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Abstract

We target the problem of synthesizing future motion se-
quences from a temporally ordered set of input images. Pre-
vious methods tackled this problem in two manners: pre-
dicting the future image pixel values and predicting the
dense time-space trajectory of pixels. Towards this end,
generative encoder-decoder networks have been widely
adopted in both kinds of methods. However, pixel prediction
with these networks has been shown to suffer from blurry
outputs, since images are generated from scratch and there
is no explicit enforcement of visual coherency. Alternately,
crisp details can be achieved by transferring pixels from
the input image through dense trajectory predictions, but
this process requires pre-computed motion fields for train-
ing, which limit the learning ability for the neural networks.
To synthesize realistic movement of objects under weak su-
pervision (without pre-computed dense motion fields), we
propose two novel network structures. Our first network en-
codes the input images as feature maps, and uses a decoder
network to predict the future pixel correspondences for a se-
ries of subsequent time steps. The attained correspondence
fields are then used to synthesize future views. Our second
network focuses on human-centered capture by augment-
ing our framework to include sparse pose estimates [30] to
guide our dense correspondence prediction. Compared with
state-of-the-art pixel generating and dense trajectories pre-
dicting networks, our model performs better on synthetic as
well as on real-world human body movement sequences.

1. Introduction

Image-based motion prediction aims to generate plau-
sible visualizations of the temporal evolution of an ob-
served scene. In principle, a set of multiple images of the
scene of interest may enable geometry-based view synthesis
through direct prediction of the variation in scene content
and/or viewing parameters (e.g. model-based rendering).

 

Figure 1. We predict multi-image motion flows to synthesize fu-
ture image sequences given a partially observed motion.

However, the problem of direct appearance-based predic-
tion of image motion is heavily ambiguous as the relation-
ship between the scene and the observer is not uniquely de-
fined. The problem becomes even more challenging when
the scope of the desired visualization encompasses multi-
ple time steps into the future. In this context, motion pre-
diction can be seen as a pair of complementary problems:
view synthesis and motion field estimation. View synthesis
strives to render an image observation given partial spec-
ification of the scene contents and the observation param-
eters. Motion field estimation strives to determine dense
pixel correspondences among a pair of image observations
of a common scene. Given an input image and a motion
field, it is straightforward to synthesize a novel image. Con-
versely, given an input image and a synthesized image, there
is an abundance of methods to estimate the motion field. To
the best of our knowledge, no supervised learning methods
have been deployed to address the motion prediction prob-
lem by leveraging the complementary nature of these prob-
lems. In this paper, we attack the motion prediction prob-
lem within an image synthesis framework, so as to predict
the motion flow and appearance simultaneously.

Predicting pixel values. View synthesis networks are
naturally adopted to approach the visual prediction prob-
lem. To resolve motion ambiguity, Xue et al. [32] adopts a
variational autoencoder framework to model the uncertainty
of predicting the next state of a single input image. They
propose a Cross Convolutional Network to encode image



and motion information as feature maps and convolutional
kernels, respectively. The network directly outputs future
image pixels, while a probabilistic model within the net-
work makes it possible to sample and synthesize many pos-
sible future frames from a single input image. However,
Zhou et al. [35] shows that this kind of model suffers from
heavy blurriness when directly outputting pixels. Instead
of predicting pixels, Walker et al. [26] adopt a variational
autoencoder to generate a distribution of possible trajecto-
ries. They use the output of [29] as ground truth for dense
pixel trajectories among the source and target images used
to train their network. However, there is no evidence that
the CNN network can improve upon the given ground truth
dense trajectories, potentially imposing systematic biases
into the prediction. In our proposed framework, we expect
the network to learn the dense motion flows by minimizing
the synthesis error through a weakly-supervised encoder-
decoder architecture.

Increasing the predictive scope. Predicting images for
more than one time step in the future has been previously
addressed by Walker et al. [28] and Zhou et al. [36]. Walker
et al. take an input image and predicts motion vectors with
discretized directions and magnitudes. Recurrent networks
are adopted to generate longer sequences. The method pro-
posed in [36] generates future image sequences within a
generative adversarial network (GAN), which has greatly
improved the image generation quality compared to a base-
line auto-encoder network. However, the GAN may suffer
from systematic appearance artifacts correlated to the train-
ing set appearance distribution. We generate multiple out-
put predictions through an iterative network that internally
accumulates sequential pairwise pixel motion fields.

Modeling Scene Dynamics. Zhou et al. [35] propose
“Appearance Flow” to learn dense pixel correspondences
between different camera views under weak supervision,
this method showed impressive success on static objects.
However, predicting the motion of dynamic (and potentially
non-rigid) objects is a heavily under-constrained problem.
Directionally constrained correspondence prediction was
recently addressed by Ji et al. [14] by learning the epipolar
geometric constraints between two views and reducing the
2D flow search to a 1D search. Their experimental results
outperform the traditional 2D appearance flow search [35].
However, for dynamic objects, no geometric clues have
been adopted to assist the correspondences search. Along
these lines, the convolutional pose machine(CPM) [30] is
recently widely used to detect human body pose, this net-
work is trained with large datasets of labeled human joint
positions and achieves astonishing speed and accuracy on
2D human pose estimation. We develop a pair of image syn-
thesis networks: one a general appearance-based predictor,
the other a capture-specific pose-constrained predictor.

Our Contributions In this paper, we propose two mo-
tion flow-based view synthesis networks to tackle the visual
prediction problem for dynamic scene content. The first
network (MotionFlow) predicts 2D motion flows between
multiple time steps, while the second network (PoseFlow)
constrains the motion flows computation through domain-
specific estimated directional priors. The novelty of our
work can be summarized as:

• We propose the first weakly-supervised framework to
model motion flow for the dynamic sequence synthesis
problem.

• We incorporate sparse human body pose estimates to
constrain dense motion flow prediction.

2. Related Works
Long range motion flow. Optical flow estimation

among successive frames is mainly used to generate mo-
tion flows [2, 9, 22]. Brox et al. [4, 19] estimate optical
flows simultaneously within multiple frames by adopting
robust spatio-temporal regularization. Some long-range op-
tical flow algorithms do not assume temporal smoothness.
Wills and Belongie [31] estimate dense correspondences of
image pairs using a layered representation initialized with
sparse feature correspondences. Irani [13] describes linear
subspace constraints for flow across multiple frames. Brand
[3] applies a similar approach to non-rigid scenes. Sand
and Teller [20] propose to represent video motion using a
set of particles, which are optimized by measuring point-
based matching along the particle trajectories and distortion
between the particles.

Future prediction. Future prediction has been used in
various tasks such as estimating the future trajectories of
cars [27], pedestrians [16], or general objects [34] in im-
ages or videos. Given an observed image or a short video
sequence, models have been proposed to predict a future
motion field [18, 21, 28, 25]. Zhou et al. [37] frames the
prediction problem as a binary selection task to determine
the temporal sequence of two video clips. [24] trains a deep
network to predict visual representations of future images
with large amounts of unlabeled video data from the Inter-
net. Different from our paper, this method predicts related
future images instead of predicting object movements.

View synthesis with CNN. Recent methods for synthe-
sizing novel views, objects, or scenes under diverse view
variations have been boosted by the ability of Convolutional
Neural Networks (CNNs) to function as image decoders.
Hinton et al. [11] learned a hierarchy of capsules, computa-
tional units that locally transform their input, for generating
small rotations to an input stereo pair. Dosovitiskiy et al. [8]
learned a generative CNN model to image of a chair with
respected to given input graphics codes i.e. identity, pose,
and lighting. Inspired by this paper, Tatarchenko et al. [23]



and Yang et al. [33] adopt a encoder-decoder network to
implicitly learn graphics code from training image pairs or
sequences. Tatarchenko et al. [23] proposed a approach to
predict images and silhouettes without explicit decoupling
of identity and pose. Yang et al. [33] applied input transfor-
mation to the learned pose units of source images to obtain
desired target images, and apply recurrent network to enable
synthesize sequences with large viewpoint difference.

Since the above methods generate new pixels from
scratch and thus the synthesized results will tend to be
blurry. Zhou et al. [35] propose to use the pixels of the
input image as much as possible, by learning the pixel cor-
respondences within given input images. This method can
obtain synthesis with crisp texture and much less blurri-
ness. However, since this method poses no constraints on
the learned appearance flow, some of the generated syn-
thesis has large texture distortions. Generative adversar-
ial networks (GANs) have shown great promise for im-
proving image generation quality [10]. GANs are com-
posed of two parts, a generative model and a discriminative
model, to be trained jointly. Some extensions have com-
bined GAN structure with multi-scale laplacian pyramid to
produce high-resolution generation results [7].

3. Our Approach
We address two main challenges in the learning-based

prediction of extended motion from input images: 1) en-
hancing visual coherence, while simultaneously 2) reducing
the supervision required for training. To this end, we gener-
ate future views with two motion flow networks (shown in
Fig. 2 and 5) implemented with encoder-decoder networks.
The core idea is to deploy an iterative predictive network to
estimate dense correspondence fields across multiple time
steps in the future. Since the direct output of the encoder-
decoder network are motion fields, the synthesized views
are comprised of pixels mapped from the input image in-
stead of pixels directly synthesized by the decoder.

3.1. MotionFlowNet: Appearance Flow Estimation
for Sequence Synthesis

The goal of an appearance flow network is to synthe-
size an output target image It by sampling pixels from an
input source image Is. The process of pixel sampling is
guided by a dense 2D motion flow (e.g. pixel-wise dis-
placement) field. The output of the network is a flow field
f = (f

(i)
x , f

(i)
y ), defined over the (i) pixels in the input im-

age and yielding an image formation process of the form

g(Is) = It(x
(i), y(i)) = Is(x

(i) + f (i)
x , y(i) + f (i)

y ), (1)

In general, learning pairwise correspondence fields requires
a set of N source and target image pairs 〈Is, It〉n ∈ D are
given during the training session. The learning is formal-
ized as minimizing the pixel-wise reconstruction error (i.e.

intensity difference):
∑
〈Is,It〉∈D ‖It − g(Is)‖p, where D

is the set of training pairs, g(.) refers to the motion-based
image from the neural network whose weights we wish to
estimate, ‖.‖p denotes the Lp norm. Since the predicted
motion fields are in sub-pixel coordinates, the synthesized
view is obtained through bi-linear interpolation:

I
(i)
t =

∑
q∈B(x(i),y(i))

I(q)s (1− |x(i) − x(q)|)·

(1− |y(i) − y(q)|),
(2)

where B
(
x(i), y(i)

)
denotes the set of four integer pixel

positions bounding (i.e. top-left, top-right, bottom-left,
bottom-right) the real-valued pixel coordinates of a given
pixel (x(i), y(i)), which is the corresponding positions for
the ith pixel in It.

To generate multi-frame sequences, the decoder network
outputs multiple 2D motion flows, and iteratively take pix-
els from the synthesized images to generate future images.
Our training objective is based on pixel-wise prediction over
all time steps for training sequences:∑

k∈M,··· ,N

‖Ik − g(k−M+1)(IM−1)‖2} (3)

In this formulation, for each motion sequence instance,
we are given an ordered ground truth image set {In}, parti-
tioned into input motion observations and target image pre-
dictions to be used within our supervised learning frame-
work. More specifically, I1≥j<M are used as input images
depicting the start of a motion sequence, and we aim to
predict a sequence of images corresponding to IM≥k≤N ,
which depicting the observation at immediately subsequent
timesteps. In our notation, g(n) refers to the output image
associated with the accumulated n-th motion flow defined
over the last available image observation IM−1 of the in-
put motion. Accordingly, the direct output of our encoder-
decoder network is a set of N − M total predicted pixel
motion flows between successive timesteps and having the
same pixel dimension as the input imagery.

3.2. PoseFlowNet: Appearance Flows with Con-
strained Directions

Motion flow estimation on dynamic objects is a chal-
lenging problem, as there are no geometric constraints (like
epipolar constraints learned in [14]) that can be leveraged
to reduce the motion flow search space. Hence, the corre-
spondence search space for each pixel, into the next frame,
spans the whole image. To ease the correspondence prob-
lem, we focus on human motion sequences and adopt an
off-the-shelf pose estimator [5] to reliably determine sub-
ject landmarks across our input motion image sequence. We
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Figure 2. MoFlow Network. In this example network, three input images are concatenated as input for encoder network, the decoder
network output three motion flows. Pixels of input image 3 are borrowed with learned motion flows to synthesize image in future timesteps
so as to minimize the pixel reconstruction errors. The network iteratively borrows pixels from synthesized images to generate future
images.

then leverage these detected sparse joint location estimates
to 1) make predictions on future pose configurations, and 2)
enforce consistency of the estimated dense motion field to
these predicted poses. In practice, the geometry-based gen-
eralization of sparse local motion estimates is not robust to
fine-grain appearance-based cues and leads to strong visual
artifacts. Accordingly, the computation of motion flow pre-
diction is decoupled into a directional component estimated
from sparse pose predictions and a magnitude component
that is estimated from input image observation

Feature Guided Correspondence Computations. The
pose estimator outputs sparse joint positions (18 points) for
each detected person in the image (shown in Fig. 3(a)(b)).
If the subject shows up in profile view, some joint points
will be missed. We fill these null values with symmetric
joint positions. The human body movements are complex
as each local part (left arm, right leg etc.) moves indepen-
dently. Beier et al. [1] propose a method to compute how
points around line segments move accordingly given line
segment movements. With this method, given input human
poses, we can obtain dense motion flow between consecu-
tive frames.

Input images 

Encoder 

Decoder 

(a) (b) (c) 

Iterative Prediction Network 

 

flow_34 

flow_45 

flow_56 

I1 

I2 

I3 I4 

I5 

I6 

Figure 3. (a)(b) Pose estimation results for images within a motion
sequence. (c) Computed motion flow with method [1].

In a 2D image (Fig. 4 left), the coordinate mapping of a

point X on a line segment MN are represented as (u, v),
which are computed by Eq. (4),(5). If in the next time step
(Fig. 4 right), position of MN changed to M

′
N

′
, then the

new position of point X would be X
′

which is computed
by Eq. (6).
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Figure 4. Between left and right image, endpoints of line segment
MN are changed to M

′
N

′
.

u =
(X −M) · (N −M)

‖N −M‖2
(4)

v =
(X −M) · Perpendicular(N −M)

‖N −M‖
(5)

X
′
= M

′
+u·(N

′
−M

′
)+v·v · Perpendicular(N

′ −M
′
)

‖N ′ −M ′‖
(6)

Here function Perpendicular(N −M) obtains perpen-
dicular vector to N − M , which has the same length as
N −M . In this coordinate system, value u defines the po-
sition along the line, and v is the distance from pixel X
to the line MN . The value range of u is 0 to 1 as pixel
moves from M to N , and is less than 0 and greater than 1
outside that range. The value for v is the perpendicular pro-
portional distance from pixel X to the line MN . If there
is just one line pair, the transformation of the whole image



proceeds as Eq. (4),(5),(6). Since the human body is com-
posed of multiple line segments (we define 14 local parts
on the human body.), pixels should naturally move in com-
pliance to its nearest line segment. Since the assignment of
pixels to local parts is unknown, a weighting strategy of the
coordinate transformations for each line is performed, for
each line segment a position X ′i = (ui, vi) is computed for
each pixel X . To calculate the weighted average of those
displacements we follow

wi =
1

(a+ dist)b

X
′
=X +

∑
i

wi∑
i wi
∗ (X

′

i −X)
(7)

Here a is a constant to prevent illegal division, variable
b decides the displacement of a pixel along with different
line segments. If b is large, every pixel will be affected only
by the line nearest to it. If b is zero, each pixel will be
affected by all lines equally. We set b = 1.5 in all experi-
ments. A sample motion flow field is visualized in Fig. 3(c)
which highlights the motion vectors between Fig. 3(a) and
Fig. 3(b). It can be observed that motion estimates make
no distinction between pixel on a moving limb and nearby
pixels not belonging to the limb (e.g. pixels on the torso).
We address this challenge by estimating a per-pixel motion
magnitude based on the appearance of the input sequence.

Sequence Synthesis with Constrained Correspon-
dences Search. We propose the PoseFlow network (shown
in Fig. 5), which takes images along with detected poses
as input. Input poses are fed to a pose prediction net-
work to predict future poses, and generate the dense motion
flow fields (with Eq. (4),(5) and (6)) from the predictions.
The pose prediction network is composed of four fully con-
nected layers and outputs pose offsets compared to previous
frame. Detailed network structure is listed in supplemental
materials.

The encoder-decoder network has same configuration as
MotionFlowNet. However, instead of predicting 2D mo-
tion flows, the output of our decoder is the magnitude of
motion flows, the final output of the network is the multi-
plication of the predicted motion flows and the magnitude
fields. By learning appropriate magnitude fields, some mis-
takenly computed motion flows can be mitigated. For ex-
ample, in Fig. 3(c), we observe motion vectors on torso
above the right arm, caused by the proximity to the mov-
ing right arm. However, between Fig. 3(a) and Fig. 3(b),
pixels on the torso are actually not moved. We expect the
network optimize magnitudes so as to mitigate this problem,
i.e. magnitudes learned on torsos would be near zeros.

3.3. Implementation details

We trained the network parameters using the ADAM op-
timization method [15]. For different datasets, the input se-
quence may contain different number of images to reduce
the motion prediction ambiguity. For our base implementa-
tion we use three stacked images as input motion observa-
tions and output three predicted images as a single stack.

4. Experiments

Datasets. We adopt two datasets to verify our method,
the synthetic Sprites dataset and real image dataset hu-
man3.6M [12, 6].

Sprites Dataset. This dataset consists of 672 unique
characters, and for each character there are 5 rigid-body
movements from 4 different viewpoints. Each animation
ranges from 6 to 13 frames. The image contains single char-
acter, with original pixel size of 60× 60, we resize it to 224
× 224 to fit our network architecture. In our experiments,
our training and testing sequences have length 6. For an-
imations longer than 6 frames, we take sequences with 5
overlap frames. For example, 8 frames animation can gen-
erate 3 subsequences with length 6, with frame indices 1-
6,2-7,and 3-8. We use 600 characters for training, 72 for
testing and that collect 12,642 sequences for training, and
2000 sequences for testing.

Human3.6M Dataset. Human3.6M dataset [12, 6] is col-
lected for tasks like 3D reconstruction of body movements,
motion recognition and semantic segmentation. It’s ac-
quired by recording the performance of 5 female and 5 male
subjects, under 4 different viewpoints. Overall, it has 3.6
million 3D human poses and corresponding images, con-
sisting of 17 scenarios (discussion, smoking, posing, talk-
ing on the phone etc.). Since the subject number is very
limited, we adopt 9 of them for training and 1 for testing.
Since ”Posing” sequences contains variety of motions, we
generate the training and testing sequences from them. With
each video, we take 6 consecutive frames as a sequence, the
selected sequences have no overlaps, which gives us 10,125
training sequences and 1,600 testing sequences.

Baseline Methods. We compare our methods with a
state-of-the-art pixel generating based sequence prediction
method ECCV16 [36], which adopt a generative adversar-
ial network to improve the image qualities. The authors of
ECCV16 kindly trained the model for us with the same
datasets as our experiments. To evaluate the effectiveness
of our PoseFlow network, we synthesize the predicted im-
ages trough the method described in [1] (SIG92) using the
pose parameters estimated on the ground truth imagery.

Qualitative Evaluations. To illustrate the effectiveness
of our method, Figure 6 plots the synthesized images from
the trained network and compare with baseline methods.
The third row of Fig. 6 shows see some artifacts (high-
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Figure 5. PoseFlow network. Left part of the network output pixel-wise predictions of motion flow magnitude, and the right part is a fully
connected network predicting the future sparse poses that are densified into directional flow fields.

lighted in red) generated with [1], this is caused by in-
accurate motion flows for torso pixels. Our network can
learn appropriate magnitudes along the motion directions to
mitigate this artifact. Compared with MoFlowNet, Pose-
FlowNet has less blurriness (highlighted in green boxes),
and more accurate shape deformations (shown in Table 3.

In Fig. 6, we compare the synthesized images with base-
line methods. ECCV16 outputs a sequence of 64 × 64 im-
ages, we resize them to be 224 × 224. While poses can be
reasonably predicted, the synthesized appearance can dif-
fer strongly from the input image. This can be attributed to
the GAN network mimicking the test results by sampling
from training samples, instead of borrowing pixels specifi-
cally from the input test images. Since Sprites dataset con-
tains synthetic Emoji characters, pose detector cannot detect
poses from them, so we only compare our MoFlowNet with
ECCV16 (shown in Fig. 7 ). Again, ECCV16 can generate
correct poses as the groundtruth, however the color is dis-
torted, while our method generates more similar and crisp
appearance, especially on the static regions.

Quantitative Evaluations. As an error metric, we use
the mean squared error (MSE) between the synthesized out-
put and ground truth summed over all pixels. In Tab. 1,
we show the MSE for synthesized 3 frames tested on hu-
man3.6m and Sprites dataset. We can see for Human3.6M
dataset, the MoFlowNet and PoseFlowNet achieve on par
synthesis errors along the sequences, and outperform the
baseline methods by big margins. MoFlowNet reduce the
synthesis errors by half than ECCV16 on Sprites dataset.

We adopt CPM [5] on synthesized images and their
groundtruth to compare the estimated pose difference in
terms of relative angle (RelAng) and lengths (RelLen). To
measure the accuracy of our motion predictions, we com-
pare against the baseline motion for points sampled along
the straight-line segments detected on subsequent synthe-
sized and ground truth images (shown in Table 2).

To highlight the effectiveness of PoseFlowNet decou-
pled motion flow estimation, we compare against the

Method Frame 4 Frame 5 Frame 6
SIG92 235.6 561.2 932.5

ECCV16 4602.2 4737.9 4993.1
MoFlowNet 185.1 380.5 850.5
PoseFlowNet 197.6 365.1 796.1

ECCV16 53.9320 54.1431 54.8665
MoFlowNet 27.0103 27.7398 27.9549

Table 1. MSE testing error for different frames in human3.6m (top
four rows) and Sprites (bottom two rows) dataset.

Method Frame 4 Frame 5 Frame 6
PosePred 3.59 – 3.55 5.72 – 4.23 6.66 – 5.33
ECCV16 22.78 – 15.20 25.67 – 13.17 33.32 – 18.15

MoFlowNet 1.91 – 3.39 3.90 – 5.26 5.03 – 4.17
PoseFlowNet 1.54 – 2.84 2.11 – 3.23 4.54 – 4.32

Table 2. End positions – Motion flow direction prediction error for
different frames in human3.6m dataset. The values are in the unit
of pixels and degrees.

Method Frame 4 Frame 5 Frame 6
PosePred 4.82 – 2.11 5.31 – 4.06 5.91 – 6.39
ECCV16 26.22 – 9.51 21.91 – 8.08 20.08 – 7.24

MoFlowNet 3.47 – 1.51 5.29 – 1.93 7.38 – 2.40
PoseFlowNet 2.78 – 1.32 3.93 – 1.69 4.82 – 1.88

Table 3. RelAng – RelLen testing error for different frames in hu-
man3.6m dataset. The values are in the unit of degrees and pixels.

geometry-only flow estimate (PosePred) attained from den-
sifying our sparse pose motion predictions. Table. 3 shows
how PoseFlowNet consistently outperforms ECCV16,
MoFlowNet and the geometry-based motion field method.

To verify how the length of input sequences affect the
synthesis process, we adopt input length 1 − 4 on Sprites
dataset and show the first two prediction errors (in Table. 4)

To compare with the flow generating network, we take
the public model trained for [28] and predict the next frame
given input images ([28] test with one image, PoseFlowNet
test with the same image and its two previous frames, since
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Figure 6. Two testing sequences for human3.6m dataset, compare results generated by SIG92, ECCV16, MoFlowNet and PoseFlowNet.

our method require three images as input). The public
model only predicts the motion flow of the input image,
we visualize the motion flows generated by [28] and Pose-
FlowNet. We adopt the optical flow method proposed by
[17] as ground-truth. The red boxes in Fig. 8 show our

flow direction is closer to the ground-truth. By measuring
the direction error on non-white pixels, within the test set,
PoseFlowNet and [28] achieve 6.3 and 26.8 degree errors.

PoseFlowNet learns magnitude field, which acts like
masks. To verify the effectiveness of learned magnitude
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Figure 7. Testing sequences for Sprites dataset (Row A: input
frames, row B: ground truth output frames), and compare results
generated by ECCV16 (row C) and MoFlowNet (row D).

Input images # First Prediction Second Prediction
1 60.2 73.5
2 35.2 41.8
3 27.7 28.0
4 23.5 25.4

Table 4. MoFlowNet testing errors with different input images for
frame 5 and 6 on Sprites dataset.

E A B D C 

Figure 8. Motion flow prediction evaluation (A: input image,
B: next frame, C: Flow by [28], D: Flow by PoseFlowNet, E:
Groundtruth flow)

fields, we compare with the network that fills masks with all
1s. From Fig. 9 C, we can see that without learning mag-
nitude fields, the synthesized images (highlighted in green
boxes) will have severe distortions. PoseFlowNet prevents

pixels from moving into the wrong direction with the help
of the learned magnitude fields.
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Figure 9. One sample test sequence for Human3.6M dataset (Row
A: input frames, row B: ground truth output frames), and com-
pare results generated PoseFlowNet without learning the magni-
tude field (row C) and PoseFlowNet (row D).

5. Conclusions
Our MoFlowNet introduces the auto-encoder framework

to the dynamic-object motion prediction problem. In do-
ing so we have reduced supervisory requirements of dense
flow-based synthesis methods and augmented the scope of
their prediction to encompass multiple frames into the fu-
ture. Conversely, our PoseFlowNet focuses on human cap-
ture scenarios and introduces a framework that constraints
the search space by enforcing spatio-temporal pose co-
herency and robustifying these estimates through a learned
appearance-based preponderance. Moreover, by decoupling
these complementary problem aspects into an hybrid neural
network, we have outperformed the current state of the art
in challenging synthetic and real-capture datasets. Future
work includes, generalizing our 2D motion model (which
does not explicitly model out-of-plane rotation) to include
full 3D skeletal motion constraints and refine the model on
images with dynamic background where current methods
failed to generate satisfying results.
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