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Photo clustering is an effective way to organize albums and it is useful in many applications, such as
photo browsing and tagging. But automatic photo clustering is not an easy task due to the large variation
of photo content. In this paper, we propose an interactive photo clustering paradigm that jointly explores
human and computer. In this paradigm, the photo clustering task is semi-automatically accomplished:
users are allowed to manually adjust clustering results with different operations, such as splitting clus-
ters, merging clusters and moving photos from one cluster to another. Behind users’ operations, we have
a learning engine that keeps updating the distance measurements between photos in an online way, such
that better clustering can be performed based on the distance measure. Experimental results on multiple
photo albums demonstrated that our approach is able to improve automatic photo clustering results, and
by exploring distance metric learning, our method is much more effective than pure manual adjustments
of photo clustering.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

With the popularity of digital cameras, recent years have wit-
nessed a rapid growth of personal photos. More and more people
capture photos to record their lives and share them on the web.
For example, Facebook and Flickr are declared to host 10 billion
and 4 billion personal photos, respectively.1,2 Clustering is an effec-
tive approach to helping users manage, browse and annotate photos.
Here a ‘‘cluster’’ is referred to as a batch of photos that are visually
and semantically consistent. Album summarization is a typical
application. By grouping photos into clusters, we can select some
photos from each cluster and these photos together form a good
summarization of the whole album, which can be useful in album
visualization and photo sharing (Sinha et al., 2009; Papadopoulos
et al., 2010). Another application is batch annotation. Given a photo
set, manually annotating each photo will be a labor-intensive pro-
cess and there is also a waste of efforts as many photos are close
to some others. For example, many photos are continuously cap-
tured and they usually describe the same scene or object. Batch
annotation is an effective approach to reducing the cost by directly
assigning a set of tags to a batch of photos. Therefore, if the images
in a set can be effectively clustered, then users can easily adopt batch
ll rights reserved.
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annotation and tags only need to be assigned once for each cluster,
such as the work in Liu et al. (2009).

Extensive efforts have been dedicated to automatic image clus-
tering (Moellic et al., 2008; Wang et al., 2007; Goldberger et al.,
2006; Mei et al., 2006; Yang et al., 2010; Nie et al., 2009). However,
although great progress has been made, automatic photo cluster-
ing usually can hardly achieve satisfactory results due to the large
variation of photos’ content. Actually photo clustering also suffers
from the ‘‘semantic gap’’ problem, which is the main challenge in
multimedia content understanding. In comparison with photo
semantic understanding tasks that are usually associated with la-
beled training data, getting unsupervised clustering results that
are consistent with human’s perception is more difficult, as it lacks
supervision information. For example, the effective features and
distance metric for photo clustering may vary across different al-
bums. Without supervision, we can hardly verify the effectiveness
of different features and distance metrics in the clustering process.

To address the problem, in this paper we introduce an interac-
tive photo clustering paradigm. Instead of automatic clustering,
users are supported to manually adjust clustering results, and
supervision information thus becomes available. Three kinds of
operations are supported, namely, Move, Split, and Merge. A set of
equivalence and inequivalence constraints can be generated under
the operations. An online distance metric learning is performed to
construct a better distance measure for photo pairs. Consequently,
we implement clustering with the updated metric. This process
repeats until satisfactory clustering results are obtained. Fig. 1
illustrates the main scheme of our approach. We will show that
ith user interaction and distance metric learning. Pattern Recognition Lett.
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Fig. 1. A schematic illustration of semi-automatic photo clustering. Users are allowed to manually adjust photo clustering results with different operations and a distance
metric is learned accordingly.
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our approach can obtain better results than automatic clustering or
pure manual adjustments of clustering results.

Our contribution can be summarized as follows:

(1) We propose an interactive photo clustering approach, in
which users are allowed to adjust clustering results and a
distance metric is learned based on users’ interactions such
that better clustering can be performed.

(2) We introduce an online distance metric learning algorithm
that updates distance metric based on a new set of constraints,
which can maintain close performance with the traditional
method while significantly reducing computational cost.

The organization of the rest of this paper is as follows. In Section
2, we provide a review on the related work. In Section 3, we intro-
duce our semi-automatic photo clustering approach based on dis-
tance metric learning. Experiments are presented in Section 4.
Finally, we conclude the paper in Section 5.

2. Related work

There is extensive research on automatic image clustering. Some
of them explore textual information that is associated with the
images, such as surrounding text or tags (Moellic et al., 2008; Cai
et al., 2004; Wang et al., 2007). Goldberger et al. (2006) proposed
an image clustering approach based on information theoretic
scheme. Kennedy and Naaman (2008) and Simon et al. (2007) pro-
posed two clustering methods to extract representative images from
an image set. In Platt (2000), an AutoAlbum scheme is proposed,
which adopts a photo clustering approach with the help of temporal
information and the order of photo creation. Platt et al. (2003) then
further proposed PhotoTOC, which supplies a new interface to assist
users efficiently get the photos they want. Sinha et al. (2009) pro-
posed a clustering-based method to select a set of photos as the
summarization of an album. Papadopoulos et al. (2010) employed
clustering to select representative photos corresponding to land-
marks and events in a city. Cooper et al. (2003) and Mei et al.
(2006) both integrated photos’ visual content and temporal infor-
mation to cluster them into different events. Photo clustering
technology has also been widely explored in face tagging. By per-
forming clustering on photos based on the features extracted from
face regions, it is expected that photos with the same faces can be
grouped into a cluster and thus the tagging cost can be reduced as
the photos in such clusters only need to be tagged once. Suh and
Bederson (2004) adopted such an approach. They first group faces
into clusters and then label each cluster. However, as previously
Please cite this article in press as: Wang, M., et al. Intelligent photo clustering w
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mentioned, automatic photo clustering is a difficult task and it will
suffer from the lack of supervision. Tian et al. (2007) proposed a
method that integrates user interaction in order to boost clustering
performance. First, only very close faces are grouped with partial
clustering, and the other faces are regarded as a background cluster.
Then in the labeling process of clusters, information is learned and
several faces in the background cluster are further clustered for
labeling. However, there is no investigation of allowing users to di-
rectly adjust clustering results. In this work, we support users to
make different operations on photo clustering results and learn
distance measurements between photos based on users’ interac-
tions. By iteratively learning from users’ operations, significant
performance improvement of photo clustering can be achieved.

Distance metric learning is intended to construct an optimal dis-
tance metric for the given learning task based on the pairwise rela-
tionships among samples. A number of algorithms have been
proposed for distance metric learning. Bar-Hillel proposed a Rele-
vant Components Analysis (RCA) method to learn a linear transfor-
mation from the equivalence constrains, which can be used directly
to compute the distance between two examples (Bar-Hillel et al.,
2005). Xing et al. (2003) formulated distance metric learning as a
constrained convex programming problem by minimizing the dis-
tance between the data points in the same classes under the con-
straint that the data points from different classes are well
separated. Neighborhood Component Analysis (NCA) Goldberger
et al. (2004) learned a distance metric by extending the nearest
neighbor classifier. Weinberger et al. (2006) proposed the maxi-
mum-margin nearest neighbor (LMNN) method that extends NCA
through a maximum margin framework. Alipanahi et al. (2008)
show a strong relationship between distance metric learning meth-
ods and Fisher Discriminant Analysis (FDA). Davis et al. (2007) pro-
posed an information-theoretic metric learning algorithm which
learns a Mahalanobis distance by minimizing the differential rela-
tive entropy between two multivariate Gaussians under constraints
on the distance function. Hoi et al. (2008) proposed a semi-super-
vised distance metric learning method that integrates both labeled
and unlabeled examples. In this work we employ the information-
theoretic metric learning algorithm as its superiority over many
other distance metric learning methods has been shown in Davis
et al. (2007). However, the complexity scales linearly with the num-
ber of constraints and the time cost will dramatically increase when
there is a large number of constraints. Therefore, in this work we
proposed an online learning approach that keeps updating distance
metric based on recent user interactions. This approach can achieve
close performance in comparison with the conventional method
while significantly reducing much time cost.
ith user interaction and distance metric learning. Pattern Recognition Lett.
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Fig. 2. The implementation process of the semi-automatic photo clustering approach.
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3. Interactive photo clustering

As introduced in Section 1, our interactive photo clustering
works as follows. First, photos are grouped into a certain number
of clusters (the number can be specified by users). Then users
can view the clustering results and make manual adjustments.
Based on the adjustments, equivalence and inequivalence con-
straints among photos are generated and a distance metric learn-
ing algorithm is performed. Consequently, we perform clustering
again with the learned distance metric and the process can repeat
until a satisfactory clustering performance is achieved. Fig. 2 illus-
trates the implementation process.

3.1. Photo clustering with a distance metric

We adopt spectral clustering approach. It is a technique that ex-
plores the eigenstructure of a similarity matrix to partition sam-
ples into disjoint clusters with samples in the same cluster
having high similarity and points in different clusters having low
similarity (von Luxburg, 2007; Bach and Jordan, 2003; Ding,
2004). The spectral clustering can be viewed as a graph partition
task. The simplest and most straightforward way to construct a
partition of the similarity graph is to solve the Min-cut problem,
and Normalized-cut can also be used to replace Min-cut (Shi and
Malik, 2000; Chan et al., 1994) in order to obtain more stable clus-
ters. Existing studies have shown that spectral clustering outper-
forms many conventional clustering algorithms such as k-means
algorithm. Here we adopt the method proposed in Chan et al.
Fig. 3. The implementation process of the spectral
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(1994). But in our scheme we have learned a distance metric from
users’ operations of clustering results, thus we adopt the distance
metric in the computation of the similarity matrix, i.e.,

Wij ¼ exp �ðxi � xjÞTMðxi � xjÞ
r2

 !
ð1Þ

The clustering process is illustrated in Fig. 3.

3.2. Manual adjustment and constraint generation

Clustering results can be adjusted in different ways, and here
we consider three basic operations: Move, Merge and Split. Clearly,
with these operations, we can change a set of clustering results to
any other clustering results with finite steps. Based on each oper-
ation, we can generate a set of constraints among photos. Here we
describe the three operations and the constraint generation strate-
gies as follows:

(1) Moving a photo from one cluster to another. We denote the
operation as Move(x,Ci,Cj), which indicates removing a sam-
ple x from Ci and adding it to Cj. For this operation, we can
assume that x forms an inequivalence constraint with each
remained samples in Ci as it has been moved out from Ci.
On the contrary, we can generate an equivalence constraint
for x and each sample in Cj. Therefore, if the sizes of Ci and Cj

are u and v respectively, we obtain u � 1 inequivalence and v
equivalence constraints.
clustering algorithm with distance metric M.

ith user interaction and distance metric learning. Pattern Recognition Lett.
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Fig. 4. The illustration of three operations of clustering results. Move(x,Ci,Cj) means
removing a sample x from Ci and adding it to Cj, Merge(Ci,Cj,C) means merging two
clusters Ci and Cj to obtain a new cluster C, and Split(C,Ci, Cj) means splitting a cluster
C into Ci and Cj.

Table 1
Notations and their descriptions.

Notation Description

M Mahalanobis distance metric to be learned
Mk The distance metric learned in kth round
M¼ fM0;M1;M2; . . . ;Mk�1g Metric pool that contains the distance metric

learned in the first k rounds
S Set of sample pairs with equivalence
D Set of sample pairs with inequivalence
w The weights for integrating the existing

metrics in online distance metric learning
n Slack variables for softening constraints in

distance metric learning (see Eq. (5))
T1, T2 Pre-determined parameters used in the ITML

algorithm
f Weighting parameter of the L2 regularizer of w

(see Eq. (8))
p, d, a, b Variables used in the iterative solution process

of ITML (see Fig. 5)
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(2) Merging two clusters. We denote the operation as Merge-
(Ci,Cj,C), which means merging two clusters Ci and Cj to
obtain a new cluster C. For this operation, we can assume
that the sample pairs across Ci and Cj have equivalence con-
straints. Therefore, we obtain u � v equivalence constraints
from the manipulation, where u and v are the sizes of Ci

and Cj respectively.
(3) Splitting a cluster. We denote the operation as Split(C,Ci,Cj),

which means splitting a cluster C into Ci and Cj. For this oper-
ation, we can assume that the sample pairs across Ci and Cj

have inequivalence constraints. Therefore, we obtain u � v
inequivalence constraints from the manipulation, where u
and v are the sizes of Ci and Cj respectively.
Please cite this article in press as: Wang, M., et al. Intelligent photo clustering w
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Fig. 4 illustrates the examples of the three manipulations. We
generate constraints among the photos, and distance metric learn-
ing is performed with these constraints.

3.3. Online distance metric learning

Based on the constraints among photos that are generated from
users’ operations, we employ distance metric learning to learn a
Mahalanobis distance measure. In comparison with Euclidean dis-
tance or a globally learned distance metric, our learned distance
metric reflects user’s intention on the clustering, such as which
kinds of photos should be clustered together, and thus using it
can greatly boost clustering performance.

We employ the Information-Theoretic Metric Learning (ITML)
algorithm in Davis et al. (2007). The most intuitive approach is to
implement metric learning based on all the accumulated con-
straint information, but it can be analyzed that the cost of the ITML
algorithm scales as O(ld2), where l is the number of constraints and
d is the dimensionality of feature space. Thus the computational
cost will increase dramatically if there is a large number of con-
straints. To address this problem, here we formulate an online dis-
tance metric learning algorithm that updates the metric with only
the newly generated constraint in each round. First, we consider
the Information-Theoretic Metric Learning (ITML) algorithm pro-
posed in Davis et al. (2007). Denote by S and D the sets of sample
pairs with equivalence and inequivalence constraints respectively,
the ITML algorithm is formulated as

min
M

DðM;M0Þ

s:t: M � 0 ð2Þ
ðxi � xjÞTMðxi � xjÞ 6 T1; ði; jÞ 2 S
ðxi � xjÞTMðxi � xjÞP T2; ði; jÞ 2 D

where D(M,M
0
) is a divergence measure between M and M

0
. Here M

0

is a distance metric that reflects certain prior knowledge, such that
the learning of M can be regularized to be reasonable. For example,
M
0
is usually set to I, i.e., Euclidean distance. T1 and T2 are two pre-

determined parameters that satisfy T2 > T1 > 0. To be clear, we list
all the notations and the definitions used in the distance metric
learning algorithm in Table 1. We adopt Bregman divergence to
measure the difference between M and M

0
as

DðM;M0Þ ¼ gðMÞ � gðM0Þ� < 5gðM0Þ; M�M0 > ð3Þ

where g(�) is a strict convex and continuously differentiable func-
tion. We define g(�) as �logdet(�) and get the log-determinant
divergence between M and M

0

ith user interaction and distance metric learning. Pattern Recognition Lett.
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Table 2
The numbers of photos in the albums used in our
experiments.

Album Photo number

Germany 163
China 500
HongKong 136
London 204
Korea 493
LongExposure 185
Manasquan 333
Nature 183
New Book 175
New York 117
Widelife 1221
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DðM;M0Þ ¼ trðM0M�1Þ � log detðM0M�1Þ � n ð4Þ

By introducing slack variables, a soft version of the algorithm can be
written as

min
M

DðM;M0Þ þ cDðDiagðnÞ;Diagðn0ÞÞ

s:t: M � 0 ð5Þ
ðxi � xjÞTMðxi � xjÞ 6 nij; ði; jÞ 2 S
ðxi � xjÞTMðxi � xjÞP n0ij; ði; jÞ 2 D

In the above equation, n is a vector of slack variables, and n
0
is set to

T1 and T2 for the sample pairs with equivalence and inequivalence
constraints respectively.

The most intuitive approach for realizing online distance metric
learning is to employ the above formulation and set M

0
to the

distance metric obtained in the last step. But here we change
the formulation of ITML such that it considers all the previously
obtained distance metrics. The rationality lies on the fact that the
constraints for metric learning can be noisy and metric learning
also may suffer from overfitting. Thus the metrics learned in differ-
ent rounds are able to share complementary information. By using
adaptively learned weights, integrating all previous metrics can be
more robust than only updating the most recent one.

We change the objective function to
P

M02MwkDðM;M0Þþ
cDðDiagðnÞ;DiagðnÞ0Þ, where M¼ fM0;M1;M2; . . . ;Mk�1g is the
metric pool that contains the metrics obtained in the previous
rounds and wk is the weight for kth metric. Here M0 is set to I,
i.e., in the first round the distance metric is updated from Euclidean
distance. We add a 2-norm regularizer on the weigh vector and
then optimize the weights simultaneously. Thus the formulation
becomes

min
M;w

XK�1

k¼0

wkDðM;MkÞ þ cDðDiagðnÞ;DiagðnÞ0Þ þ fkwk2

s:t: M � 0

XK�1

k¼0

wk ¼ 1 ð6Þ

ðxi � xjÞTMðxi � xjÞ 6 nij; ði; jÞ 2 S

ðxi � xjÞTMðxi � xjÞP n0ij; ði; jÞ 2 D

We adopt alternating optimization approach to solve the problem.
First, we fix w and optimize M, and thus the problem becomes
Fig. 5. The iterative soluti

Please cite this article in press as: Wang, M., et al. Intelligent photo clustering w
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min
M

XK�1

k¼0

wkDðM;MkÞ þ cDðDiagðnÞ;DiagðnÞ0Þ

s:t: M � 0 ð7Þ

ðxi � xjÞTMðxi � xjÞ 6 nij; ði; jÞ 2 S

ðxi � xjÞTMðxi � xjÞP n0ij; ði; jÞ 2 D

Following the approach in Davis et al. (2007), we solve the above
optimization problem by repeatedly projecting the solution onto
each single constraint. The solution process is illustrated in Fig. 5.

We then fix M and update compute w, and it can be derived that

min
w

XK�1

k¼0

wkDðM;MkÞ þ fkwk2

s:t:
XK�1

k¼0

wk ¼ 1 ð8Þ

It can be derived that

wj ¼
1
K
þ
PK�1

k¼0 DðM;MkÞ � KDðM;MjÞ
Kf

ð9Þ

Since each step reduces the objective function in Eq. (5), the conver-
gence of this iterative process is guaranteed. After updating the dis-
tance metric M, we can perform spectral clustering again using the
new metric, as described in Section 3.1.
on process of Eq. (7).

ith user interaction and distance metric learning. Pattern Recognition Lett.
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4. Experiments

4.1. Experimental settings

We conduct experiments with 11 different personal albums
that are collected from Flickr. These photos are captured at
different locations around the world and contain diverse content,
Fig. 6. Clustering performance comparison of different methods. We can see that the clu
and distance metric learning. Our proposed online distance metric learning, which pr
performs quite closely to the method that uses all accumulated constraints in each round
most cases.

Please cite this article in press as: Wang, M., et al. Intelligent photo clustering w
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including the records of cityscape, landscape, wide life, etc. Table 2
illustrates the number of photos in these albums.

Many of the photos are of high resolution. To speed up feature
extraction, we resize each photo such that its width is 240 pixels.
Then we extract the following features from each photo in order
to comprehensively describe its color, edge and texture: (1)
64-dimensional HSV color histogram; (2) 75-dimensional edge
stering performance can be significantly improved by adopting manual adjustments
ogressively updates distance metric based on all the previously obtained metrics,
, and it is better than the online method that only updates the most recent metric in

ith user interaction and distance metric learning. Pattern Recognition Lett.
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Table 3
The left part illustrates the average rating scores and variances converted from the user study on the clustering performance comparison of SAC-OLDML-ALL and SAC-OLDML-1.
The right part illustrates the ANOVA test results. The better result is illustrated in bold. The p-values show that the difference of the two learning methods is significant and the
difference of users is insignificant.

SAC-OLDML-ALL vs. SAC-OLDML-1 The factor of methods The factor of users

SAC-OLDML-ALL SAC-OLDML-1 F-statistic p-value F-statistic p-value

1.9 ± 0.737 1.0 ± 0.0 14.878 0.0039 1.0 0.5

Fig. 7. The comparison of average response time of the SAC-GDML and SAC-
OLDML-ALL methods in each round. We can see that SAC-OLDML-ALL is much rapid
due to its less involved constraints in the distance metric learning.

Table 4
The left part illustrates the average rating scores and variances converted from the
user study on the clustering performance comparison of SAC-OLDML-ALL and SAC.
The right part illustrates the ANOVA test results. The better result is illustrated in
bold. The p-values show that the difference of the two learning methods is significant
and the difference of users is insignificant.

SAC-OLDML-ALL vs. SAC The factor of methods The factor of users

SAC-OLDML-ALL SAC F-statistic p-value F-statistic p-value

2.8 ± 0.422 1.0 ± 0.0 182 7.21 � e�11 1.0 0.5

3 There is a dilemma here: users will prefer low tolerance and the response time is
the shorter the better, but each time after re-performing the clustering results, users
will need to further observe the results before making adjustments and there is
actually implicit cost here. The number of manipulations set here can be viewed as a
trade-off: we try to make the response time tolerable while keeping the re-clustering
too frequent.
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histogram; (3) 225-dimensional block-wise color moment features
generated from 5-by-5 partition of the image; and (4) 128-dimen-
sional wavelet texture features. These visual features have shown
effectiveness in many image and video recognition tasks (Wang
et al., 2009a,b; Wang and Hua, 2011).

How to evaluate our approach is a problem. Generally, if ground
truth is available, many performance evaluation metrics are avail-
able for clustering, such as precision-recall, rand index and mutual
information (Jain and Dubes, 1988). Here our first challenge is how
to determine the ground truths for photo clustering. In some
works, images are selected from exclusive classes and thus their
ground truths can be naturally obtained. In several other works,
such as Cooper et al. (2003) and Mei et al. (2006), the target is to
group photos based on different events, and thus the photo cluster-
ing ground truths can be established based on the events. But for
more general cases that photos do not belong to exclusive classes,
subjective evaluation or user study will be involved (Cai et al.,
2004; Wang et al., 2007; Kennedy and Naaman, 2008). Here we
have designed a method to establish the subjective ground truths
as follows. A user is asked to manually adjust clustering results un-
til the best clustering results are achieved (the number of clusters
is also specified by the user as there are Split and Merge opera-
tions). Then we evaluate different clustering approaches based on
the ground truths. This is reasonable because the interactive clus-
tering approach is aiming at the best clustering results in the user’s
opinion. There are three users involved in this process, two respon-
sible for four albums each and the other one responsible for three
albums. Based on the ground truths, we compute precision and re-
call measurements as follows

precision ¼ jV \ V0j
jVj ð10Þ

recall ¼ jV \ V0j
jV0j

ð11Þ

where

V ¼ fðxi; xjÞjxi and xj are in the same cluster after clusteringg
V0 ¼ fðxi; xjÞjxi and xj are in the same cluster in ground truthsg

Then F-score is computed as 2 ⁄ (precision ⁄ recall)/(precision +
recall) and we adopt F-score as our clustering performance evalua-
tion metric.

In order to validate the effectiveness of our approach on a large
dataset, we also conduct experiments on a handwritten digit data-
set (Hull, 1994), which contains 11,000 images and each image de-
scribes a digit from ‘0’ to ‘9’ (note that for this dataset, the ground
truths for clustering are naturally available, that is, the digit labels).
Each image is described with 256 pixels, and thus a 256-dimen-
sional feature space is employed.

4.2. Experimental results

We compare the following five methods:

(1) Automatic clustering (AC), i.e., we perform spectral cluster-
ing with Euclidean distance without any adjustment of the
clustering results.
Please cite this article in press as: Wang, M., et al. Intelligent photo clustering w
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(2) Semi-automatic clustering without distance metric learning
(SAC), i.e., we perform spectral clustering with Euclidean
distance and then adopt pure manual adjustments on the
clustering results.

(3) Semi-automatic clustering with global distance metric
learning (SAC-GDML), i.e., we learn a new distance metric
after users adjust clustering results and then re-implement
spectral clustering, and the metric learning is performed
with all accumulated constraints in each round.

(4) Semi-automatic clustering with online distance metric
learning using only the most recent metric (SAC-OLDML-
1). We employ online distance metric learning but only
using the most recently obtained metric, i.e., we adopt Eq.
(2) and M

0
is set to Mk�1 in kth round.

(5) Semi-automatic clustering with online distance metric
learning using all previous metric (SAC-OLDML-ALL). This
is our proposed method.

In our experiments, the interactive clustering of each album is
test by the user that determines its ground truths. In each round
we allow the user to make 10 manual adjusts operations (including
Move, Merge and Split manipulations) to achieve a trade-off of the
smoothness of the process and user’s experience3. The parameter r
ith user interaction and distance metric learning. Pattern Recognition Lett.
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Table 5
The left part illustrates the average rating scores and variances converted from the user study on the clustering performance comparison of SAC-OLDML-ALL and SAC-GDML. The
right part illustrates the ANOVA test results. The better result is illustrated in bold. The p-values show that the difference of the two learning methods is significant and
the difference of users is insignificant.

SAC-OLDML-ALL vs. SAC-GDML The factor of methods The factor of users

SAC-OLDML-ALL SAC-GDML F-statistic p-value F-statistic p-value

2.3 ± 0.823 1.1 ± 0.316 13.5 0.005 0.46 0.87
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in spectral clustering is set to the median value of the pairwise dis-
tances of all photos. Following the strategy in Davis et al. (2007), the
parameters T1 and T2 are set to the 5th and 95th percentiles of the
pairwise distances of all photos in the album. As it lacks a good
method to tune the parameters c and f, they are empirically set to
1 and 100 respectively in our experiments.

Fig. 6 illustrates the performance comparison of different
methods on the 11 albums as well as the handwritten digit image
dataset. We also illustrate the average results. We can see that
semi-automatic methods can effectively improve clustering
performance in comparison with automatic clustering. By adopting
distance metric learning, the clustering performance can be signif-
icantly improved in comparison with relying on pure manual
adjustments. For most albums, the proposed SAC-OLDML-ALL
method performs closely to the method of SAC-GDML, i.e., employ-
ing all constraints for metric learning. From the average results we
can also see that the two performance curves are quite close. But
the online method is quite faster due to the less involved con-
straints in each round. Fig. 6 illustrates the comparison of the aver-
age time costs of the SAC-GDML and SAC-OLDML-ALL, and we can
see that the SAC-OLDML-ALL method is several times faster. All the
time costs mentioned in this paper are recorded on a PC with Pen-
tium 3.40 G CPU and 2 G memory. Comparing the SAC-OLDML-ALL
and SAC-OLDML-1 methods, we can see that the SAC-OLDML-ALL
method is better for most albums, including ‘‘Germany’’, ‘‘China’’,
‘‘Hongkong’’, ‘‘London’’, ‘‘Korea’’, ‘‘Manasquan’’, ‘‘New Book’’ and
‘‘Widelife’’. As introduced in Section 3, this is because integrating
all previous metrics with adaptively learned weights can be more
robust than using only the most recent metric. The superiority of
SAC-OLDML-ALL over SAC-OLDML-1 can be clearly observed from
the average F-score curves.

We also conduct a user study to compare different methods.
There are 10 users involved in this study. We first compare the
SAC-OLDML-ALL method with SAC-OLDML-1 and SAC in terms of
clustering performance. The users are demonstrated the clustering
results of different methods for each album, and they are then
asked to give the comparison results using ‘‘ > ’’, ‘‘� ’’ and ‘‘=’’,
which indicate ‘‘better’’, ‘‘much better’’ and ‘‘comparable’’, respec-
tively. To quantify the results, we convert the results into ratings.
We assign score 1 to the worse scheme, and the other scheme is as-
signed a score 2, 3 and 1 if it is better, much better and comparable
than this one, respectively. We perform an ANOVA test (King and
Minium, 2003) to statistically analyze the comparison. The com-
parison results of SAC-OLDML-ALL versus SAC-OLDML-1 and
SAC-OLDML-ALL versus SAC are demonstrated in Tables 2 and 3
respectively. The results demonstrate the superiority of our
approach over the other methods. ANOVA test shows that the supe-
riority is statistically significant and the difference of the evaluators
is not significant. For the comparison of SAC-OLDML-ALL and
SAC-GDML, the users are asked the experience the two methods
and then compare them considering both the clustering results
and response time. We quantize the comparison using the above
method and perform ANOVA test as well. The results are
demonstrated in Table 4. We can see that, users prefer the SAC-
OLDML-ALL method, as it performs very closely with the SAC-
GDML method while needing much less computational cost.
Please cite this article in press as: Wang, M., et al. Intelligent photo clustering w
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4.3. Discussion

It can be analyzed that the computational costs of the spectral
clustering and online distance metric learning scale as O(n3 + n2d)
and O(Tld2), respectively. Here n, d, l and T indicate the number of
photos, the dimension of features, the number of constraints, and
the iteration time for alternating optimization in Section 3, respec-
tively. As shown in Fig. 7, we can see that, for most albums, the time
cost can be less than 5 s. But for the album ‘‘Wildlife’’ that contains
1200 photos, the response time becomes much longer. Handling
very large photo sets, such as those that contain tens of thousands
of photos, will be difficult for our current scheme. For example,
even for the spectral clustering algorithm, the computational cost
will become unacceptable if the dataset is too large. Presenting
and manipulating such large number of photos also become a prob-
lem. We leave the investigation approaches for handling extremely
large albums to our future work. For computational cost, we can
employ graph sparsification methods, such that the computational
cost of spectral clustering can be significantly reduced. For presen-
tation and manipulation, we can explore hierarchical structure.
5. Conclusion

This paper introduces a semi-automatic photo clustering ap-
proach. Different from automatic method that directly applies a
clustering algorithm, our approach allows humans to manually ad-
just clustering results. An online distance metric learning algo-
rithm is employed under the human’s adjustments. Based on
users’ different operations, a set of equivalence and inequivalence
constraints are generated for distance metric learning, and then the
clustering can be re-implemented with the updated metric. This
process can repeat until satisfactory performance is obtained. We
have conducted experiments on different albums and encouraging
results demonstrate the effectiveness of our approach.

In this work we mainly focus on the clustering algorithms and
the distance metric learning approach that learns users’ interac-
tion, but user interface is also important in an interactive photo
clustering system. We leave this aspect, i.e., how to facilitate users’
adjustments of clustering results and better visualize them to our
future work. We will also investigate methods for handling very
large albums, including reducing computational cost and efficient
presentation and manipulation with hierarchical structure (see
Table 5).
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