 0.29 0.13 0.28
S4 N7 0.27 0.13 0.28
S4 S4 0.84 0.81 0.39
S4 S7 0.66 0.59 0.39
S4 N5,N7,S7 0.71 0.64 0.42
S7 N5 0.27 0.13 0.34
S7 N7 0.29 0.15 0.35
S7 S4 0.67 0.62 0.45
S7 S7 0.88 0.88 0.52
S7 N5,N7,S4 0.71 0.61 0.50

Notes. N5, N7, S4, S7: see Table 1

sult confirms that OS version and device have a significant
impact on the accuracy. There are at least two approaches
to address this issue. First, we can enumerate major An-
droid OS versions and collect app launch samples from the
devices running these OS versions to train an accurate clas-
sifier. Second, we can identify and use only those features
that are robust across different devices.

It is critical to understand the significance of this observation—
most of the past work on web page identification does not
consider the impact of client diversity on the performance of
identification methods. Our evaluation suggests that differ-
ent devices (with different vendors/OS) do produce traffic
features that may differ significantly. Consequently, if an
app identification method is biased towards a device or an
Android version, it may perform poorly in the real world.

5. DISCUSSION ON FUTURE WORK
When the app launch samples from same device is used

for training and testing, we have found that apps can be
identified with significantly high accuracy. Can this perfor-
mance be improved further? It is likely that it can, especially
since we have only evaluated with features and classification
methods considered by others for web page identification.

However, at 88% accuracy, there is only so much room for
improvement of the accuracy itself. What is even more in-
teresting is to investigate whether the identifiability of mo-
bile apps is robust to other challenges. We identified one of
these, robustness to differences across devices and operating
systems, before. We identify some more below.

Web page identification experiments in the literature are
conducted in laboratory conditions by logging start and end
times of web page loads. Similarly, we log the exact start
and stop times of apps during our data collection and con-
sider only the network packets generated during this time
interval for app identification. However, given a real world
traffic trace, it is not easy to detect the start of web page
loads or app launches in it. This problem is still being con-
sidered as unsolved and left as a future work in the web
page identification literature as well as in this paper [4, 8].
In addition, an app may have already been launched before
joining a network. In this case, it is not possible to capture
the launch time network traffic of the app.

We show that the packet size based traffic analysis meth-
ods developed for webpage identification can also be used
for app identification. Similarly, the countermeasures in the
literature such as the ones that hide the packet sizes by
padding can be used to preserve privacy of users. Nine such
methods are analyzed in [21].

Our data collection methodology can be improved by us-
ing a VPN app that captures the traffic generated by other
apps on the same device. Such an app is presented in [9].
In this context, there are VPN apps in Google Play that are
used by millions of people. A VPN app developed with the
explicit intent of collecting training data (or maliciously),
can capture TCP/IP headers of network packets and label
them with the apps generating them. A dataset collected
in this way will contain app launch samples from many dis-
tinct devices. An app identification method trained using
this dataset will be more robust to device/OS differences.

The ability to identify apps from launch time traffic can
also help with classifying subsequent (non launch time) traffic—
indeed, after identifying the launch of an app from the first
64 packets, subsequent packets are likely to belong to the
same app. This heuristic can be used to extract labeled
network traces of apps from a traffic trace collected in the
wild—such datasets would be valuable for future traffic anal-
ysis research.

6. RELATED WORK
Dai et al. [12], Xu et al. [22], Yao et al. [23], and Miskovic

et al. [24] analyze HTTP headers to extract string patterns
that identify apps. Such strings are generally used by third
party Ads or analytics services to assign unique identifiers to
apps. However, as mentioned by the same studies [22, 23],
such deep packet inspection methods cannot be used when
an app encrypts is HTTP traffic using the TLS protocol.

Two recent studies have provided some preliminary ev-
idence on the identifiability of mobile apps without using
HTTP headers. Specifically, Le et al. [9] present a VPN app
for capturing the network traffic of apps installed on a device
and use 40 apps to conduct a pilot app identification study
with the data collected using their VPN app. Qazi et al. [10]
integrate an app identification method based on packet sizes
to a Software Defined Networking (SDN) platform, and use
it to study identifiability of 70 apps. In this paper, we collect
a comprehensive data set by considering 1,595 mobile apps,
multiple devices, and 86,109 app launches—we also evaluate
three methods from the web page identification literature.

Stöber et al. [25] show that the identity of a smartphone
that a combination of 14 specific apps are installed on, can
be determined with 90% probability from the background
3G network traffic generated by the apps. In [26], network
traffic generated when certain user actions are performed
in 7 apps is studied. It is shown that a user action such
as sending an email or opening chat can be identified with
more than 95% accuracy when the app generating the traf-
fic (e.g., Gmail) is known. This work can be considered as
complementary to our paper. After identifying an app from
its launch time network traffic, a method trained to differ-
entiate between user actions performed within the app can
be used on the subsequent network traffic.

7. CONCLUSIONS
In this paper, we study the identifiability of Android apps

from the TCP/IP headers of their launch time network traf-
fic. We first conduct a data collection study in which we
capture launch time network traffic of 1595 apps, repeatedly
over time and across distinct devices. We then formalize the
concept of app launch time traffic by limiting the number
of packets considered for app identification using validation.
We use supervised learning methods from the web page iden-
tification literature to identify the apps that generated the
launch time traffic samples. Our results show that when the
methods are trained and tested using the samples collected
on the same device, apps can be identified from their launch
time network traffic with 88% accuracy. This finding has
significant implications for domains that can benefit from
app identification. However, there are several open issues
that need to be addressed before such methods can be used
in the real world.

References
[1] A. Callado et al. “A survey on internet traffic identification”.

In: Communications Surveys & Tutorials, IEEE 11.3 (2009),
pp. 37–52.

[2] S. Chen et al. “Side-channel leaks in web applications: A reality
today, a challenge tomorrow”. In: Security and Privacy (SP),
2010 IEEE Symposium on. IEEE. 2010, pp. 191–206.

[3] W. Zhou et al. “Detecting repackaged smartphone applications
in third-party android marketplaces”. In: Proceedings of the
second ACM conference on Data and Application Security
and Privacy. ACM. 2012, pp. 317–326.

[4] B. Miller et al. “I know why you went to the clinic: Risks and
realization of https traffic analysis”. In: Privacy Enhancing
Technologies. Springer. 2014, pp. 143–163.

[5] D. C. Sicker, P. Ohm, and D. Grunwald.“Legal issues surround-
ing monitoring during network research”. In: Proceedings of the
7th ACM SIGCOMM conference on Internet measurement.
ACM. 2007, pp. 141–148.

[6] A. M. White et al. “Clear and Present Data: Opaque Traffic
and its Security Implications for the Future.” In: NDSS. 2013.

[7] D. Herrmann, R. Wendolsky, and H. Federrath. “Website fin-
gerprinting: attacking popular privacy enhancing technologies
with the multinomial näıve-bayes classifier”. In: Proceedings of
the 2009 ACM workshop on Cloud computing security. ACM.
2009, pp. 31–42.

[8] M. Liberatore and B. N. Levine. “Inferring the source of en-
crypted HTTP connections”. In: Proceedings of the 13th ACM
conference on Computer and communications security. ACM.
2006, pp. 255–263.

[9] A. Le et al. “AntMonitor: A System for Monitoring from Mo-
bile Devices”. In: Proceedings of the 2015 ACM SIGCOMM
Workshop on Crowdsourcing and Crowdsharing of Big (In-
ternet) Data. ACM. 2015, pp. 15–20.

[10] Z. A. Qazi et al. “Application-awareness in SDN”. In: ACM
SIGCOMM Computer Communication Review. Vol. 43. 4.
ACM. 2013, pp. 487–488.

[11] “Cisco Visual Networking Index: Global mobile data traffic
forecast update, 2015-2020”. In: White Paper (2015).

[12] S. Dai et al. “Networkprofiler: Towards automatic fingerprint-
ing of android apps”. In: INFOCOM, 2013 Proceedings IEEE.
IEEE. 2013, pp. 809–817.

[13] Number of available Android applications - AppBrain. (ac-
cessed February 13, 2016).

[14] M. Lins. MarcelloLins/GooglePlayAppsCrawler. (accessed Febru-
ary 7, 2016).

[15] Connecting to the Network | Android Developers. (accessed
February 13, 2016).

[16] TCPDUMP/LIBPCAP public repository. (accessed February
13, 2016).

[17] Android Debug Bridge | Android Developers. (accessed Febru-
ary 13, 2016).

[18] Y.-s. Lim et al. “Internet traffic classification demystified: on
the sources of the discriminative power”. In: Proceedings of the
6th International COnference. ACM. 2010, p. 9.

[19] Q. Sun et al. “Statistical identification of encrypted web brows-
ing traffic”. In: Security and Privacy, 2002. Proceedings. 2002
IEEE Symposium on. IEEE. 2002, pp. 19–30.

[20] Android Fragmentation Report August 2015 - OpenSignal.
(accessed February 13, 2016).

[21] K. P. Dyer et al. “Peek-a-boo, i still see you: Why efficient
traffic analysis countermeasures fail”. In: Security and Privacy
(SP), 2012 IEEE Symposium on. IEEE. 2012, pp. 332–346.

[22] Q. Xu et al. “Automatic generation of mobile app signatures
from traffic observations”. In: Computer Communications (IN-
FOCOM), 2015 IEEE Conference on. IEEE. 2015, pp. 1481–
1489.

[23] H. Yao et al. “SAMPLES: Self Adaptive Mining of Persistent
LExical Snippets for Classifying Mobile Application Traffic”.
In: Proceedings of the 21st Annual International Conference
on Mobile Computing and Networking. ACM. 2015, pp. 439–
451.

[24] S. Miskovic et al. “AppPrint: automatic fingerprinting of mo-
bile applications in network traffic”. In: Passive and Active
Measurement. Springer. 2015, pp. 57–69.

[25] T. Stöber et al. “Who do you sync you are?: smartphone fin-
gerprinting via application behaviour”. In: Proceedings of the
sixth ACM conference on Security and privacy in wireless
and mobile networks. ACM. 2013, pp. 7–12.

[26] M. Conti et al. “Analyzing Android Encrypted Network Traf-
fic to Identify User Actions”. In: Information Forensics and
Security, IEEE Transactions on 11.1 (2016), pp. 114–125.

