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Abstract. We address the problem of robust two-view correspondence
estimation within the context of dynamic scene modeling. To this end,
we investigate the use of local spatio-temporal assumptions to both iden-
tify and refine dense low-level data associations in the absence of prior
dynamic content models. By developing a strictly data-driven approach
to correspondence search, based on bottom-up local 3D motion cues of
local rigidity and non-local coherence, we are able to robustly address
the higher-order problems of video synchronization and dynamic surface
modeling. Our findings suggest an important relationship between these
two tasks, in that maximizing spatial coherence of surface points serves
as a direct metric for the temporal alignment of local image sequences.
The obtained results for these two problems on multiple publicly avail-
able dynamic reconstruction datasets illustrate both the effectiveness and
generality of our proposed approach.
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1 Introduction

Dynamic 3D scene modeling addresses the estimation of time-varying geometry
from input imagery. Existing motion capture techniques have typically addressed
well-controlled capture scenarios, where aspects such as camera positioning, sen-
sor synchronization, and favorable scene content (i.e., fiducial markers or “green
screen” backgrounds) are either carefully designed a priori or controlled online.
Given the abundance of available crowd-sourced video content, there is growing
interest in estimating dynamic 3D representations from uncontrolled video cap-
ture. Whereas multi-camera static scene reconstruction methods leverage pho-
toconsistency across spatially varying observations, their dynamic counterparts
must address photoconsistency in the spatio-temporal domain. In this respect,
the main challenges are 1) finding a common temporal reference frame across in-
dependent video captures, and 2) meaningfully propagating temporally varying
photo-consistency estimates across videos. These two correspondence problems
– temporal correspondence search among unaligned video sequences and spatial
correspondence for geometry estimation – must be solved jointly when perform-
ing dynamic 3D reconstruction on uncontrolled inputs.
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Fig. 1. Overview of the proposed approach for dense dynamic scene reconstruction
from two input video streams.

In this work, we address both of these challenges by enforcing the geometric
consistency of optical flow measurements across spatially registered video seg-
ments. Moreover, our approach builds on the thesis that maximally consistent
geometry is obtained with minimal temporal alignment error, and vice versa. To-
wards this end, we posit that it is possible to recover the spatio-temporal overlap
of two image sequences by maximizing the set of consistent spatio-temporal cor-
respondences (that is, by maximizing the completeness of the estimated dynamic
3D geometry) among the two video segments.

In practice, our approach addresses the spatio-temporal two-view stereo prob-
lem. Taking as input two unsynchronized video streams of the same dynamic
scene, our method outputs a dense point cloud corresponding to the evolving
shape of the commonly observed dynamic foreground. In addition to outputting
the observed 3D structure, we estimate the temporal offset of a pair of input video
streams with a constant and known ratio between their frame rates. An overview
of our framework is shown in Fig. 1. Our framework operates within local tempo-
ral windows in a strictly data-driven manner to leverage the low-level concepts of
local rigidity and non-local geometric coherence for robust model-free structure
estimation. We further illustrate how our local spatio-temporal assumptions can
be built to successfully address problems of much larger scope, such as content-
based video synchronization and object-level dense dynamic modeling.

2 Related Work

For static environments, very robust structure-from motion (SfM) systems [1–
3] and multi-view stereo (MVS) approaches [4] have shown much success in
recovering scene geometry with high accuracy on a large variety of datasets.
Modeling non-static objects with this framework, however, is considerably more
difficult because the assumptions driving correspondence detection and 3D point
triangulation in rigid scenarios cannot be directly applied to moving objects. To
address these challenges, a wide array of dynamic scene reconstruction techniques
have been introduced in the computer vision literature, in capture situations that
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are controlled or uncontrolled, synchronized or unsynchronized, single-view or
multi-view, and model-based or model-free.

In general, highly controlled image capture scenarios have shown consider-
able success for non-static scene capture because they are able to leverage more
powerful assumptions w.r.t. appearance and correspondence of scene elements.
For example, Joo et al. [5, 6] used a large-scale rig of 480 synchronized cameras
arranged along a sphere to obtain high-quality, dense reconstructions of moving
objects within the capture environment. For more general applications, Kim et
al. [7] designed a synchronized, portable, multi-camera system specifically tai-
lored for dynamic object capture. Jiang et al. [8] and Taneja et al. [9] further
proposed probabilistic frameworks to model outdoor scenes with synchronized
handheld cameras. Mustafa et al. [10] introduced a general approach to dynamic
scene reconstruction from multiple synchronized moving cameras without prior
knowledge or limiting constraints on the scene structure. These works, and oth-
ers [11–17], clearly indicate the strong potential for non-rigid reconstruction in
general capture scenarios, and they highlight in particular the usefulness of mul-
tiple synchronized video streams toward this end. In this paper, we build on
these works by automatically recovering the temporal alignment of unsynchro-
nized video streams as part of the dense, dynamic reconstruction process.

Single-view video capture can be considered as a dynamic reconstruction sce-
nario inherently lacking the benefits of multi-view synchronization. On this front,
the monocular method of Russell et al. [18] is most germane to our approach.
The authors employ automatic segmentation of rigid object subparts, for exam-
ple 3D points on the arms, legs, and torso of a human, and solve the dynamic
reconstruction problem by jointly computing hierarchical object segmentation
and sparse 3D motion. Their notion of spatial consistency of rigid subparts is
an important contribution that we leverage in our approach to unsynchronized
multi-view reconstruction. A key distinction is that our method utilizes multi-
ple camera views to recover relative object translation in the static surrounding
environment, which is not completely recoverable using monocular input alone.

Despite the large amount of crowd-sourced video data available on the In-
ternet (for example, multiple video uploads from a live concert), relatively little
research has focused on dynamic 3D reconstruction from unsynchronized, con-
current capture. To our knowledge, Zheng et al. [19] were the first to propose a
solution to this interesting reconstruction task. The authors introduced a dictio-
nary learning method to simultaneously solve the problem of video synchroniza-
tion and sparse 3D reconstruction. In this method, the frame offsets of multiple
videos are obtained by sparse representation of the triangulated 3D shapes, and
the shapes are iteratively refined with updated sequencing information. However,
this approach is not automatic, relying heavily on manually labeled correspon-
dences on the rigid bodies, and the resulting reconstructions are relatively sparse
(i.e., they represent a human using only 15 3D points). Their extended version
[20], further asserts that both outlier correspondences and reduced/small tem-
poral overlap will hinder the accuracy of the temporal alignment. In contrast to
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Zheng et al. [19], our work aims to jointly recover dense object geometry and
temporal information in an unsupervised manner.

In the past, multi-view geometric reasoning has been employed for the gen-
eral problem of video synchronization. These methods are related to the video
synchronization aspect our work, but they do not provide dense 3D geometry.
For example, Basha et al. [21, 22] proposed methods for computing partial or-
derings for a subset of images by analyzing the movement of dynamic objects in
the images. There, dynamic objects are assumed to move closely along a straight
line within a short time period, and video frames are ordered to form a consis-
tent motion model. Tuytelaars et al. [23] proposed a method for automatically
synchronizing two video sequences of the same event. They do not enforce any
constraints on the scene or cameras, but rather rely on validating the rigidity of
at least five non-rigidly moving points among the video sequences, matched and
tracked throughout the two sequences. In [24], Wolf and Zomet propose a strat-
egy that builds on the idea that every 3D point tracked in one sequence results
from a linear combination of the 3D points tracked in the other sequence. This
approach works with articulated objects, but requires that the cameras are static
or moving jointly. Finally, Pundik et al. [25] introduced a novel formulation of
low-level temporal signals computed from epipolar lines. The spatial matching
of two such temporal signals is given by the fundamental matrix relating each
pair of images, without requiring pixel-wise correspondences.

3 Spatio-Temporal Correspondence Assessment

Our goal is to analyze two spatially-registered video sub-sequences of equal
length, in order to determine the largest set of spatio-temporally consistent pixel
correspondences belonging to a commonly observed dynamic foreground object.
In particular, we are interested in building two-view correspondence-based vi-
sual 3D tracks spanning the entire length of the sub-sequences and assessing the
validity of the initial correspondences in terms of the geometric properties of
the 3D tracks. Our goal has two complimentary interpretations: 1) to develop a
spatio-temporal correspondence filtering mechanism, and 2) to provide a mea-
sure of local spatio-temporal consistency among video sub-sequences in terms of
the size of the valid correspondence set. We explore both these interpretations
within the context of video synchronization and dense dynamic surface modeling.

3.1 Notation

Let {Ii} and {I ′j} denote a pair of input image sequences, where 1 ≤ i ≤ M

and 1 ≤ j ≤ N are the single image indices. For each image Ik ∈ {Ii}∪{I
′
j}, we

first obtain via structure-from-motion (SfM) a corresponding camera projection
matrix, P(Ik) = Kk [Rk| −RkCk], where K, R, and C respectively denote the
camera’s intrinsic parameter matrix, external rotation matrix, and 3D position.
Let Fij denote the fundamental matrix relating the camera poses for images Ii
and I ′j . Furthermore, let Oi and O′j denote optical flow fields for corresponding
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2D points in consecutive images (e.g., Ii → Ii+1 and I ′j → I ′j+1) in each of the
two input sequences. Finally, let xip and Xip denote the 2D pixel position and
the 3D world point, respectively, for pixel p in image Ii (and similarly x′jp and
X′jp for image I ′j).

(a) (c)(a) (b)

Fig. 2. (a) Background mask that has high color consistency. (b) Foreground mask
with low color consistency. (c) Segmented result.

3.2 Pre-processing and Correspondence Formulation

Spatial Camera Registration. Our approach takes as input two image streams
capturing the movements of a dynamic foreground actor, under the assumption
of sufficient visual overlap that enables camera registration to a common spa-
tial reference defined by a static background structure. Inter-sequence camera
registration is carried out in a pre-processing step using standard SfM methods
[15] over the aggregated set of frames, producing a spatial registration of the
individual images from each stream. Since the goal of this stage is simply im-
age registration of the two sequences, the set of input images for SfM can be
augmented with additional video streams or crowd-sourced imagery for higher-
quality pose estimates; however, this is not necessarily required for our method
to succeed.

Dynamic Foreground Segmentation. SfM simultaneously recovers the cam-
era poses for the input images and reconstructs the 3D structure of the static
background. The first step in our method is to build a reliable dynamic fore-
ground mask for each image using the available 3D SfM output. At first blush,
it seems that this task can be accomplished by simply reprojecting the SfM
3D points into each image and aggregating these projections into a background
mask. However, this approach is less effective for automatic foreground segmen-
tation primarily because it does not account for spurious 3D point triangulations
of the dynamic foreground object. Hence, to identify the non-static foreground
points in an image, we adopt a three-stage process: First, we perform RANSAC-
based dominant 3D plane fitting on the SfM point cloud, under the assumption
that large planar structures will be part of the background. We iteratively de-
tect dominant planes until we have either included over 70% of available points
or the estimated inlier rate of the current iteration falls below a pre-defined
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threshold. Second, for the remaining reconstructed 3D points not belonging to
a dominant plane, we identify their set of nearest 3D neighbors and measure
the photoconsistency of this set with their corresponding color projections into
the image under consideration. We measure the normalized cross correlation
(NCC) of these samples and threshold values above 0.8 as background and be-
low 0.5 as foreground. Third, we perform a graph-cut optimization to determine
a global foreground-background segmentation, where we use the points on the
dominant planes along with photoconsistent reprojections as initial background
seeds, while the non-photoconsistent pixels are considered foreground seeds. Fig.
2 illustrates an example of our segmentation output.

Correspondence Search Space. Consider two temporally corresponding im-
age frames Ii and I ′j . For a given pixel position xip contained within the dynamic
foreground mask of image Ii, we can readily compute a correspondence x′jp in
image I ′j by searching for the most photoconsistent candidate along the epipolar
line Fijxip. We can further reduce the candidate set Ω(xip,Fij) ∈ I ′j by only
considering points along the epipolar line contained within the foreground mask
of I ′j (Fig. 3(a)(b)). In this manner, we have Ω(xip,Fij) = {x′jq | xipFijx′jq = 0}.
Henceforth, we shall omit the dependence on the pre-computed camera geome-
try and segmentation estimates from our notation, denoting the set of candidate
matches for a given pixel as Ω(xip). We measure NCC w.r.t. the reference pixel
xip using 15 × 15 patches along the epipolar line, and all patches with a NCC
value greater than 0.8 are deemed potential correspondences. Once Ω(xip) is
determined, its elements x′jq are sorted in descending order of their photocon-
sistency value. Fig. 3(c)(d) provides an example of our epipolar correspondence
search for an image pair.

 

(a) (b) 

(c) (d) 

Fig. 3. (a) Local features in reference image. (b) Corresponding points are found along
the epipolar lines in the target image. In (c) and (d) Red stars: Feature point in
reference frame. Blue stars: Matched feature points in the target frame. Green circles:
Points with highest NCC values. (c), the point with the highest NCC value is actually
the correct correspondence. (d), the green circle is indicating the wrong match. The
other candidate is the correct correspondence and should be used for triangulation.
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3.3 Assesment and Correction Mechanisim

Based on the example shown in Fig. 3, we propose a method to discern wrong
correspondences and correct them with an alternative pixel matches. The steps
of our method are as follows:

Step ¶: Building Motion Tracks The set of 2D feature points {xip} and
currently selected corresponding points {x′jq} are updated with optical flow mo-
tion vectors computed between neighboring frames using the approach of Brox
et al. [26]. Thus we have {xi+1,p} = {xi,p}+Oi and {x′j+1,q} = {xjq}+O′j . We
select the video with the higher frame rate as the target sequence, which will be
temporally sampled according to the frame rate ratio α among the sequences.
The reference sequence will be used at its native frame rate. Hence, given a tem-
poral window of W frames, the reference video frames and their features will be
denoted, respectively, by Ii and {xi,p}, where 1 ≤ i ≤ W , denotes the frame
index. Accordingly, the frames and features in the target video frames will be
denoted by I ′j and {x′j+w∗α,q}, where j corresponds to the temporal frame offset
between the two sequences, and 0 ≤ w < W . The size of the temporal window
must strike a balance between building informative 3D tracks for spatial analysis
and maintaining the reliability of the chain of estimated dense optical flows.

The initial set of correspondence estimates {xip}, {x′jq} are temporally tracked
through successive intra-sequence optical flow estimates, and their updated lo-
cations are then used for two-view 3D triangulation. Namely, for each point xip

selected at frame p, we have a 3D track Ti = {Xiw} comprised of 1 ≤ w ≤ W
3D positions determined across the temporal sample window.

Step ·: Enforcing Local Rigidity Local rigidity assumes a pair of nearby
3D points in the scene will maintain a constant Euclidean distance throughout
our temporal observation window. Assuming a correct spatio-temporal inter-
sequence registration and accurate intra-sequence optical flow estimates, devia-
tions from this assumption are attributed to errors in the initial correspondence
estimation. More specifically, tracks having incorrect initial correspondences will
present inconsistent motion patterns. Accordingly, the key component of our
rigidity estimation is the scope of our locality definition. To this end, we use
the appearance-based super-pixel segmentation method proposed in [27] to de-
fine relatively compact local regions aligned with the observed edge structure.
The SLIC scale parameter is adaptively set such that the total of superpixels
contained within the initial segmentation mask is 30. The output of this over-
segmentation of the initial frame in the reference sequence is a clustering of our
3D tracks into disjoints partitions {Cc}, where 1 ≤ c ≤ 30.

Having defined disjoint sets of 3D tracks, we independently evaluate the
rigidity of each track cluster. We measure this property in terms of the largest
consensus set of constant pairwise distances across successive frames. Although
this set can be identified through exhaustive evaluation of all pairwise track
distances, we instead take a sampling approach for efficiency. We iteratively select
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one of the tracks in Cc and compare the temporal consistency against all other
tracks. We then store the track with the largest support within Cc. An outline
of our sampling method is presented in Algorithm 1. Our local rigidity criteria
decides if two trajectories are consistent based on the accumulated temporal
variation of point-wise distance of two 3D tracks over time:

W∑
i=2

∣∣∣‖Xm,i−1 −Xn,i−1‖2 − ‖Xm,i −Xn,i‖2
∣∣∣, Tn,Tm ∈ Cc (1)

Once the consensus track set has been identified, all its members are considered
inliers to the rigidity assumption, while all tracks not belonging to the consensus
set are labeled as outliers.

Algorithm 1: Sampling for Local Rigidity Track Concensus

Input: 3D trajectories Ti(m), 1 ≤ m ≤ |Ci(c)|
Output: Inliers trajectories set {Ĉi(c)}

1 iterations = 0

2 Ĉi(c) = NULL
3 while iterations ≤ |Ci(c)|/5 do
4 C′i(c) = NULL
5 Draw a random trajectories Ti(m)
6 for k ∈ [1, ‖Ci(c)‖] do
7 decide if Ti(m) and Ti(k) are consistent
8 if consistent then
9 add k into C′i(c); if C′i(c) = Ci(c) then

10 return

11 if C′i(c) ≥ Ĉi(c) then

12 Ĉi(c) = C′i(c)

Step ¸: Enforcing Structural Coherence Local rigidity in isolation is un-
able to determine systematic errors caused by motion correlation among content
having similar appearance. A particular challenge is the presence of poorly tex-
tured and (nearly) static scene elements, as both appearance and motion cues are
ill-defined in this scenario. For example, in Fig. 5(a), some correspondences are
located on the left leg, while the true correspondences should be on the right leg.
In order to make our correspondence estimation more robust, we further enforce
the assumption of geometric coherence within local structure estimates deemed
to be locally rigid. We consider two types of non-local coherence violations:

1. Track-Bundle Consistency 3D Tracks emanating from a common com-
pact image region should also correspond to a compact set of 3D trajectories.
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We observe that small subsets of inlier (i.e., mutually rigid) 3D tracks can
be spatially disjoint from the remaining tracks belonging to the same initial
cluster (Fig. 5(b)). We measure this behavior by analyzing the results of
individual pairwise 3D point sampling used in step · for rigidity consensus
estimation. We aggregate all the sampled N = ‖Cc‖ pairwise rigid distances
of the inlier set into a single vector Sc ∈ RN and sort the elements by in-
creasing distance. We then scan for an inflection point depicting the largest
pairwise deviation among successive bins in Sc and threshold on both the
relative magnitude and the percentile of the inflection point location within
the histogram. Inflection points found in the top and bottom 10% quantiles
are to be discarded. If an inflection point is found in the histogram, the cor-
responding distance value is used as a distance consistency threshold. Tracks
exhibiting an average distance to other tracks greater than the consistency
threshold are removed from the inlier set Cc. Fig. 4 illustrates the behavior
of the distance histogram for different 3D track bundle scenarios. The above
framework operates under the assumption that locally inconsistent tracks
represent a small fraction of a cluster’s track bundle.

2. Inter-Cluster Consistency The scenario where the majority (or all) of
the mutually rigid tracks within a cluster are structured outliers is extremely
uncommon but cannot be identified through track-bundle consistency (Fig.
5(c)). To address this challenge, we impose thresholds on the spatial diver-
gence between the average 3D positions of a given track and a fixed global
3D reference representative of the estimated structure across the entire im-
age. We define this reference to be the 3D centroid of the 3D tracks of all
other clusters. This approach is aimed at identifying gross outliers within
the context of a single foreground dynamic object and is to be considered a
special-purpose noise filtering technique. In practice, 3D tracks away from
the moving body are identified and singled out as correspondence outliers.
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Fig. 4. In (a), trajectories from wrong correspondences deviate away from the inlier
trajectories (outlined in blue). (b) The sorted pairwise distance array of all inliers has
no abrupt gradient in the middle, sorted pairwise distance array of all trajectories will
have those cutting edge when outlier trajectories are present.
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(a) (b) (c)

Fig. 5. Corresponding points in image pairs. Red dots (crosses): Feature (inlier) points
within one super-pixel in the reference frame. Blue dots (crosses): Correspondence
(inlier) points found in the target frame. In (a), outliers on the left leg are detected
because they located in different rigid parts. In (b), outliers on the right waist are
removed because they are far away from majority of other trajectories. In (c), correct
correspondences are the minority (there might be repetitive correspondences in the
target frame). The wrong correspondences are removed by the depth constraints.

Step ¹: Track Correction The set of 3D tracks determined to be outliers
by our preceding validation steps are assumed to occur due to an outlier feature
correspondence xip ↔ xjq. Accordingly, to correct this erroneous initial assign-
ment, we revisit the sorted set of correspondence candidates Ω(xip) lying on the
epipolar line. We will replace the initial assignment with the next-most photo-
consistent element of Ω(xip) and evaluate the local rigidity of the updated 3D
track across the temporal sampling window. We can now modify the correspon-
dence to regenerate the 3D track (i.e. step ¶) and re-run our original rigidity
sampling procedure (i.e. step ·) over the entire cluster to account for possible
changes to the consensus set. In practice, it is more efficient to verify the rigidity
of each updated track against a small sample of the current consensus/inlier (i.e.
locally rigid) set of tracks. The process is repeated until each original feature
has either 1) been determined to be an inlier or 2) exhausted the candidate set.

3.4 Applications to Stream Sequencing and 3D Reconstruction

We have described a framework to determine and enhance the spatio-temporal
consistency of two-view pixel correspondences across a time window. Our image-
wide active correspondence correction framework effectively maximizes the num-
ber of locally consistent 3D tracks. The relevance of this functionality lies in the
insight that, given an unknown temporal offset between two spatial overlapping
video sequences, scanning a short video segment from one sequence over the en-
tirety of the other sequence can be used to identify the temporal offset between
those sequences. Figure 6(b) shows the average correspondences with different
offsets (computed over 50 consecutive frames from one of our datasets), we can
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see our method obtain the highest value on the 0 offset point, which means ac-
curate alignment. The criteria to determine alignment is, intuitively, the offset
resulting maximal locally rigid (e.g. inlier) 3D tracks. Conversely, determining
a robust and dense set of inter-sequence correspondences, directly provides the
observed 3D geometry given knowledge of the imaging geometry. A straightfor-
ward way to generate depthmaps under our framework is to perform bi-linear
2D interpolation on each sequence frame for all inlier 3D tracks. Figure 6(a), il-
lustrates the depthmap generated by our approach without any post-processing
corrections.

(a) (b)

Fig. 6. (a) show depth map generated from raw correspondences (Left) and the cor-
rected correspondences (Right). (b)Average correspondences with different offsets(red
curve), the green boundary should the plus minus standard deviation.

4 Experiments

Experimental Setup. All reported experiments considered a temporal window
size of W = 6, and unless stated otherwise, the initial correspondence set is
comprised of all putative pixel correspondences along the epipolar line with an
NCC value above 0.8. We evaluated our method on three datasets: the ETH
juggler [28], the CMU bat [5], and the UNC juggler [19]. For the ETH dataset (6
cameras) and the UNC dataset (4 cameras), we select the pair of cameras having
the smallest baseline. For the CMU dataset, we select two neighboring cameras
facing the front of the players. The CMU dataset provides reconstructed 3D
points which are used as ground truth to evaluate the accuracy of our estimated
3D triangulations and depth maps. The UNC dataset is not synchronized; hence,
we adopt the synchronized result from [19] as sequencing ground truth. Details
for each of the three considered datasets are provided in Table 1.
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Name # Video frames GT 3D Points Synchronized Moving Cameras Outdoor Scene

ETH 200 No Yes Yes Yes

CMU 160 Yes Yes No No

UNC 150 No No Yes Yes

Table 1. Composition of our datasets.

Synchronization Evaluation. In order to evaluate synchronization accu-
racy, we carried out experiments with temporal offsets between the reference
and the target sequence in the range of [−15, 15] with step size 3. We considered
the following scenarios: (1) common frame with varying pixel sampling density,
and (2) one sequence having double the frame rate of the other. Fig. 7(a-c)
shows respectively the results for ETH, UNC, and CMU datasets under vary-
ing pixel densities. By controlling the density of considered pixels within each
local neighborhood (i.e. SLIC-based superpixel segmentation) we can directly
control the computational burden of our sampling rigidity framework. Alterna-
tively, we may perform KLT-based feature selection. For efficiency reasons, we
simply select in these experiments a fixed number of random pixels as features
for correspondence analysis within a local neighborhood Cc. We experimented
with pixel densities of 2%, 2.5%, and 3.3%. The results illustrated in Fig. 7(a-c)
highlight the positive effect of increased pixel densities towards synchronization
accuracy. We observe that, in addition to segments exhibiting reduced motion
or poorly textured content, repetitive motion was a source of synchronization
ambiguity leading to potential errors. Fig. 7(d) shows the alignment results with
the target sequence at twice the frame rate of reference sequence. We use 3.3%,
1.25%, and 5% sampling density, and the results are very close to the equal-
frame-rate test, with a decrease in average accuracy of 9%. In Fig. 7(e) we show
more synchronization results with variable sampling rates for video streams.
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Fig. 7. Accuracy of our synchronization estimation across different datasets scenarios.

Dense Modeling Evaluation. We explored the effectiveness of our corre-
spondence correction functionality when applied for 3D reconstruction. Given
that the CMU dataset provides groundtruth 3D structure values, we include the
reconstruction error of our 3D reconstructions. In Fig. 8(a)(c), we show the front
and back view of the estimated 3D points. We observe our method’s ability to
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effectively remove outlier 3D structure. In Fig. 8(d), we quantitatively evalu-
ate the accuracy of our depth map, in terms of the percentage of pixels falling
within variable accuracy thresholds. Fig. 9 shows some qualitative comparisons of
our interpolated depth maps obtained from correspondence-corrected 3D points
against the depthmaps interpolated from raw correspondence output (e.g. in the
absence of corrections). Since [10] does not consider motion consistency nor
temporal alignment, their depth maps correspond to “raw correspondences” in
our method given synchronized input frames.

(a) (b) (c) (d)

Fig. 8. Results of corrected point cloud on the CMU dataset. Left: Blue 3D points
depict the originally reconstructed 3D points from initial correspondences, while red
points denote the 3D points obtained through corrected correspondences. Left middle:
Corresponding reference image. Right center: A side view of the same structure. Right:
Accuracy for both original and corrected point sets.

5 Discussion and Conclusion

We have presented a local spatio-temporal correspondence verification and cor-
rection method, and used it to develop a bottom-up solution for video syn-
chronization and dense dynamic modeling. The underlying assumption of local
geometric consistency as a guide for spatio-temporal overlap has been proven to
be informative across an expanded spatio-temporal scope. We used recent freely
available datasets for dynamic 3D reconstruction and these considered a single
dynamic element. The multi-body dynamics would be naturally included into
our framework as, beyond the attainability of SFM-based camera registration,
we only make assumptions on local rigidity and cross-view photo-consistency.
Future improvements to our framework include extending the scope of our tem-
poral window through the adoption of robust feature-based tracking frameworks
able to sustain and recover tracks across extended periods. Moreover, we will
continue to explore more robust structure and synchronization frameworks that
leverage our proposed consistency assessment framework as low-level functional
building block.
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Fig. 9. Qualitative results illustrating the effectiveness of our correspondence correction
functionality.
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