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Abstract

Attackers routinely perform random “portscans” of IP ad-
dresses to find vulnerable servers to compromise. Netwank-1n
sion Detection Systems (NIDS) attempt to detect such lwhavi
and flag these portscanners as malicious. An important need i
such systems jgrompt responsehe sooner a NIDS detects mal-

ice, the lower the resulting damage. At the same time, a NIDS

should not falsely implicate benign remote hosts as malgio

pattern ofport scanningnanifests quite differently from le-
gitimate remote access to the site, and thus holds promise
for providing a means by which a network intrusion detec-
tion system (NIDS) can identify an attacker at a stage early
enough to allow for some form of protective response to
mitigate or fully prevent damage.

A number of difficulties arise, however, when we attempt
to formulate an effective algorithm for detecting port scan

malicious scanners is a delicate and difficult task. We dgvel
connection between this problem and the theorgeafuential hy-
pothesis testingind show that one can model accesses to local

IP addresses as a random walk on one of two stochastic pro-

cesses, corresponding respectively to the access pattérhs-
nign remote hosts and malicious ones. The detection prothiem
becomes one of observing a particular trajectory and irifegr
from it the most likely classification for the remote host. We
this insight to develo@RW (Threshold Random Walk), an on-
line detection algorithm that identifies malicious remotsts. Us-
ing an analysis of traces from two qualitatively differeites, we
show that TRW requires a much smaller number of connection at
tempts (4 or 5 in practice) to detect malicious activity camegl to
previous schemes, while also providing theoretical bouwthe
low (and configurable) probabilities of missed detectiod faise
alarms. In summary, TRW performs significantly faster arsi al
more accurately than other current solutions.

1. Introduction

Many Internet attacks seen today begin witkeonnais-

ity. For example, clearly an attempted HTTP connection to
the site’s main Web server is okay, while a sweep through
the entire address space looking for HTTP servers is not
okay (though see below). But what about connections to a
few addresses, some of which succeed and some of which
fail?

Another issue is the granularity of identity. Do we con-
sider probes from adjacent remote addresses as part of a
single reconnaissance activity? What about probes from
merely nearby addresses, or disparate addresses which to-
gether form a clear “coverage” pattern? Similarly, the loca
ity of the addresses to which the probes are directed might
be quite tight (a set of ports at a single local address, or
the same port across adjacent local addresses) or scattered
about the site’s address space.

There are temporal considerations as well as spatial ones.
Over how much time do we track activity? Do we factor in
the rate at which connections are made? As time increases, a
related spatial problem also arises: due to the use of DHCP,
NAT, and proxies, a single address might correspond to
multiple actual hosts, or, conversely, a single host'svacti

sancephase in which the attacker probes a set of addressedy might be associated with multiple addresses over time.

at a site looking for vulnerable servers. In principle, this

Afinalissue is that aintent Not all scans are necessarily



hostile. For example, some search engines use not only “spiner is detected, the less information it can glean before be-
dering” (following embedded links) but also port scanning ing blocked.
in order to find Web servers to index. In addition, some ap-  |n general, we consider it acceptable to flag any re-
plications (e.g., SSH, some peer-to-peer and Windows ap-mote host as a scanner if it turns out that that host would
plications, etc.) have modes in which they scan in a benignnever subsequently make a useful connection, where “use-
attempt to gather information or locate servers. Ideally, w ful” means successfully established, data transferred, an
would like to separate out such benign use from overtly to the degree we can determine, the transfer was benign.
malicious use. We would note, however, that the questionClearly, assessing this property requires an oracle, and so
of whether scanning by search engines is benign will ulti- cannot be performed in real-time; but we can approximate it
mately be golicy decision that will reflect the site’s view by awhat-if assessment of our algorithm using trace-driven
of the desirability to have information about its serverbpu  simulation. Also, it is important to note that we do not aim
licly accessible. to detectall such scanners. We are content with detecting

The state of the art in detecting scanners is surprisingly most of them, provided we do so quickly. In addition, since
limited. Existing schemes have difficulties catching alt bu the data we have available from the two sites consists al-
high-rate scanners and often suffer from significant levels most solely of TCP connection logs, we confine our analy-
of false positives. In this work we focus on the problem of sis to detecting TCP scanners.
promptdetection: how quickly after the initial onset of ac- Regarding the other issues above, for simplicity we con-
tivity can we determine with high probability that a series fine our notion of “identity” to single remote IP addresses.
of connections reflects hostile activity? Note that “quyckl Thus, we do not aim to detect “distributed” scans [9]. We
here is in terms of the amount of subsequent activity by the 5150 focus on detecting scans of multiple local addresses,
scanner: the activity itself can occur at a very slow raté, bu regardless of their location in the address space, and do not
we still want tonip it in the bud i.e., detect it before it consjder detecting “vertical” scans of a single host. Imter
has gone very far; and, ideally, do so with few false posi- of time, we aim to detect scans that might be spread over in-
tives. The algorithm we develop, Threshold Random Walk teryals ranging up to hours (our traces are all 24 hours long)
(TRW), can generally detect a scanner after 4 or 5 connec-anq we do not consider the particular rate at which a remote
tion attempts, with high accuracy. host attempts to make connections.

In our work we use traces from two sites to developand 4 pursue the problem in the general framework of

assess our deteqtion algorithm. Both sites o_perate the Broanomaly detectiorthough unlike classical anomaly detec-
NIDS, which has its own scan detection algorithm based on ;4 \ve model not only benign behavior but also malicious

counting the number of different Io_cal addresses to which panavior. Initially, we had thought to develop an algorithm
a remote address makes connections. The alerts from the, o+ \would train on logs of past connections in terms of
NIDS thus give us a limited form of “ground truth.” Atone jtterences regarding to which portions of a site’s address
of the sites, these alerts are usedbtock subsequent ac-  gha06 and to which services, benign and malicious hosts

tivity from the scanner. Given the site’s willingness to use (g (g attempt to connect, and then use those differences as
this policy (which has been in place for a number of years), yiors for making Bayesian decisions. However, our anal-

and from the site’s operational follow-up of uncovering er- yqjs of the sites’ connection logs revealed a sharp distinc-
roneous blocks of benign sources (primarily triggered by i, petween the activity of apparently benign hosts and
complaints received by the help desk), we argue that thisjicious hosts simply in terms of the proportion of their
blocking policy is known to have a low degree of false pos- ¢,nnections that are successfully established, and so-our fi
itives and a high degree of efflca%?y. nal algorithm has the highly desirable properties thatt(1) i

_ Therefore, regarding the first issue above of how 10 de- goes not require training, and (2) it does not require re-
fine a scan, at a minimum we require that our algorithm per- parameterization when applying it at different sites.

form well in detecting the activity flagged by Bro’s algo- The development of the work is as follows.§2, we dis-

nthr_n._ However., we would also I|kg to detect lower-profile cuss previous research on scan detection, and related work.
malicious proplng, and we would like to show we can flag In §3, we present the connection log data that motivates the

the same t_raff_|cthat Bro doe_s, but sooner. S_peed OfdeueCt'OT;eneral form of our detection algorithm. §4, we develop

can be ql_ute important for sites such as this one where thethe algorithm and present a mathematical analysis of how to

NIDS actively blocks scanners, because the sooner a SC"‘mf)arameterize its model in terms of expected false positives

and false negatives, and how these trade off with the detec-

1 The site reports that on the occasions when the blockindghamézm tion speed (number of connection attempts observed). We
fails, it is generally a matter of a few hours before an ataaom-

promises a local host; while with the mechanism in places i mat- then e\/_aluate the performancg of the aIgo_rithr@chom-
ter of days to weeks. Thus, thwarting the reconnaissandétydtas paring it to that of other algorithms. We discuss issues for
great utility. further work in§6, and summarize if7.



2. Related Work tect likely scan sources [3]. The model derives an access
probability distribution for each local IP address, conguolut
As noted by Staniforat al, there has been surprisingly across all remote source IP addresses that access that des-
little work on the problem of detecting scans [7]. Histori- tination. Thus, the model aims to estimate the degree to
cally most scan detection has been in the simple form of de-which access to a given local IP address is unusual. The
tecting NV events within a time interval of’ seconds. The  model also considers the number of distinct local IP ad-
first such algorithm in the literature was that used by the dresses that a given remote source has accessed so far. Then,
Network Security Monitor (NSM) [2], which had rules to the probability is compared with that of scanners, which are
detect any source IP address connecting to more than 15 dismodeled as accessing each destination address with equal
tinct destination IP addresses within a given time window. probability. If the probability of the source being an at-
Such approaches have the drawback that once the windowacker is higher than that of the source being normal, then
size is known it is easy for attackers to evade detection bythe source is reported as a scanner.
simply increasing their scanning interval. Moreover, the a A major flaw of this algorithm is its susceptibility to gen-
gorithm can erroneously flag a legitimate access such as thagérating many false positives if the access probabilityrdist
of Web crawlers or proxies. bution to the local IP addresses is highly skewed to a small
Snort [6] implements similar methods. Version 2.0.2 set of popular servers. For example, a legitimate user who
uses two preprocessors. The first is packet-oriented, focusattempts to access a local personal machine (which is oth-
ing on detecting malformed packets used for “stealth scan-erwise rarely accessed) could easily be flagged as scanner,
ning” by tools such asmap[1]. The second is connection-  since the probability that the local machine is accessed can
oriented. It checks whether a given source IP addressbe well below that derived from the uniform distribution
touched more thatX number of ports o number of I[P used to model scanners.
addresses withi&@ seconds. Snort's parameters are tunable,  In addition, the model lacks two important components.
but it suffers from the same drawbacks as NSM since both The first of these are confidence levels to assess whether the
rely on the same metrics. difference of the two probability estimates is large enough
Other work has built upon the observation ttiailed to safely choose one model over the other. Second, it is not
connection attempts are better indicators for identifying clear how to soundly assign arpriori probability to desti-
scans. Since scanners have little knowledge of networknation addresses that have never before been accessed. This
topology and system configuration, they are likely to often can be particularly problematic for a sparsely populated ne
choose an IP address or port that is not active. The algorithmwork, where only small number of active hosts are accessed
provided by Bro [4] treats connections differently depend- Py benign hosts.
ing on their service (application protocol). For conneatio The final work on scan detection of which we are aware
using a service specified in a configurable list, Bro only per- is that of Staniforcet al. on SPICE [7]. SPICE aims to de-
forms bookkeeping if the connection attempt failed (was ei- tect stealthy scans—in particular, scans executed atoery |
ther unanswered, or elicited a TCP RST response). For othfates and possibly spread across multiple source addresses
ers, it considers all connections, whether or not theydaile SPICE assigns anomaly scores to packets based on condi-
It then tallies the number of distinct destination addresse  tional probabilities derived from the source and destorati
which such connections (attempts) were made. If the num-addresses and ports. It collects packets over potentmaily |
ber reaches a configurable parame¥erthen Bro flags the  intervals (days or weeks) and then clusters them using sim-
source address as a scanner. ulated annealing to find correlations that are then reported
By default, Bro setsV = 100 addresses and the set of as anomalous events. As such, SPICE requires significant
services for which only failures are considered to HTTP, fun-time processing and is much more complex than TRW.
SSH, SMTP, IDENT, FTP data transfer (port 20), and Go-
pher (port 70). However, the sites from which our traces 3, Data Analysis
came usedV = 20 instead.

Robertsonret al. also focused on failed connection at- We grounded our exploration of the problem space, and
tempts, using a similar threshold method [5]. In general, subsequently the development of our detection algorithm,
choosing a good threshold is important: too low, and it can using a set of traces gathered from two sites, LBL and ICSI.
generate excessive false positives, while too high, and itBoth are research laboratories with high-speed Internet co
will miss less aggressive scanners. Indeed, Robegtah nections and minimal firewalling (just a few incoming ports
showed that performance varies greatly based on parameblocked). LBL has about 6,000 hosts and an address space
ter values. of 217 + 29 + 28 addresses. As such, its host density is fairly

To address problems with these simple counting meth-sparse. ICSI has about 200 hosts and an address space of
ods, Leckieet al. proposed a probabilistic model to de- 2°, so its host density is dense.



LBL ICSI non-HTTP worms), and they are blocked by the (very lim-
1 | Total inbound connections || 15,614,500] 161,122 ited) firewalls at each sitelt is important to note that the
2 | Size of local address space 131,836 512  Bro monitor at LBL was locatedutsidethe firewall, and so
3 Active hosts 5,906 217 would see this traffic; while that at ICSI monitoretside
4 | Total unique remote hosts 190,928| 29,528 the firewall, so it did not see the traffic, other than a trickle
5 Scanners detected by Brip 122 7  that came from other nearby sites that were also within the
6 HTTP worms 37 69 firewall.
7 ot her _bad 74,383 15 We will refer to the collection of the scanners, HTTP
8 remainder 116,386| 29,437 worms, andt her _bad collectively asknown_bad.

Table 1. Summary of datasets 3.1. Separating Possible Scanners

Both sites run the Bro NIDS. We were able to obtain a
number of datasets of anonymized TCP connection sum- As mentioned in the Introduction, the available datasets
mary logs generated by Bro. Each log entry lists a times- give us a limited form of “ground truth,” in that the re-
tamp corresponding to when a connection (either inboundmote hosts tagged as scanners very likely do reflect hostile
or outbound) was initiated, the duration of the connection, scanners, and many (but surely not all) of the remote hosts
its ultimate state (which, for our purposes, was one of “suc- tagged as benign are in fact benign. However, to soundly ex-
cessful,” “rejected,” or “unanswered”), the applicatiomp plore the data we need to have as strong a notion of ground
tocol, the volume of data transferred in each direction, andtruth as possible. In particular, we need some sort of de-
the (anonymized) local and remote hosts participatingén th termination as to which of the large numberrefnainder
connection. As the need arose, we were also able to ask thentries (row 8 of Table 1) are indeed undetected scanners
sites to examine their additional logs (and the identities o that we then need to separate out from the set of otherwise-
the anonymized hosts) in order to ascertain whether partic-presumed-benign hosts before evaluating the effectigenes
ular traffic did indeed reflect a scanner or a benign host.  of any algorithm we develop.

Each dataset we analyzed covered a 24-hour period. We This is a difficult but crucial problem. We need to find a
analyzed six datasets to develop our algorithm and thenway to bootstrap our assessment of which of the remainder
evaluated it on two additional datasets. Table 1 summa-are likely, but undetected (due to their lower level of activ
rizes these last two; the other six had similar characteris-ity), scanners. Ideally, the means by which we do so would
tics. About 4.4% and 42% of the address space is populatede wholly separate from our subsequently developed detec-
at LBL and ICSI respectively. Note that the number of ac- tion algorithm, but we were unable to achieve this. Conse-
tive hosts is estimated from the connection status seerin th quently, our argument is nearly circular: we show that there
logs, rather than an absolute count reported by the site: weare properties we can plausibly use to distinguish likely
regard a local IP address as active if it ever generated a rescanners from non-scanners in tfenainderhosts, and
sponse (either a successful or rejected connection). we then incorporate those as part of a (clearly imperfect)

Among the 190,928 and 29,528 remote hosts that sentground truth against which we test an algorithm we develop
at least one packet to the corresponding site, the Bro sysihat detects the same distinguishing properties. The sound
tem at the site flagged 122 (LBL) and 7 (ICSI) as scan- ness of doing so rests in partin showing that the likely scan-
ners, using the algorithm described in the previous sectionners do indeed have characteristics in common with known
with N = 20. Row 6 in Table 1 lists the number of remote malicious hosts.
hosts that were identified as attempting to spread either the We first attempt to detect likely scanners by looking for
“Code Red” or “Nimda” HTTP worm. Those remote hosts remote hosts that make failed connection attempts to a dis-
that happened to find a local Web server and sent it the in-proportionate number of local addresses, comparing the dis
fection payload were caught by Bro based on the known sig-tribution of the number of distinct inactive local hosts ac-
natures for the worms. However, it is important to note that cessed bknown_bad hosts vs. those accessed by the as-
the datasets may contain many more remote HTTP wormsyet undifferentiatedemainder Ideally, the distribution for
that were undiagnosed by Bro because in the course of theiremainderwould exhibit a sharp modality for which one
random scanning they did not happen to find a local HTTP mode resembleknown_bad hosts and the other is quite
server to try to infect. different. We could then use the mode as the basis for dis-

The ot her _bad row in Table 1 corresponds to re- tinguishing undiagnosed scanners from benign hosts, con-
mote hosts that sent any packet to one of the following Structing a more accurate ground truth.
ports: 135/tcp, 139/tcp, 445/tcp, or 1433/tcp. These eorre
spond to Windows RPC, NetBIOS, SMB, aB@L-Snake 2 The firewall configurations at the two sites differ, but foedity we
attacks (primarily worms, though Bro lacks detectors for ~ Omit the details.
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Figure 1. Cumulative distribution of the number Figure 2. Cumulative distribution of the number
of remote hosts over the number of distinct lo- of remote hosts over the percentage of the lo-
cal addresses to which a remote host unsuc- cal hosts that a given remote host has accessed
cessfully attempted to connect (# of inactive lo- for which the connection attempt failed (% of in-
cal hosts). The vertical dotted line at = = 20 cor- active local hosts)
responds to the threshold used by the Bro NIDS
at the sites. amine the ratio of hosts to which failed connections are

Figure 1 p|0ts this Comparison_ Unfortunate'y’ we do not made vs. those to which successful connections are made.

see the desired modality feemainder Furthermore, the  Definei nacti ve_pct asthe percentage of the local hosts

distribution ofknown_bad is such that in order to detect that a given remote host has accessed for which the connec-

most of them solely on the basis of their failed access at-tion attempt failed (was rejected or unanswered). Figure 2

tempts, we would need to use a threshold significantly lower Shows the distribution afnact i ve_pct for each dataset.

than 20; and doing so will also flag a non-negligible por- Figure 2(a) shows that about 99.5% of LBIKsown_bad

tion3 of remainderwithout us knowing whether this judg_ remotes h|t nOthing but inaCtiVe hOStS (eXpeCted, due to the

ment is correct. Finally, we note that a basic reason for thefirewall for most of the ports such hosts attempt to access).

large spread in the distributions in Figure 1 (note that the For ICSI, the proportion is spread between 60%-100%, but

X_axis is |Og_scaled) iS due to the Very |arge spread we Ob_this still shows a clear tendency tHatown_bad hosts are

serve for the‘ate at Wh|Ch different scanners scan. ||ke|y to hit many non-existent hosts or hosts that do not
However, wedo find a strong modality if we instead ex- SUPpOrt the requested service.

On the other hand, we see that in both cases,r¢he

3 Recall that there are 10's of thousandseshainder so even asmall ~ mainderare sharply divided into two extreme sets—either
absolute portion of them can reflect a large number of hosts. 0% i nact i ve_pct, or 100%i nact i ve_pct —which




LBL ICSI 4.1. Model
Total unique remote hosts 190,928| 29,528
known.bad 74,542 91 Let an event be generated when a remote souncakes
scanners 122 7 a connection attempt to a local destinatiowe classify the
HTTP worms 37 69 outcome of the attempt as either a “success” or a “failure”,
remainder 116,386| 29,437 where the latter corresponds to a connection attempt to an
benign 61,456 17,974 inactive host or to an inactive service on an otherwise activ
| HTTP || 47,343] 6,026 host.
suspect 54,921| 11,463 For a giverr, letY; be a random (indicator) variable that
[ HTTP || 40,413] 11,143 represents the outcome of the first connection attempt by
to thes*" distinct local host, where
Table 2. Remote Host Characteristics: < 80% { 0 if the connection attempt is a success
. : . ; Y; = ) : ) :
i nacti ve_pct is used to separate benign hosts 1 if the connection attempt is a failure

from possible scanners. )
As outcomesyy, Ys, ..., are observed, we wish to de-

termine whether is a scanner. Intuitively, we would like

then gives us plausible grounds to use this dichotomy toto make this detection as quickly as possible, but with a
consider the latter remotes as likely to be scanners. high probability of being correct. Since we want to make

Based on this observation, we formulate the rule teat  Our decision in real-time as we observe the outcomes, and
mainderhosts with< 80%i nact i ve_pct are potentially since we have the opportunity to make a declaration after
benign*while hosts with higher values ohact i ve_pct each outcome, the detection problem is well suited for the
will be treated as possible scanners. We term these latteMethod ofsequential hypothesis testidgveloped by Wald
assuspect . Table 2 summarizes the resulting classifica- in his seminal work [8].
tions, and also the proportion due to remote hosts accessing
HTTP, since those dominate themainder 4.2. Sequential Hypothesis Testing

Finally, if we repeat the plots in Figure 1 feuspect
hosts, we find that they exhibit distributions quite similar
to those forknown_bad hosts, which provides additional
supporting evidence that the simpleact i ve_pct crite-
ria works well for differentiating between benign hosts and
scanners.

We consider two hypotheseH, and H;, whereH, is
the hypothesis that the given remote sourég benign and
H, is the hypothesis thatis a scanner.

Let us now assume that, conditional on the hypothesis
Hj;, the random variables;|H; i = 1,2,... are indepen-
dent and identically distributed (i.i.d.). Then we can egx
the distribution of the Bernoulli random variadle as:

PI‘[}/Z = O|H0] = 90, PI‘[K = 1|H0] =1- 90

4. Threshold Random Walk: An Online De- PLY; = O[] = 6. PilYi = 1[H,] =1—6 (1)

tection Algorithm
The observation that a connection attempt is more likely to
be a success from a benign source than a malicious one im-

In the previous section, we showed that one of the main % »
plies the condition:

characteristics of scanners is that they are more likely tha
legitimate remote hosts to choose hosts thanhdbexist

or do not have the requested service activated, since they Given the two hypotheses, there are four possible out-
lack precise knowledge of which hosts and ports on the tar-comes when a decision is made. The decision is caltel a
get network are currently active. Based on this observation tectionwhen the algorithm selectd; when H; is in fact

we formulate a detection problem that provides the basistrue. On the other hand, if the algorithm choogés in-

for an on-line algorithm whose goal is to reduce the num- stead, it is calledalse negativelikewise, whenH, is in

ber of observed connection attempts (compared to previoudact true, pickingH; constitutes dalse positive Finally,
approaches) to flag malicious activity, while bounding the picking H, whenHj is in fact true is termedominal
probabilities of missed detection and false detection. We use the detection probabilit};, and the false pos-
itive probability, Pr, to specify performance conditions of
the detection algorithm. In particular, for user-seleatald

0y > 61.

4  Clearly, 80% is a somewhat arbitrary choice, given themhaodal- uesa andg, we desire that:
ity, and any value greater than 50% has little effect on obseguent
results. Pr<a and Pp > 3



Event Y, the number of observations until the test terminatesyire.,
til one of the hypotheses is selected.

e Updj:e) and AQY) To develop the previous point, Wald showed thatn,)
e can be upper (lower) bounded by simple expression¥.of
/\ Yes Output and Pp. He also showed that these expressions can be used
@/ as practical approximations for the thresholds, where the
No Pr andPp are replaced with the user choseandgs. Con-
/\Yes sider a sample path of observatioyis Ys, . .., Y,,, where

enign H . .
\{OV— o (benig on then'™ observation the upper threshajdis hit and hy-

pothesisH; is selected. Thus:

Pr[Yy,...Y,|Hi]

Figure 3. Flow diagram of the real-time detection Pr[Yi,...Y,|Ho]
algorithm

(Continue with more 0bservations>

>m

For any such sample path, the probabiltyY;, ... Y, | H1]

. ) is at least); times as big a®r[Y1, ... Y, |Hy], and this is
where typical values m'ght be = 0'91 ands3 = 0'99' true forall sample paths where the test terminated with se-
The goal of the real-time detection algorithm is to make |ection of 17, regardless ofvhenthe test terminated (i.e.
an early decision as an event stream arrives to the SySte”PegardIess of.). Thus, the probability measure of all sam-

while satisfying the performance conditions (3). Follow- ple paths wherdT, is selected whei, is true is at least

ing [8], as each event is observed we calculate the likeli- 1 times the probability measure of all sample paths where

hood ratio: H, is selected whetH is true. The first of these proba-
_ Pr[Y|H] PrY;|H;] bility measure {; selected whetti; true) is the detection
AY) = Pr[Y(H] H?:lm 4) probability, Pp, and the second/; selected whetil,, true,
0 o is the false positive probability?. Thus, we have an up-
where Y is the vector of events observed so far and Per bound on thresholg:
Pr[Y'|H;] represents the conditional probability mass func- Pp
tion of the event strearki given that modeH; is true; and m < Pr (6)

where the second equality in (4) follows from the i.i.d. as- , )

sumption. The likelihood ratio is then compared toign ~ Analogous reasoning yields a lower bound fgr

per thresholdy);, and alower thresholdy. If A(Y) < g 1-Pp

then we accept hypothesi&,. If A(Y) > »; then we ac- 1— Pp < o (7)

cept hypothesigf;. If no < A(Y) < n then we wait for

the next observation and updaltéY’). See Figure 3.
Essentially, we are modeling a random walk for which

the excursion probabilities come from one of two possi-

ble sets of probabilities, and we seek to identify which B 1-p

; . . = 8
set is most likely responsible for an observed walk. We mey nTI T ®)

call our algorithm TRW, Threshold Random Walk, since gince we derived the bounds (6) and (7) for arbitrary val-
our decision-making process corresponds to a random walk,es of the thresholds, these bounds of course apply for this

with two thresholds. particular choice. Thus:
The thresholdg; andng should be chosen such that the

false alarm and detection probability conditions, (3) ate s B < Pp 1-Pp < 1-6 (9)
isfied. It is nota priori clear how one would pick these a” Ppr 1-Pr~ l-«

thresholds, but a key and desirable attribute of sequentialTaking the reciprocal in the first inequality in (9) and natin
hypothesis testing is that, for all practical cases, thestw  that sincePp is between zero and on®» < Pr/Pp,

olds can be set equal to simple expressions ahd3, and yields the more interpretively convenient expression:
they arendependenof (1), the Bernoulli distributions con- o 1

ditioned on hypotheseH, and H;. While these distribu- Pr< = = — (10)
tions play no role in the selection of the thresholdsand p n

10, they do (along with the thresholds) strongly afféét Likewise, for the second inequality in (9), noting tHat
Pp < (1— Pp)/(1 — Pp) yields:

5 To be more precise, it is a random walk in the logarithm of the 1-7

likelihood-ratio space. 1—-Pp < 1 = o (11)
-«

Now suppose the thresholds are chosen to be equal to
these bounds, where thé: and P are replaced respec-
tively with the user-chosen andg.




Equation (10) says that with the chosen thresholds (8), the

actual false alarm probability?r, may be more than the
g W y alng—i-(l—oz)lnl_ﬁ

chosen upper bound on false alarm probabititybut not E[N|H,) = o

by much for cases of interest where the chosen lower bound 6o 1n Z—; +(1—6p)In }:Z;

on detection probabilitys is, say, 0.95 or 0.99. For exam- Bl 4+ (1-p)n }:_5

ple, if o is 0.01 and3 is 0.99, then the actual false alarm E[N|H,] = - (14)

6y In g + (1 —61)In =5+

probability will be no greater than 0.0101. Likewise, equa-
tion (11) says that one minus the actual detection proba- ) )
bility (the miss probability) may be more than the chosen 4-4. Discussionson E[N|H;] vs. fp and 6,
bound on miss probability, but again not by much, given
that the chosen is small, say 0.05 or 0.01. Lastly, cross-
multiplying in the two inequalities in (9) and adding yields

As shown in Equation (14} [N|Hy) and E[N|H,] are
a function of the four parameters, 3, 6y, andd,, the false
positive and detection probabilities, and the degree tekwhi
1-Pp+Pr<1-3+a. (12) scanners differ from benign hosts in terms of modeling their
probability of making failed connections. With those vadue

Equation (12) says that although the actual false alarm orset, we can estimate the average number of distinct destina-
the actual miss probability may be greater than the desiredtion IP addresses that a given port scanner can probe before
bounds, they canndibthbe, since their surh — Pp + Pr being caught by the algorithm.

is less than or equal to the sum of these bounds. Assuming a scanner picks IP addresses at rando,

The above has taken the viewpoint that the user a pri-the probability that it chooses an IP address with the re-
ori chooses desired bounds on the false alarm and detecduested service on—depends on the density of these ad-
tion probabilitiesr and, and then uses the approximation dresses in a monitored network. Figure 4(a) shows how
(8) to determine the thresholds andn;, with resultingin-  E[N|Hi] changes a$, increases. Withw = 0.01, 3 =
equalities (10) - (12). An alternative viewpoint is that the 0-99, andfy = 0.8, E[N|H,] is 5.4 whend, = 0.2, and
user directly chooses the thresholgisands), , with knowl- ~ 90€s up to 11.8 whefy, = 0.4. (We used), = 0.2 based
edge of the inequalities (10) and (11). In summary, setting On the observations from data analysisiB) In general,
the thresholds to the approximate values of (8) is simple, it takes longer to tell one model from the other the closer

convenient, and within the realistic accuracy of the model. the two models are to each other. Figure 4(a) also shows
that [N |H,] goes up as gets lower, which illustrates the

i i trade off between low false positive probability and fast de
4.3. Number of Observationsto Select Hypothesis tection.
. o ) We can detect faster in situations whégés higher. Le-
Given the performance criteria, (3), and the associatedgitimate users often make a connection request with a host
thresholds, (8), the remaining quantity of interest is the name. Unless the DNS provides outdated information, they
number of observatioiVv until the test terminates, i.e., un- rarely access inactive hosts, and thereféye-the proba-
til one of the hypotheses is selected. Following Wald [8], pility that those users hit an active IP address—can beyfairl
we present approximate expressions for the expected valugjgh, However, the presence of benign Web crawlers and
of N (see Appendix | for a discussion of the tail probabil- proxies that sometimes access inactive hosts through bro-
ity of N). . o . _ ken links, or a few infected clients putting requests thioug
For the analysis ok, it is convenient to consider the log 3 proxy that serves mostly benign users, can require a lower
of the likelihood ratio, (4), and view the resulting expres- ¢, for modeling.
sion as a random walk: In those circumstances where such problematic hosts can
N be controlled, however, then we can configure the detection
Sy =In(A(Y)) = ZX“ where X, =1In <Pr[Yi|H1]) algorithm .to. use a highety, and thus enable it to make a
Pr[Y;|Ho] ) faster decision. Figure 4(b) show# N |H,] whend, is set
to 0.9. The decrease in detection time is significant.

=1

and N is the observation number at whi¢hy first hits or
crosses either the upper threshaidy, , or lower threshold, 4.5 Limitations
In 7. (Note thatSy = 0.)

From Wald's equalityE[N| = E[Sn]/E[X;], and we We develop TRW based on the assumption that condi-
can obtain expressions f@&|[Sy| and E[X;], conditioned tional on the hypothesis (that a remote host is benign or a
on the hypothesed, and H; . Appendix | provides expres-  scanner), any two distinct connection attempts will haee th
sions forE[Sy] andE[X;]. Combining (8), (15), and (16), same likelihood of succeeding and their chances of success
we obtain the approximate result; are unrelated to each other.



5. Evaluation

18 alpha = 0.001 —&— /J 18 . .
16 Lalaplhﬁ;obogg o 16 This section evaluates the performance of the TRW al-
14 ' 5/ " gorithm in terms of its accuracy and the detection speed us-
b v 12 ing trace-driven simulations. We explicate cases flagged as
e /z/‘ E% Hy (benign) orH, (malicious) by TRW. Then, we compare
z N 1 10 the performance of TRW with that of Bro and Snort.
° A X *'36 8
6 . A 6 5.1. Trace-driven Simulation
T X
4 e 4
5 % ) We use the datasets described3for evaluation. Each
0 005 01 015 02 025 03 035 04 045 line in a dataset represents a connection seen by the Bro
theta_1 NIDS, sorted by the timestamp of the first packet belonging
(@0 = 0.8 to the connection. Connection information includes a seurc
IP, s, a destination IR}, and the connection status. In reality,
the connection status is not immediately available when the
8 o0l =6 18 first packet arrives. For our analysis, we assume that the de-
16 Lﬂ';lhﬁa:jb?gi o 16 tector can consult an oracle that can tell upon seeing an in-
14 14 coming TCPSYNwhether it will result in an established, re-
1 1 jected, or unanswered connection. (We might approximate
) such an oracle by giving the detector access to a database of
= 10 10 . - “ ”
& .- which ports are open on which addresses, though “churn
8 /T p 8 at a site might make maintaining the database problematic.)
6 ”’E ){i 6 Alternatively, the detector can wait a short period of tie t
4 B/Ea/a’tf/a/z’; R 4 see whether th&YN elicits aSYN ACK, a RST, or no re-
5 e ¥ E % 2 sponse, corresponding to the three cases above.
0 00501 015 0: 0-125 03 035 04 045 For eachs, TRW maintains 3 variabled); is the set of
heta distinct IP addresses to whighhas previously made con-
(b) 6o = 0.9 nections.S, reflects the decision state, one BENDI NG,

Hy; or Hy. L, is the likelihood ratio. For each line in the
dataset, the simulation executes the following steps:

Figure 4. E[N|H,] vs. other parameters; (3 is 1) Skip the line ifS, is not PENDI NG (a decision has al-
fixed to 0.99 ready made for the remote hagt

2) Determine whether the connection is successful or not.

The bounds for upper and lower thresholds (Equation(6) A connectéon is considered successful if it elicited a
and (7)) are valid, given that the sequential hypothests tes SYN ACK.
will eventually terminate with probability one, which hald 3) Check whethed already belongs td.. If so, skip the
given independence of outcomes, and also for some cases nexttwo steps and proceed to the next line.
of dependence [8]. Unfortunately, this will not hold for all 4y UpdateD, with d, and update the likelihood ratid,,
cases of dependence. For instance, if a scanner prfgbes using Equation(4).
inactive servers exactly alternating wifti active servers,
our random walk will oscillate between one step up and one
step down and it will never hit either threshold. On the other
hand, dependence that leads to positive correlation in out- Table 3 shows the simulation results for LBL and ICSI
comes (.e. successes are more likely to be followed by an- datasets. We excluded remote hosts that accessed less than
other success or likewise for failures) will tend to shorten

the time to hit a threshold. This form of dependence seemsé Due to ambiguities in Bro's log format, for connectionsniarated
more likelv to occur in practice. by the remote originator with BST we sometimes cannot determine
y P whether the local host actually responded. Bro generagesaime con-

Dependence, however, invalidates the second equality in n_ection status for the case in which the connection was fitablished
P q y via the local host responding with&¥N ACK and the case where the

Equation(4). Instead, the likelihood ratio should be calcu remote host sent 8YN and then later, without receiving any reply,

lated using a joint probability distribution, which comypli sent aRST. Accordingly, we treat such connections as failures if the
cates the computation logs indicate the local host did not send any data to the reimaost.

5) If L; equals or exceeds, setS, to H;. If L is lower
than or equal tayy, setS, to Hy.




LBL ICSI
Type Count| Pp | N | MaxN || Count|] Pp | N | MaxN
scan Total 122 - - - 7 - - -
H, 122 | 1.000| 4.0 6 7| 1.000]| 4.3 6
wor m Total 32 - - - 51 - - -
H, 27 | 0.844| 45 6 451 0.882| 5.1 6
PENDI NG 5 - - 5 6 - - 5
ot her _bad Total | 13257 - - - 0 - - -
H, || 13059 0.985| 4.0 10 0 - - -
H, 15 -1 51 10 0 - - -
PENDI NG 183 - - 11 0 - - -
beni gn Total 2811 - - - 96 - - -
H, 33 -18.1 24 0 - - -
Hy 2343 -1 41 16 72 -1 4.0 4
PENDI NG 435 - - 14 24 - - 9
suspect Total 692 - - - 236 - - -
H, 659 | 0.952| 4.1 16 234 0.992| 4.0 8
PENDI NG 33 - - 7 2 - - 7

Table 3. Simulation results when Pp = 0.99, Pr = 0.01, 6; = 0.2, and 6, = 0.8

Type || LBL | ICSI cessed at least once before we flagged those remote hosts as
| DENT 18 (2.7%) 0 (0%) H,. These hosts are Microsoft Windows machines that sent
> 2 protocols| 87 (13.2%) 8 (3.4%) Net Bl OS packets back to a local host that initiated connec-
only HTTP || 541 (82.1%)| 226 (96.6%) tions to them, which is a benign operation, and therefose it i
remainder| 13 (2.0%) 0 (0%) correct to flag them a&ly. The other 3 were flagged &%

due to successfllDAP, | MAP4, or SMTP connections fol-

Table 4. Break-down of “suspect s” flagged as lowed by a fewNet Bl CS packets. Although it hard to tell

H, for sure whether these accesses reflect benign use or sophis-
' ticated multi-protocol probing, it is likely to be the forme
4 distinct IP addresses from this table because With= because the earlier connections succeeded.
0.99, Pp = 0.01, 6, = 0.2, andf, = 0.8, TRW requires This leaves just one more possible malicious remote host

at least 4 observations to make a decision. The results dethat missed being detected. Unfortunately, this one is-diffi
pend on the parameter values; we present here results baséd!lt to distinguish because there were only 6 connections
on typical settings, where the detection probability sHoul from that remote host recorded in the trace: 5 of t_hem were
be at least 0.99 and the false alarm rate no larger than 0.01Very short, but successfHTTP connections to 5 different
We chos#); andd, based on the discussion§8. Although servers, and there was only one unsuccessful connection at-
we found that almost all benign users never hit an inactive {€mpt to port 135 (generally perceived as hostile, but some-
server, we chosé, conservatively, to reduce the chances of times subject to “misfire’). N
flagging Web crawlers and proxies as scanners. Surprisingly, there are no falge_posmves for the ICSI
First, we group remote hosts into the categories defineddataset even though = 0.01. This is a rather encourag-
in §3 and calculaté®, within each category. For both LBL ~ INg result, demonstrating that TRW can outperform the per-
and ICS| datasets, TRW caught all of the scanners flagged©rmance specification in some cases.
by Bro’s algorithm. However, TRW missed a few HTTP There are 33 false positives in the LBL dataset. On ex-
worms that Bro identified (using known signatures), be- @mination, we found that 3 of them sent dubENT re-
cause of the slow scanning rate of those worms. (Note thatduests t a number of local machines in response to out-
the maximum number of IP addresses scanned by thos@0UNdSMIP or ssh connections. This is a common se-
worms was 6 for both the LBL and ICS| dataset.) quence of benign behavior. Since thBENT requests were

TRW detected almost all the remote hosts that made con.'€j€cted by the local machines, the remote host was erro-
nections to “forbidden” ports (see the corresponding rows neously flagged as a scanner. This, however, can again be
for ot her _bad) and also the remote hosts classified as _ . .

7 Many versions of Microsoft operating systems use port I85rd-
suspect . There were 1%t her _bad flagged ast, for mote procedure calls. But, one of the vulnerabilities aissed with
the LBL dataset. Among those 15 hosts, we observe that  this mechanism was exploited by the Blaster worm, which pfep-
11 remote hosts were machines that some local host had ac- adates via port 135.
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Trues H; | True positives| Efficiency | Effectiveness

LBL | Pre-filtering| 14,103| 13,900 13,867 0.998 0.983
Post-filtering || 14,068| 13,878 13,848 0.998 0.984

ICSI | Pre-filtering 294 286 286 1.000 0.973
Post-filtering 294 286 286 1.000 0.973

Table 5. Performance in terms of Efficiency and Effectiveness. Post-filtering eliminates remotes to which a
local host previously connected. Pre-filtering is calculated based on Table 3.

fixed if we keep track of remote hosts to which local hosts a decision was made before a scanner probed more than
successfully established connections before the remate ho 16 machines—strictly better than the best case provided by
makes failed connection attempts in response to those conBro’s algorithm.

nections. We call thedeendly hosts, and suggest using this Finally, to quantify the effectiveness of TRW, we use the
additional context as a way to reduce false positives with- two measures proposed by Stanifetdl. [7]:

out changing any parameters of the general detection algo-

rithm. o Efficiencythe ratio of the number of detected scanners
One host was aBMTP client that tried 4 different valid (true positives) to all cases flagged/ds.

hosts in the monitored network, but terminated each con- o Effectivenesghe ratio of the number of true positives

nection with aRST paCket 11 seconds after the init@BYN to all scanners (trues)_ This is the Samet@s detec-

packet. From its hostname, it appears most likely a legit- tion rate.

imate client, perhaps one working through a stale mailing

list. Efficiency conveys a similar meaning to false positive rate,

All of the remaining 29 false positives turned out to be but is more useful when the total number of true positives

Web crawlers and proxies. Dealing with these is problem- is significantly smaller than the total numb_er of samples.
atic: crawlers are, after all, indeed scanning the sitethed ~ 1able 5 shows these values for the two sites. For ICSI,
proxies generally channel a mixture of legitimate and pos- Pécause of 8 misses (6 HTTP worms and#spect),
sibly malicious traffic. These might then call for a diffeten 1 RW results in a lower effectiveness (0.973) than expected
reactive response from the NIDS upon detecting them: for (3 = 0.99). But, the overall performance is excellent. We
example, using more stringent thresholds to require aarge C0Mpare TRW's performance with that of Bro and Snort in
proportion of scanning activity before they are shunned; or the next section.

automatically releasing a block of the remote address af-

ter a period of time, in order to allow legitimate proxy traf- 5.2, Comparison with Bro and Snort

fic to again connect to the site.

Table 4 lists the types a§uspect remote hosts that For simplicity, we exclude thewr mandot her _bad
were flagged asi; by TRW. As discussed above, hosts category because as configured at LBL and ICSI, Bro does
flagged asH; due to respondindg) DENT connections in-  not perform scan-detection analysis for these. As through-
stead are considerdd,. With the simple method suggested out the paper, we configure Bro’s algorithm with = 20
above of allowing remote hosts to make failed connectionsdistinct hosts.
if they've previously received outbound connections from  For Snort, we consider itgor t scan2 scan-detection
the site, we were able to identify all of tseispect remote preprocessor, which takes into account distinct connestio
hosts. Over 80% made nothing but faileff TP connec- rather than distinct TCBYN packets—the latter can gen-
tions, and we therefore suspect them as undetected wormserate many false positives if a single host sends multi-
Table 3 also shows the averag€)(and maximum number ple SYNs in the same failed connection attempt. We use
of distinct local IP addresses that each detected remote hosSnort’s default settings, for which it flags a source IP ad-
accessed upon being flagged. In theory, wher- 0.01, dress that has sent connections to 5 different IP addresses
6 = 0.99, 6, = 0.8, andd, = 0.2, the approximate solu- within 60 seconds. (We ignore Snort’s rule for 20-different
tion for E[N|H,] is 5.4 as shown i§4.4, and our trace-  ports-within-60-seconds because our emphasis here is on
driven simulations are consistent with this figure. This-sug detecting scans of multiple hosts rather than vertical scan
gests that the parameters choserffaandd; closely model of a single host.) We note that Snort’s algorithm can er-
the actual behaviors of scanners and benign users. Noteoneously flag Web crawlers or any automated process to
that with everything else fixedy would have been much fetch Web documents if there are more than 5 active Web
higher than 5 ifd; was greater than 0.3, as shown in Fig- servers in a monitored network. It can also be easily evaded
ure 4(a). It is also noteworthy that even in the worst case, by a scanner who probes a network no faster than 5 ad-
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TRW Bro Snort
H, | N|MaxN | Hi | N | MaxN

Type | Total H, | N | MaxN
scan | 121 121 | 4.0 6| 121 | 21.4 28| 63| 16.8 369
beni gn | 2811|| 30 - - 0 - - || 57 - -
suspect 692 || 659 | 4.1 16 0 - -l 28] 7.9 33
Table 6. Comparison of the number of H; across three categories for LBL dataset
TRW Bro Snort
Type | Total || H; | N |MaxN | H; | N |MaxN | H, | N | MaxN
scan 7 7|43 6 71359 119 5| 6.0 6
beni gn 96 0 - - 0 - - 0 - -
suspect 236 || 234 | 4.0 8 0 - - 216.0 6

Table 7. Comparison of the number of H; across three categories for ICSI dataset

dresses/minute. Tables 6 and 7 show the number of (non-
local) hosts reported &8, by the three algorithms. Trace Measures| TRW | Bro | Snort
Table 8 compares the efficiency and effectiveness across LBL Efficiency || 0.963| 1.000| 0.615
the three algorithms for both datasets. Note that two mea- Effectiveness| 0.960| 0.150| 0.126
sures for TRW differ from Table 5 because of the two cat- N || 4.08| 21.40| 14.06
egories (wor m ot her _bad) excluded in this comparison. ICSI Efficiency || 1.000| 1.000| 1.000
Bro has the highest efficiency followed by TRW and Snort. Effectiveness|| 0.992 | 0.029| 0.029
But Bro’s highest efficiency comes at a cost of low effec- N 4.06| 36.91| 6.00

tiveness. Given its simple thresholds and limited time win-
dow, we expected that Snort would provide fast detection.
But, as shown in Tables 6 and 7, Snort was slower than
TRW on average. In contrast to TRW, which on average
flagged scanners when they hit no more than 5 distinct IPthe specific service (for example, we could use more con-
addresses, Snort waited for more than 13 IP addresses. Snogbrvative parameters for possib'e HTTP Scanning than for
can increase the detection speed by lowedihgr Z val-  other ports, given the difficulty of confusing HTTP scan-
ues® But, this will likely increase false alarms. Indeed, for ners with HTTP proxies); (2) distinguishing between unan-
LBL, 38.5% of the alarms by Snort were due to false posi- swered connection attempts and rejected connection at-
tives. tempts, as the former might be more indicative of a com-
Compared with Snort and Bro, TRW provided the high- plete “shot in the dark” whereas the latter could sometimes
est effectiveness while maintaining h|gher than 0.96 effi- indicate a service that is temporar"y Oﬂ:_”ne; (3) coresid
ciency. On average, detection was made when a target madgyg the time duration that a local address has been inactive,
connections to 4.1 active or inactive IP addresses. Thisave tg pe robust to benign connection attempts made to tem-
age number of give-away IP addresses to scannersor porarily unavailable hosts; (4) considering the rate aivhi
pect s is about 3 times lower than that of Snort and about 3 remote host makes connection attempts; (5) introducing a
5 times lower than that of Bro. In addition, TRW has the ad- Component of correlation in the modeL e.g., that two con-

vantage over Snort that its analysis is not confined to a lim- secutive failed connection attempts are more suspect than

Table 8. Comparison of the efficiency and effec-
tiveness across TRW, Bro, and Snort

ited window of time: TRW has a wide dynamic range. two failures separated by a success; (6) devising a model of
which local addresses and ports are historically moreyikel
6. Discussion and Future Work to be visited by benign sources or scanners (per our origi-
nal plan for anomaly detection outlined in the Introduc}ion
In this section we look at a number of additional dimen-  However, incorporating information such as the above

sions to the problem space. Addressing these is beyond thes a two-edged sword. It may provide additional detection
scope of the present work, but we sketch our thinking on power—something to keep in mind for the discussion of

how we will pursue them in our future work. other issues in this section—but at the cost of complicat-
Leveraging Additional Information. TRW’s perfor- ing use of the model, analysis of its properties, and, poten-

mance is somewhat remarkable given the limited informa- tially, undermining its performance in some situations.

tion it uses. Potential refinements include: (1) factoring i Managing State. The need to track for each remote host

the different local addresses to which it has connected can

8  Seef2 for the definitions of” andZ in fact require a large amount of state. For example, imag-
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ine the operation of the algorithm duringS¥N flooding ing which combinations of addresses legitimate users tend
attack with spoofed remote addresses. Virtually everyarri  to access, and then giving less weight to successful connec-
ing SYN will require the instantiation of state to track the tions not fitting with these patterns.

new purported remote host. If, however, we cap the state Distributed Scans. As stated in the Introduction, we
available to the detector, then an attacker can launch a floodconfined our work to the problem of determining whether

in order to exhaust the state, and then conduct a concurrena single remote address corresponds to a malicious scanner.
scan with impunity. It appears difficult to directly adapt our framework to deter

How to Respond. As shown in§5, TRW is much more mining whether a set of remote addresses collectively cor-
effective at detecting low-volume scanners than Bro or respond to malicious scanning (such as if they divide up
Snort. However, this then raises the question of what to dothe address space and each probe just a couple of addresses
with the alerts. For example, Table 5 shows that TRW de- Within it), because our algorithm depends on tracking suc-
tects nearly 14,000 scanners in the LBL dataset (presum_cess/failure information of individual remotes. It mayyio
ably almost all of these are worms), vastly more than the €ver, be possible to extend our algorithm with post process-
122 detected by Bro at the site. As mentioned in the Intro- ing to try to do so by combining a number of “low grade”
duction, LBL uses Bro's scanner detection decisions te trig Signals (either detected scanners, or those whose random
gerblockingof the hostile remote host. However, the site re- Walks have taken them somewhat in the directio/of.
ports that the blocking mechanism cannot scale to 1000’s of
blocks per day (this is why the site does not block HTTP 7. Summary
scanners, because at times the endemic HTTP scans from
worms can reach such levels). Thus, there is future work We have presented the development and evaluation of
needed on mechanisms for determining whether a particularTRW—Threshold Random Watkan algorithm to rapidly
scanner is “block-worthy,” i.e., will the given scanner eon detect portscanners based on observations of whether a
tinue to scan to a degree significant enough that they meritdiven remote host connects successfully or unsuccessfully
blocking or some form of rate control, or can they be ig- 0 newly-visited local addresses. TRW is motivated by the
nored because they are scanning at a rate (or for a servic€mpirically-observed disparity between the frequencyrwit

of sufficiently low interest) that the site can afford to leet ~ Which such connections are successful for benign hosts
scan run its course? vs. for known-to-be malicious hosts. The underpinnings of

TRW derive from the theory afequential hypothesis test-
ing, which allows us to establish mathematical bounds on
the expected performance of the algorithm.

d Using an analysis of traces from two qualitatively differ-
nt sites, we show that TRW requires a much smaller num-
er of connection attempts (4 or 5 in practice) to detect ma-
cious activity compared to previous schemes used by the
Snortand Bro NIDS. TRW has the additional properties that
(1) even though it makes quick decisions, it is higabtcu-

Evasion and Gaming. Any scan detection algorithm
based on observing failed connection attempts is suscep
tible to manipulation by attackers who spoof remote ad-
dresses and cause innocent remote hosts to be penalize
Depending on the reactive response taken when a scan i%
detected, address spoofing could provide the attacker with]_
a great deal of leverage for denial-of-service. We note that !
the operators at LBL recognize this risk, and address it us-

ing “white lists” of critical remote hosts that should neber te. with few fal i 42 iti ;
blocked. They have found this approach practical in today’s rate, with very Tew 1aise positives, an ()1 IS conceptu-
ally simple which leads to both comprehensibility regard-

environment, but this could change in the future if attack- how it K d vtic tractability in deriving the
ers become more energetic in targeting the response sys'-ng OWIL WOTks, and analytic tractabliity in deriving theo

tem. A possible additional approach here would be to haveret'lCal bounds ogét\fvperf?rmanc_e. ificantly fast dal
a honeypot respond to some of the connection attempts to n summatryi th pt:rr] orms S'g?' |c|a? y laster and also
see whether the remote host then completes the 3-way egnore accurately than other current solutions.

tablishment handshake. If not, then the remote address is
potentially spoofed. 8. Acknowledgements
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Appendix |
Conditional Expectation and Tail probability
of N

Following Wald, [8], we provide expressions for the con-
ditional expectation o6y and X; whose ratio is the con-
ditional expectation ofV, E[N|H,], j = 0,1. Then, using
the central limit theorem, we provide the tail probabilify o

whereo (X;|H,) denotes the standard deviation6f given
hypothesisi;, j =0, 1.

1-6,0
o(Xi|Ho) = \/90<1—90>~1n<1_9;§)
1-6,0
o(X;|Hy) = \/91(1—91)-1n<1_9;£)

N, which can be useful to estimate the worst case scenarApplying the central limit theorem to (18) yields an ap-

ios when this algorithm is used.
For X;,

with prob.1 — 6,
with prob.6,

In =6+ with prob.1 — 6
XilHy = { In ot with prob.¢;
E[X;|Ho] = (1—90)1[11_91 +901n9—1 (15)
R
E[X;|H] = (1—-6)In—2 4+6,In-t
[Xi|Hi] ( 1)n1_90 1n g

If we assume the sequential test ends wfith hitting,
equaling, eithednno or Inn;y, i.eif we ignore any over-
shoot, then

_f Inm  with prob.«
Sn|Ho = { Inno  with prob.1 — «

~ f Inm  with prob.s
Sn|Hy = { Inny  with prob.1 —
E[Sy|Hy] = alnm+(1—a)lnng (16)
E[Sy|H1] = PBlam+(1—0)lan

Combining (8), (15), and (16), we obtain the approxi-
mate result in Equation(14).

For the tail probability of N, we apply the central
limit theorem to)",_; X;. Note that if the random walk,
>oie, X, is greater than or equal to upper threshbid);
at observatiom,, then the sequential hypothesis test must
have terminated by theng.N < n,. Conditioning on the
hypothesis for which hitting the upper threshold is more
likely, H1, we have:

Pr(d " X; >Inm|Hi| < PN <n|H] (17)
i=1
Normalizing the left hand side of (17) to mean zero vari-
ance one, yields:

PI‘ [Z?—Dl Xl — nOE[X1|H1]
Vo - o(Xi|Hy)

1n’l71 — TLOE[XilHl] |H
Vo o(Xi|Hy)
(18

15

proximate lower bound for the distribution &f| H,, which
can be used as an approximation for the distribution itself,
where the error tends to be on the conservative side (i.e.
tends to under estimate the likelihodd< n,). Thus,

111771 — TLOE[X1|H1]

Ve ) 9

where®(z) equals the probability of a normally distributed
random variable with mean zero and variance one is less
than or equal ta:.

Analogous reasoning for the lower threshold and condi-

tioning onHy, yields
3 < ) (20)

Pr[N < n,|Hi] = 1—<I><

111770 — nOE[X1|H0]
/Mo - O’(X1|H0)

~
~

Pr[N < n,|Hy)



