
Fast Portscan Detection Using Sequential Hypothesis Testing

Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA USA

{jyjung, awberger, hari}@csail.mit.edu

ICSI Center for Internet Research
and

Lawrence Berkeley National Laboratory
Berkeley, CA USA

vern@icir.org

Abstract

Attackers routinely perform random “portscans” of IP ad-
dresses to find vulnerable servers to compromise. Network Intru-
sion Detection Systems (NIDS) attempt to detect such behavior
and flag these portscanners as malicious. An important need in
such systems isprompt response: the sooner a NIDS detects mal-
ice, the lower the resulting damage. At the same time, a NIDS
should not falsely implicate benign remote hosts as malicious.

Balancing the goals of promptness and accuracy in detecting
malicious scanners is a delicate and difficult task. We develop a
connection between this problem and the theory ofsequential hy-
pothesis testingand show that one can model accesses to local
IP addresses as a random walk on one of two stochastic pro-
cesses, corresponding respectively to the access patternsof be-
nign remote hosts and malicious ones. The detection problemthen
becomes one of observing a particular trajectory and inferring
from it the most likely classification for the remote host. Weuse
this insight to developTRW (Threshold Random Walk), an on-
line detection algorithm that identifies malicious remote hosts. Us-
ing an analysis of traces from two qualitatively different sites, we
show that TRW requires a much smaller number of connection at-
tempts (4 or 5 in practice) to detect malicious activity compared to
previous schemes, while also providing theoretical boundson the
low (and configurable) probabilities of missed detection and false
alarms. In summary, TRW performs significantly faster and also
more accurately than other current solutions.

1. Introduction

Many Internet attacks seen today begin with areconnais-
sancephase in which the attacker probes a set of addresses
at a site looking for vulnerable servers. In principle, this

pattern ofport scanningmanifests quite differently from le-
gitimate remote access to the site, and thus holds promise
for providing a means by which a network intrusion detec-
tion system (NIDS) can identify an attacker at a stage early
enough to allow for some form of protective response to
mitigate or fully prevent damage.

A number of difficulties arise, however, when we attempt
to formulate an effective algorithm for detecting port scan-
ning. The first is that there is no crisp definition of the activ-
ity. For example, clearly an attempted HTTP connection to
the site’s main Web server is okay, while a sweep through
the entire address space looking for HTTP servers is not
okay (though see below). But what about connections to a
few addresses, some of which succeed and some of which
fail?

Another issue is the granularity of identity. Do we con-
sider probes from adjacent remote addresses as part of a
single reconnaissance activity? What about probes from
merely nearby addresses, or disparate addresses which to-
gether form a clear “coverage” pattern? Similarly, the local-
ity of the addresses to which the probes are directed might
be quite tight (a set of ports at a single local address, or
the same port across adjacent local addresses) or scattered
about the site’s address space.

There are temporal considerations as well as spatial ones.
Over how much time do we track activity? Do we factor in
the rate at which connections are made? As time increases, a
related spatial problem also arises: due to the use of DHCP,
NAT, and proxies, a single address might correspond to
multiple actual hosts, or, conversely, a single host’s activ-
ity might be associated with multiple addresses over time.

A final issue is that ofintent. Not all scans are necessarily

1

hostile. For example, some search engines use not only “spi-
dering” (following embedded links) but also port scanning
in order to find Web servers to index. In addition, some ap-
plications (e.g., SSH, some peer-to-peer and Windows ap-
plications, etc.) have modes in which they scan in a benign
attempt to gather information or locate servers. Ideally, we
would like to separate out such benign use from overtly
malicious use. We would note, however, that the question
of whether scanning by search engines is benign will ulti-
mately be apolicy decision that will reflect the site’s view
of the desirability to have information about its servers pub-
licly accessible.

The state of the art in detecting scanners is surprisingly
limited. Existing schemes have difficulties catching all but
high-rate scanners and often suffer from significant levels
of false positives. In this work we focus on the problem of
promptdetection: how quickly after the initial onset of ac-
tivity can we determine with high probability that a series
of connections reflects hostile activity? Note that “quickly”
here is in terms of the amount of subsequent activity by the
scanner: the activity itself can occur at a very slow rate, but
we still want tonip it in the bud, i.e., detect it before it
has gone very far; and, ideally, do so with few false posi-
tives. The algorithm we develop, Threshold Random Walk
(TRW), can generally detect a scanner after 4 or 5 connec-
tion attempts, with high accuracy.

In our work we use traces from two sites to develop and
assess our detection algorithm. Both sites operate the Bro
NIDS, which has its own scan detection algorithm based on
counting the number of different local addresses to which
a remote address makes connections. The alerts from the
NIDS thus give us a limited form of “ground truth.” At one
of the sites, these alerts are used toblock subsequent ac-
tivity from the scanner. Given the site’s willingness to use
this policy (which has been in place for a number of years),
and from the site’s operational follow-up of uncovering er-
roneous blocks of benign sources (primarily triggered by
complaints received by the help desk), we argue that this
blocking policy is known to have a low degree of false pos-
itives and a high degree of efficacy.1

Therefore, regarding the first issue above of how to de-
fine a scan, at a minimum we require that our algorithm per-
form well in detecting the activity flagged by Bro’s algo-
rithm. However, we would also like to detect lower-profile
malicious probing, and we would like to show we can flag
the same traffic that Bro does, but sooner. Speed of detection
can be quite important for sites such as this one where the
NIDS actively blocks scanners, because the sooner a scan-

1 The site reports that on the occasions when the blocking mechanism
fails, it is generally a matter of a few hours before an attacker com-
promises a local host; while with the mechanism in place, it is a mat-
ter of days to weeks. Thus, thwarting the reconnaissance activity has
great utility.

ner is detected, the less information it can glean before be-
ing blocked.

In general, we consider it acceptable to flag any re-
mote host as a scanner if it turns out that that host would
never subsequently make a useful connection, where “use-
ful” means successfully established, data transferred, and,
to the degree we can determine, the transfer was benign.
Clearly, assessing this property requires an oracle, and so
cannot be performed in real-time; but we can approximate it
by awhat-if assessment of our algorithm using trace-driven
simulation. Also, it is important to note that we do not aim
to detectall such scanners. We are content with detecting
most of them, provided we do so quickly. In addition, since
the data we have available from the two sites consists al-
most solely of TCP connection logs, we confine our analy-
sis to detecting TCP scanners.

Regarding the other issues above, for simplicity we con-
fine our notion of “identity” to single remote IP addresses.
Thus, we do not aim to detect “distributed” scans [9]. We
also focus on detecting scans of multiple local addresses,
regardless of their location in the address space, and do not
consider detecting “vertical” scans of a single host. In terms
of time, we aim to detect scans that might be spread over in-
tervals ranging up to hours (our traces are all 24 hours long),
and we do not consider the particular rate at which a remote
host attempts to make connections.

We pursue the problem in the general framework of
anomaly detection, though unlike classical anomaly detec-
tion we model not only benign behavior but also malicious
behavior. Initially, we had thought to develop an algorithm
that would train on logs of past connections in terms of
differences regarding to which portions of a site’s address
space, and to which services, benign and malicious hosts
tend to attempt to connect, and then use those differences as
priors for making Bayesian decisions. However, our anal-
ysis of the sites’ connection logs revealed a sharp distinc-
tion between the activity of apparently benign hosts and
malicious hosts simply in terms of the proportion of their
connections that are successfully established, and so our fi-
nal algorithm has the highly desirable properties that (1) it
does not require training, and (2) it does not require re-
parameterization when applying it at different sites.

The development of the work is as follows. In§2, we dis-
cuss previous research on scan detection, and related work.
In §3, we present the connection log data that motivates the
general form of our detection algorithm. In§4, we develop
the algorithm and present a mathematical analysis of how to
parameterize its model in terms of expected false positives
and false negatives, and how these trade off with the detec-
tion speed (number of connection attempts observed). We
then evaluate the performance of the algorithm in§5, com-
paring it to that of other algorithms. We discuss issues for
further work in§6, and summarize in§7.

2

2. Related Work

As noted by Stanifordet al., there has been surprisingly
little work on the problem of detecting scans [7]. Histori-
cally most scan detection has been in the simple form of de-
tectingN events within a time interval ofT seconds. The
first such algorithm in the literature was that used by the
Network Security Monitor (NSM) [2], which had rules to
detect any source IP address connecting to more than 15 dis-
tinct destination IP addresses within a given time window.
Such approaches have the drawback that once the window
size is known it is easy for attackers to evade detection by
simply increasing their scanning interval. Moreover, the al-
gorithm can erroneously flag a legitimate access such as that
of Web crawlers or proxies.

Snort [6] implements similar methods. Version 2.0.2
uses two preprocessors. The first is packet-oriented, focus-
ing on detecting malformed packets used for “stealth scan-
ning” by tools such asnmap[1]. The second is connection-
oriented. It checks whether a given source IP address
touched more thanX number of ports orY number of IP
addresses withinZ seconds. Snort’s parameters are tunable,
but it suffers from the same drawbacks as NSM since both
rely on the same metrics.

Other work has built upon the observation thatfailed
connection attempts are better indicators for identifying
scans. Since scanners have little knowledge of network
topology and system configuration, they are likely to often
choose an IP address or port that is not active. The algorithm
provided by Bro [4] treats connections differently depend-
ing on their service (application protocol). For connections
using a service specified in a configurable list, Bro only per-
forms bookkeeping if the connection attempt failed (was ei-
ther unanswered, or elicited a TCP RST response). For oth-
ers, it considers all connections, whether or not they failed.
It then tallies the number of distinct destination addresses to
which such connections (attempts) were made. If the num-
ber reaches a configurable parameterN , then Bro flags the
source address as a scanner.

By default, Bro setsN = 100 addresses and the set of
services for which only failures are considered to HTTP,
SSH, SMTP, IDENT, FTP data transfer (port 20), and Go-
pher (port 70). However, the sites from which our traces
came usedN = 20 instead.

Robertsonet al. also focused on failed connection at-
tempts, using a similar threshold method [5]. In general,
choosing a good threshold is important: too low, and it can
generate excessive false positives, while too high, and it
will miss less aggressive scanners. Indeed, Robertsonet al.
showed that performance varies greatly based on parame-
ter values.

To address problems with these simple counting meth-
ods, Leckieet al. proposed a probabilistic model to de-

tect likely scan sources [3]. The model derives an access
probability distribution for each local IP address, computed
across all remote source IP addresses that access that des-
tination. Thus, the model aims to estimate the degree to
which access to a given local IP address is unusual. The
model also considers the number of distinct local IP ad-
dresses that a given remote source has accessed so far. Then,
the probability is compared with that of scanners, which are
modeled as accessing each destination address with equal
probability. If the probability of the source being an at-
tacker is higher than that of the source being normal, then
the source is reported as a scanner.

A major flaw of this algorithm is its susceptibility to gen-
erating many false positives if the access probability distri-
bution to the local IP addresses is highly skewed to a small
set of popular servers. For example, a legitimate user who
attempts to access a local personal machine (which is oth-
erwise rarely accessed) could easily be flagged as scanner,
since the probability that the local machine is accessed can
be well below that derived from the uniform distribution
used to model scanners.

In addition, the model lacks two important components.
The first of these are confidence levels to assess whether the
difference of the two probability estimates is large enough
to safely choose one model over the other. Second, it is not
clear how to soundly assign ana priori probability to desti-
nation addresses that have never before been accessed. This
can be particularly problematic for a sparsely populated net-
work, where only small number of active hosts are accessed
by benign hosts.

The final work on scan detection of which we are aware
is that of Stanifordet al. on SPICE [7]. SPICE aims to de-
tect stealthy scans—in particular, scans executed at very low
rates and possibly spread across multiple source addresses.
SPICE assigns anomaly scores to packets based on condi-
tional probabilities derived from the source and destination
addresses and ports. It collects packets over potentially long
intervals (days or weeks) and then clusters them using sim-
ulated annealing to find correlations that are then reported
as anomalous events. As such, SPICE requires significant
run-time processing and is much more complex than TRW.

3. Data Analysis

We grounded our exploration of the problem space, and
subsequently the development of our detection algorithm,
using a set of traces gathered from two sites, LBL and ICSI.
Both are research laboratories with high-speed Internet con-
nections and minimal firewalling (just a few incoming ports
blocked). LBL has about 6,000 hosts and an address space
of 217 +29 +28 addresses. As such, its host density is fairly
sparse. ICSI has about 200 hosts and an address space of
29, so its host density is dense.

3

LBL ICSI
1 Total inbound connections 15,614,500 161,122
2 Size of local address space 131,836 512
3 Active hosts 5,906 217
4 Total unique remote hosts 190,928 29,528
5 Scanners detected by Bro 122 7
6 HTTP worms 37 69
7 other bad 74,383 15
8 remainder 116,386 29,437

Table 1. Summary of datasets

Both sites run the Bro NIDS. We were able to obtain a
number of datasets of anonymized TCP connection sum-
mary logs generated by Bro. Each log entry lists a times-
tamp corresponding to when a connection (either inbound
or outbound) was initiated, the duration of the connection,
its ultimate state (which, for our purposes, was one of “suc-
cessful,” “rejected,” or “unanswered”), the application pro-
tocol, the volume of data transferred in each direction, and
the (anonymized) local and remote hosts participating in the
connection. As the need arose, we were also able to ask the
sites to examine their additional logs (and the identities of
the anonymized hosts) in order to ascertain whether partic-
ular traffic did indeed reflect a scanner or a benign host.

Each dataset we analyzed covered a 24-hour period. We
analyzed six datasets to develop our algorithm and then
evaluated it on two additional datasets. Table 1 summa-
rizes these last two; the other six had similar characteris-
tics. About 4.4% and 42% of the address space is populated
at LBL and ICSI respectively. Note that the number of ac-
tive hosts is estimated from the connection status seen in the
logs, rather than an absolute count reported by the site: we
regard a local IP address as active if it ever generated a re-
sponse (either a successful or rejected connection).

Among the 190,928 and 29,528 remote hosts that sent
at least one packet to the corresponding site, the Bro sys-
tem at the site flagged 122 (LBL) and 7 (ICSI) as scan-
ners, using the algorithm described in the previous section
with N = 20. Row 6 in Table 1 lists the number of remote
hosts that were identified as attempting to spread either the
“Code Red” or “Nimda” HTTP worm. Those remote hosts
that happened to find a local Web server and sent it the in-
fection payload were caught by Bro based on the known sig-
natures for the worms. However, it is important to note that
the datasets may contain many more remote HTTP worms
that were undiagnosed by Bro because in the course of their
random scanning they did not happen to find a local HTTP
server to try to infect.

The other bad row in Table 1 corresponds to re-
mote hosts that sent any packet to one of the following
ports: 135/tcp, 139/tcp, 445/tcp, or 1433/tcp. These corre-
spond to Windows RPC, NetBIOS, SMB, andSQL-Snake
attacks (primarily worms, though Bro lacks detectors for

non-HTTP worms), and they are blocked by the (very lim-
ited) firewalls at each site.2 It is important to note that the
Bro monitor at LBL was locatedoutsidethe firewall, and so
would see this traffic; while that at ICSI monitoredinside
the firewall, so it did not see the traffic, other than a trickle
that came from other nearby sites that were also within the
firewall.

We will refer to the collection of the scanners, HTTP
worms, andother bad collectively asknown bad.

3.1. Separating Possible Scanners

As mentioned in the Introduction, the available datasets
give us a limited form of “ground truth,” in that the re-
mote hosts tagged as scanners very likely do reflect hostile
scanners, and many (but surely not all) of the remote hosts
tagged as benign are in fact benign. However, to soundly ex-
plore the data we need to have as strong a notion of ground
truth as possible. In particular, we need some sort of de-
termination as to which of the large number ofremainder
entries (row 8 of Table 1) are indeed undetected scanners
that we then need to separate out from the set of otherwise-
presumed-benign hosts before evaluating the effectiveness
of any algorithm we develop.

This is a difficult but crucial problem. We need to find a
way to bootstrap our assessment of which of the remainder
are likely, but undetected (due to their lower level of activ-
ity), scanners. Ideally, the means by which we do so would
be wholly separate from our subsequently developed detec-
tion algorithm, but we were unable to achieve this. Conse-
quently, our argument is nearly circular: we show that there
are properties we can plausibly use to distinguish likely
scanners from non-scanners in theremainderhosts, and
we then incorporate those as part of a (clearly imperfect)
ground truth against which we test an algorithm we develop
that detects the same distinguishing properties. The sound-
ness of doing so rests in part in showing that the likely scan-
ners do indeed have characteristics in common with known
malicious hosts.

We first attempt to detect likely scanners by looking for
remote hosts that make failed connection attempts to a dis-
proportionate number of local addresses, comparing the dis-
tribution of the number of distinct inactive local hosts ac-
cessed byknown bad hosts vs. those accessed by the as-
yet undifferentiatedremainder. Ideally, the distribution for
remainderwould exhibit a sharp modality for which one
mode resemblesknown bad hosts and the other is quite
different. We could then use the mode as the basis for dis-
tinguishing undiagnosed scanners from benign hosts, con-
structing a more accurate ground truth.

2 The firewall configurations at the two sites differ, but for brevity we
omit the details.

4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 100 1000 10000

C
D

F
 (

of

 r
em

ot
e

ho
st

s)

of inactive local hosts

remainder
known_bad

(a) LBL

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 100 1000 10000

C
D

F
 (

of

 r
em

ot
e

ho
st

s)

of inactive local hosts

remainder
known_bad

(b) ICSI

Figure 1. Cumulative distribution of the number
of remote hosts over the number of distinct lo-
cal addresses to which a remote host unsuc-
cessfully attempted to connect (# of inactive lo-
cal hosts). The vertical dotted line at x = 20 cor-
responds to the threshold used by the Bro NIDS
at the sites.

Figure 1 plots this comparison. Unfortunately, we do not
see the desired modality forremainder. Furthermore, the
distribution ofknown bad is such that in order to detect
most of them solely on the basis of their failed access at-
tempts, we would need to use a threshold significantly lower
than 20; and doing so will also flag a non-negligible por-
tion3 of remainderwithout us knowing whether this judg-
ment is correct. Finally, we note that a basic reason for the
large spread in the distributions in Figure 1 (note that the
X-axis is log-scaled) is due to the very large spread we ob-
serve for therateat which different scanners scan.

However, wedofind a strong modality if we instead ex-

3 Recall that there are 10’s of thousands ofremainder, so even a small
absolute portion of them can reflect a large number of hosts.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

C
D

f (

of
 r

em
ot

e
ho

st
s)

% of inactive local hosts

remainder
known_bad

(a) LBL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

C
D

f (

of
 r

em
ot

e
ho

st
s)

% of inactive local hosts

remainder
known_bad

(b) ICSI

Figure 2. Cumulative distribution of the number
of remote hosts over the percentage of the lo-
cal hosts that a given remote host has accessed
for which the connection attempt failed (% of in-
active local hosts)

amine the ratio of hosts to which failed connections are
made vs. those to which successful connections are made.
Defineinactive pct as the percentage of the local hosts
that a given remote host has accessed for which the connec-
tion attempt failed (was rejected or unanswered). Figure 2
shows the distribution ofinactive pct for each dataset.
Figure 2(a) shows that about 99.5% of LBL’sknown bad
remotes hit nothing but inactive hosts (expected, due to the
firewall for most of the ports such hosts attempt to access).
For ICSI, the proportion is spread between 60%–100%, but
this still shows a clear tendency thatknown bad hosts are
likely to hit many non-existent hosts or hosts that do not
support the requested service.

On the other hand, we see that in both cases, there-
mainderare sharply divided into two extreme sets—either
0% inactive pct, or 100%inactive pct—which

5

LBL ICSI
Total unique remote hosts 190,928 29,528
known bad 74,542 91

scanners 122 7
HTTP worms 37 69

remainder 116,386 29,437
benign 61,456 17,974

HTTP 47,343 6,026
suspect 54,921 11,463

HTTP 40,413 11,143

Table 2. Remote Host Characteristics: < 80%
inactive pct is used to separate benign hosts
from possible scanners.

then gives us plausible grounds to use this dichotomy to
consider the latter remotes as likely to be scanners.

Based on this observation, we formulate the rule thatre-
mainderhosts with< 80%inactive pct are potentially
benign,4 while hosts with higher values ofinactive pct
will be treated as possible scanners. We term these latter
assuspect. Table 2 summarizes the resulting classifica-
tions, and also the proportion due to remote hosts accessing
HTTP, since those dominate theremainder.

Finally, if we repeat the plots in Figure 1 forsuspect
hosts, we find that they exhibit distributions quite similar
to those forknown bad hosts, which provides additional
supporting evidence that the simpleinactive pct crite-
ria works well for differentiating between benign hosts and
scanners.

4. Threshold Random Walk: An Online De-
tection Algorithm

In the previous section, we showed that one of the main
characteristics of scanners is that they are more likely than
legitimate remote hosts to choose hosts that donot exist
or do not have the requested service activated, since they
lack precise knowledge of which hosts and ports on the tar-
get network are currently active. Based on this observation,
we formulate a detection problem that provides the basis
for an on-line algorithm whose goal is to reduce the num-
ber of observed connection attempts (compared to previous
approaches) to flag malicious activity, while bounding the
probabilities of missed detection and false detection.

4 Clearly, 80% is a somewhat arbitrary choice, given the sharp modal-
ity, and any value greater than 50% has little effect on our subsequent
results.

4.1. Model

Let an event be generated when a remote sourcer makes
a connection attempt to a local destinationl. We classify the
outcome of the attempt as either a “success” or a “failure”,
where the latter corresponds to a connection attempt to an
inactive host or to an inactive service on an otherwise active
host.

For a givenr, letYi be a random (indicator) variable that
represents the outcome of the first connection attempt byr
to theith distinct local host, where

Yi =

{

0 if the connection attempt is a success
1 if the connection attempt is a failure

As outcomesY1, Y2, . . . , are observed, we wish to de-
termine whetherr is a scanner. Intuitively, we would like
to make this detection as quickly as possible, but with a
high probability of being correct. Since we want to make
our decision in real-time as we observe the outcomes, and
since we have the opportunity to make a declaration after
each outcome, the detection problem is well suited for the
method ofsequential hypothesis testingdeveloped by Wald
in his seminal work [8].

4.2. Sequential Hypothesis Testing

We consider two hypotheses,H0 andH1, whereH0 is
the hypothesis that the given remote sourcer is benign and
H1 is the hypothesis thatr is a scanner.

Let us now assume that, conditional on the hypothesis
Hj , the random variablesYi|Hj i = 1, 2, . . . are indepen-
dent and identically distributed (i.i.d.). Then we can express
the distribution of the Bernoulli random variableYi as:

Pr[Yi = 0|H0] = θ0, Pr[Yi = 1|H0] = 1− θ0

Pr[Yi = 0|H1] = θ1, Pr[Yi = 1|H1] = 1− θ1 (1)

The observation that a connection attempt is more likely to
be a success from a benign source than a malicious one im-
plies the condition:

θ0 > θ1.

Given the two hypotheses, there are four possible out-
comes when a decision is made. The decision is called ade-
tectionwhen the algorithm selectsH1 whenH1 is in fact
true. On the other hand, if the algorithm choosesH0 in-
stead, it is calledfalse negative. Likewise, whenH0 is in
fact true, pickingH1 constitutes afalse positive. Finally,
pickingH0 whenH0 is in fact true is termednominal.

We use the detection probability,PD, and the false pos-
itive probability,PF , to specify performance conditions of
the detection algorithm. In particular, for user-selectedval-
uesα andβ, we desire that:

PF ≤ α and PD ≥ β (3)

6

����� ��

��� 	
��

�
 ���� � � � ���	 ��� ��� 	
������

��� 	 ���

�������� ���� ���� ������������

 �����
!� ��"�����	

 �����
!� �����#�	

$��

$��

%�

%�

Figure 3. Flow diagram of the real-time detection
algorithm

where typical values might beα = 0.01 andβ = 0.99.
The goal of the real-time detection algorithm is to make

an early decision as an event stream arrives to the system
while satisfying the performance conditions (3). Follow-
ing [8], as each event is observed we calculate the likeli-
hood ratio:

Λ(Y) ≡ Pr[Y |H1]

Pr[Y |H0]
= Πn

i=1

Pr[Yi|H1]

Pr[Yi|H0]
(4)

where Y is the vector of events observed so far and
Pr[Y |Hi] represents the conditional probability mass func-
tion of the event streamY given that modelHi is true; and
where the second equality in (4) follows from the i.i.d. as-
sumption. The likelihood ratio is then compared to anup-
per threshold,η1, and alower threshold,η0. If Λ(Y) ≤ η0

then we accept hypothesisH0. If Λ(Y) ≥ η1 then we ac-
cept hypothesisH1. If η0 < Λ(Y) < η1 then we wait for
the next observation and updateΛ(Y). See Figure 3.

Essentially, we are modeling a random walk for which
the excursion probabilities come from one of two possi-
ble sets of probabilities, and we seek to identify which
set is most likely responsible for an observed walk. We
call our algorithm TRW, Threshold Random Walk, since
our decision-making process corresponds to a random walk
with two thresholds.5

The thresholdsη1 andη0 should be chosen such that the
false alarm and detection probability conditions, (3) are sat-
isfied. It is nota priori clear how one would pick these
thresholds, but a key and desirable attribute of sequential
hypothesis testing is that, for all practical cases, the thresh-
olds can be set equal to simple expressions ofα andβ, and
they areindependentof (1), the Bernoulli distributions con-
ditioned on hypothesesH0 andH1. While these distribu-
tions play no role in the selection of the thresholdsη1 and
η0, they do (along with the thresholds) strongly affectN ,

5 To be more precise, it is a random walk in the logarithm of the
likelihood-ratio space.

the number of observations until the test terminates, i.e.,un-
til one of the hypotheses is selected.

To develop the previous point, Wald showed thatη1 (η0)
can be upper (lower) bounded by simple expressions ofPF

andPD. He also showed that these expressions can be used
as practical approximations for the thresholds, where the
PF andPD are replaced with the user chosenα andβ. Con-
sider a sample path of observationsY1, Y2, . . . , Yn, where
on thenth observation the upper thresholdη1 is hit and hy-
pothesisH1 is selected. Thus:

Pr[Y1, . . . Yn|H1]

Pr[Y1, . . . Yn|H0]
≥ η1

For any such sample path, the probabilityPr[Y1, . . . Yn|H1]
is at leastη1 times as big asPr[Y1, . . . Yn|H0], and this is
true forall sample paths where the test terminated with se-
lection of H1, regardless ofwhenthe test terminated (i.e.
regardless ofn). Thus, the probability measure of all sam-
ple paths whereH1 is selected whenH1 is true is at least
η1 times the probability measure of all sample paths where
H1 is selected whenH0 is true. The first of these proba-
bility measure (H1 selected whenH1 true) is the detection
probability,PD, and the second,H1 selected whenH0 true,
is the false positive probability,PF . Thus, we have an up-
per bound on thresholdη1:

η1 ≤
PD

PF

(6)

Analogous reasoning yields a lower bound forη0:

1− PD

1− PF

≤ η0 (7)

Now suppose the thresholds are chosen to be equal to
these bounds, where thePF andPD are replaced respec-
tively with the user-chosenα andβ.

η1 ←
β

α
η0 ←

1− β

1− α
(8)

Since we derived the bounds (6) and (7) for arbitrary val-
ues of the thresholds, these bounds of course apply for this
particular choice. Thus:

β

α
≤ PD

PF

1− PD

1− PF

≤ 1− β

1− α
(9)

Taking the reciprocal in the first inequality in (9) and noting
that sincePD is between zero and one,PF < PF /PD,
yields the more interpretively convenient expression:

PF <
α

β
≡ 1

η1

(10)

Likewise, for the second inequality in (9), noting that1 −
PD < (1− PD)/(1− PF) yields:

1− PD <
1− β

1− α
≡ η0 (11)

7

Equation (10) says that with the chosen thresholds (8), the
actual false alarm probability,PF , may be more than the
chosen upper bound on false alarm probability,α, but not
by much for cases of interest where the chosen lower bound
on detection probabilityβ is, say, 0.95 or 0.99. For exam-
ple, if α is 0.01 andβ is 0.99, then the actual false alarm
probability will be no greater than 0.0101. Likewise, equa-
tion (11) says that one minus the actual detection proba-
bility (the miss probability) may be more than the chosen
bound on miss probability, but again not by much, given
that the chosenα is small, say 0.05 or 0.01. Lastly, cross-
multiplying in the two inequalities in (9) and adding yields:

1− PD + PF ≤ 1− β + α. (12)

Equation (12) says that although the actual false alarm or
the actual miss probability may be greater than the desired
bounds, they cannotbothbe, since their sum1− PD + PF

is less than or equal to the sum of these bounds.
The above has taken the viewpoint that the user a pri-

ori chooses desired bounds on the false alarm and detec-
tion probabilities,α andβ, and then uses the approximation
(8) to determine the thresholdsη0 andη1, with resulting in-
equalities (10) - (12). An alternative viewpoint is that the
user directly chooses the thresholds,η0 andη1, with knowl-
edge of the inequalities (10) and (11). In summary, setting
the thresholds to the approximate values of (8) is simple,
convenient, and within the realistic accuracy of the model.

4.3. Number of Observations to Select Hypothesis

Given the performance criteria, (3), and the associated
thresholds, (8), the remaining quantity of interest is the
number of observationN until the test terminates, i.e., un-
til one of the hypotheses is selected. Following Wald [8],
we present approximate expressions for the expected value
of N (see Appendix I for a discussion of the tail probabil-
ity of N).

For the analysis ofN , it is convenient to consider the log
of the likelihood ratio, (4), and view the resulting expres-
sion as a random walk:

SN ≡ ln(Λ(Y)) =
N

∑

i=1

Xi, where Xi ≡ ln

(

Pr[Yi|H1]

Pr[Yi|H0]

)

andN is the observation number at whichSN first hits or
crosses either the upper threshold,ln η1, or lower threshold,
ln η0. (Note thatS0 = 0.)

From Wald’s equality,E[N] = E[SN]/E[Xi], and we
can obtain expressions forE[SN] andE[Xi], conditioned
on the hypothesesH0 andH1. Appendix I provides expres-
sions forE[SN] andE[Xi]. Combining (8), (15), and (16),
we obtain the approximate result:

E[N |H0] =
α ln β

α
+ (1− α) ln 1−β

1−α

θ0 ln θ1

θ0

+ (1− θ0) ln 1−θ1

1−θ0

,

E[N |H1] =
β ln β

α
+ (1− β) ln 1−β

1−α

θ1 ln θ1

θ0

+ (1− θ1) ln 1−θ1

1−θ0

. (14)

4.4. Discussions on E[N |H1] vs. θ0 and θ1

As shown in Equation (14),E[N |H0] andE[N |H1] are
a function of the four parameters,α, β, θ0, andθ1, the false
positive and detection probabilities, and the degree to which
scanners differ from benign hosts in terms of modeling their
probability of making failed connections. With those values
set, we can estimate the average number of distinct destina-
tion IP addresses that a given port scanner can probe before
being caught by the algorithm.

Assuming a scanner picks IP addresses at random,θ1—
the probability that it chooses an IP address with the re-
quested service on—depends on the density of these ad-
dresses in a monitored network. Figure 4(a) shows how
E[N |H1] changes asθ1 increases. Withα = 0.01, β =
0.99, andθ0 = 0.8, E[N |H1] is 5.4 whenθ1 = 0.2, and
goes up to 11.8 whenθ1 = 0.4. (We usedθ1 = 0.2 based
on the observations from data analysis in§3.) In general,
it takes longer to tell one model from the other the closer
the two models are to each other. Figure 4(a) also shows
thatE[N |H1] goes up asα gets lower, which illustrates the
trade off between low false positive probability and fast de-
tection.

We can detect faster in situations whereθ0 is higher. Le-
gitimate users often make a connection request with a host
name. Unless the DNS provides outdated information, they
rarely access inactive hosts, and thereforeθ0—the proba-
bility that those users hit an active IP address—can be fairly
high. However, the presence of benign Web crawlers and
proxies that sometimes access inactive hosts through bro-
ken links, or a few infected clients putting requests through
a proxy that serves mostly benign users, can require a lower
θ0 for modeling.

In those circumstances where such problematic hosts can
be controlled, however, then we can configure the detection
algorithm to use a higherθ0, and thus enable it to make a
faster decision. Figure 4(b) showsE[N |H1] whenθ0 is set
to 0.9. The decrease in detection time is significant.

4.5. Limitations

We develop TRW based on the assumption that condi-
tional on the hypothesis (that a remote host is benign or a
scanner), any two distinct connection attempts will have the
same likelihood of succeeding and their chances of success
are unrelated to each other.

8

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
 2

 4

 6

 8

 10

 12

 14

 16

 18
E

[N
|H

1]

theta_1

alpha = 0.001
alpha = 0.005

alpha = 0.01

(a)θ0 = 0.8

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
 2

 4

 6

 8

 10

 12

 14

 16

 18

E
[N

|H
1]

theta_1

alpha = 0.001
alpha = 0.005

alpha = 0.01

(b) θ0 = 0.9

Figure 4. E[N |H1] vs. other parameters; β is
fixed to 0.99

The bounds for upper and lower thresholds (Equation(6)
and (7)) are valid, given that the sequential hypothesis test
will eventually terminate with probability one, which holds
given independence of outcomes, and also for some cases
of dependence [8]. Unfortunately, this will not hold for all
cases of dependence. For instance, if a scanner probesN
inactive servers exactly alternating withN active servers,
our random walk will oscillate between one step up and one
step down and it will never hit either threshold. On the other
hand, dependence that leads to positive correlation in out-
comes (i.e. successes are more likely to be followed by an-
other success or likewise for failures) will tend to shorten
the time to hit a threshold. This form of dependence seems
more likely to occur in practice.

Dependence, however, invalidates the second equality in
Equation(4). Instead, the likelihood ratio should be calcu-
lated using a joint probability distribution, which compli-
cates the computation.

5. Evaluation

This section evaluates the performance of the TRW al-
gorithm in terms of its accuracy and the detection speed us-
ing trace-driven simulations. We explicate cases flagged as
H0 (benign) orH1 (malicious) by TRW. Then, we compare
the performance of TRW with that of Bro and Snort.

5.1. Trace-driven Simulation

We use the datasets described in§3 for evaluation. Each
line in a dataset represents a connection seen by the Bro
NIDS, sorted by the timestamp of the first packet belonging
to the connection. Connection information includes a source
IP,s, a destination IP,d, and the connection status. In reality,
the connection status is not immediately available when the
first packet arrives. For our analysis, we assume that the de-
tector can consult an oracle that can tell upon seeing an in-
coming TCPSYNwhether it will result in an established, re-
jected, or unanswered connection. (We might approximate
such an oracle by giving the detector access to a database of
which ports are open on which addresses, though “churn”
at a site might make maintaining the database problematic.)
Alternatively, the detector can wait a short period of time to
see whether theSYN elicits aSYN ACK, aRST, or no re-
sponse, corresponding to the three cases above.

For eachs, TRW maintains 3 variables.Ds is the set of
distinct IP addresses to whichs has previously made con-
nections.Ss reflects the decision state, one of:PENDING;
H0; or H1. Ls is the likelihood ratio. For each line in the
dataset, the simulation executes the following steps:

1) Skip the line ifSs is notPENDING (a decision has al-
ready made for the remote hosts).

2) Determine whether the connection is successful or not.
A connection is considered successful if it elicited a
SYN ACK.6

3) Check whetherd already belongs toDs. If so, skip the
next two steps and proceed to the next line.

4) UpdateDs with d, and update the likelihood ratio,Ls

using Equation(4).

5) If Ls equals or exceedsη1, setSs to H1. If Ls is lower
than or equal toη0, setSs to H0.

Table 3 shows the simulation results for LBL and ICSI
datasets. We excluded remote hosts that accessed less than

6 Due to ambiguities in Bro’s log format, for connections terminated
by the remote originator with aRST we sometimes cannot determine
whether the local host actually responded. Bro generates the same con-
nection status for the case in which the connection was first established
via the local host responding with aSYN ACK and the case where the
remote host sent aSYN and then later, without receiving any reply,
sent aRST. Accordingly, we treat such connections as failures if the
logs indicate the local host did not send any data to the remote host.

9

LBL ICSI
Type Count PD N Max N Count PD N Max N
scan Total 122 - - - 7 - - -

H1 122 1.000 4.0 6 7 1.000 4.3 6
worm Total 32 - - - 51 - - -

H1 27 0.844 4.5 6 45 0.882 5.1 6
PENDING 5 - - 5 6 - - 5

other bad Total 13257 - - - 0 - - -
H1 13059 0.985 4.0 10 0 - - -
H0 15 - 5.1 10 0 - - -

PENDING 183 - - 11 0 - - -
benign Total 2811 - - - 96 - - -

H1 33 - 8.1 24 0 - - -
H0 2343 - 4.1 16 72 - 4.0 4

PENDING 435 - - 14 24 - - 9
suspect Total 692 - - - 236 - - -

H1 659 0.952 4.1 16 234 0.992 4.0 8
PENDING 33 - - 7 2 - - 7

Table 3. Simulation results when PD = 0.99, PF = 0.01, θ1 = 0.2, and θ0 = 0.8

Type LBL ICSI
IDENT 18 (2.7%) 0 (0%)

≥ 2 protocols 87 (13.2%) 8 (3.4%)
onlyHTTP 541 (82.1%) 226 (96.6%)
remainder 13 (2.0%) 0 (0%)

Table 4. Break-down of “suspects” flagged as
H1.

4 distinct IP addresses from this table because withPD =
0.99, PF = 0.01, θ1 = 0.2, andθ0 = 0.8, TRW requires
at least 4 observations to make a decision. The results de-
pend on the parameter values; we present here results based
on typical settings, where the detection probability should
be at least 0.99 and the false alarm rate no larger than 0.01.
We choseθ1 andθ0 based on the discussion in§3. Although
we found that almost all benign users never hit an inactive
server, we choseθ0 conservatively, to reduce the chances of
flagging Web crawlers and proxies as scanners.

First, we group remote hosts into the categories defined
in §3 and calculatePD within each category. For both LBL
and ICSI datasets, TRW caught all of the scanners flagged
by Bro’s algorithm. However, TRW missed a few HTTP
worms that Bro identified (using known signatures), be-
cause of the slow scanning rate of those worms. (Note that
the maximum number of IP addresses scanned by those
worms was 6 for both the LBL and ICSI dataset.)

TRW detected almost all the remote hosts that made con-
nections to “forbidden” ports (see the corresponding rows
for other bad) and also the remote hosts classified as
suspect. There were 15other bad flagged asH0 for
the LBL dataset. Among those 15 hosts, we observe that
11 remote hosts were machines that some local host had ac-

cessed at least once before we flagged those remote hosts as
H0. These hosts are Microsoft Windows machines that sent
NetBIOS packets back to a local host that initiated connec-
tions to them, which is a benign operation, and therefore it is
correct to flag them asH0. The other 3 were flagged asH0

due to successfulLDAP, IMAP4, orSMTP connections fol-
lowed by a fewNetBIOS packets. Although it hard to tell
for sure whether these accesses reflect benign use or sophis-
ticated multi-protocol probing, it is likely to be the former
because the earlier connections succeeded.

This leaves just one more possible malicious remote host
that missed being detected. Unfortunately, this one is diffi-
cult to distinguish because there were only 6 connections
from that remote host recorded in the trace: 5 of them were
very short, but successful,HTTP connections to 5 different
servers, and there was only one unsuccessful connection at-
tempt to port 135 (generally perceived as hostile, but some-
times subject to “misfire”7).

Surprisingly, there are no false positives for the ICSI
dataset even thoughα = 0.01. This is a rather encourag-
ing result, demonstrating that TRW can outperform the per-
formance specification in some cases.

There are 33 false positives in the LBL dataset. On ex-
amination, we found that 3 of them sent outIDENT re-
quests to a number of local machines in response to out-
boundSMTP or ssh connections. This is a common se-
quence of benign behavior. Since theIDENT requests were
rejected by the local machines, the remote host was erro-
neously flagged as a scanner. This, however, can again be

7 Many versions of Microsoft operating systems use port 135 for re-
mote procedure calls. But, one of the vulnerabilities associated with
this mechanism was exploited by the Blaster worm, which alsoprop-
agates via port 135.

10

Trues H1 True positives Efficiency Effectiveness
LBL Pre-filtering 14,103 13,900 13,867 0.998 0.983

Post-filtering 14,068 13,878 13,848 0.998 0.984
ICSI Pre-filtering 294 286 286 1.000 0.973

Post-filtering 294 286 286 1.000 0.973

Table 5. Performance in terms of Efficiency and Effectiveness. Post-filtering eliminates remotes to which a
local host previously connected. Pre-filtering is calculated based on Table 3.

fixed if we keep track of remote hosts to which local hosts
successfully established connections before the remote host
makes failed connection attempts in response to those con-
nections. We call thesefriendlyhosts, and suggest using this
additional context as a way to reduce false positives with-
out changing any parameters of the general detection algo-
rithm.

One host was anSMTP client that tried 4 different valid
hosts in the monitored network, but terminated each con-
nection with aRST packet 11 seconds after the initialSYN
packet. From its hostname, it appears most likely a legit-
imate client, perhaps one working through a stale mailing
list.

All of the remaining 29 false positives turned out to be
Web crawlers and proxies. Dealing with these is problem-
atic: crawlers are, after all, indeed scanning the site; andthe
proxies generally channel a mixture of legitimate and pos-
sibly malicious traffic. These might then call for a different
reactive response from the NIDS upon detecting them: for
example, using more stringent thresholds to require a larger
proportion of scanning activity before they are shunned; or
automatically releasing a block of the remote address af-
ter a period of time, in order to allow legitimate proxy traf-
fic to again connect to the site.

Table 4 lists the types ofsuspect remote hosts that
were flagged asH1 by TRW. As discussed above, hosts
flagged asH1 due to respondingIDENT connections in-
stead are consideredH0. With the simple method suggested
above of allowing remote hosts to make failed connections
if they’ve previously received outbound connections from
the site, we were able to identify all of thesuspect remote
hosts. Over 80% made nothing but failedHTTP connec-
tions, and we therefore suspect them as undetected worms.
Table 3 also shows the average (N) and maximum number
of distinct local IP addresses that each detected remote host
accessed upon being flagged. In theory, whenα = 0.01,
β = 0.99, θ0 = 0.8, andθ1 = 0.2, the approximate solu-
tion for E[N |H1] is 5.4 as shown in§4.4, and our trace-
driven simulations are consistent with this figure. This sug-
gests that the parameters chosen forθ0 andθ1 closely model
the actual behaviors of scanners and benign users. Note
that with everything else fixed,N would have been much
higher than 5 ifθ1 was greater than 0.3, as shown in Fig-
ure 4(a). It is also noteworthy that even in the worst case,

a decision was made before a scanner probed more than
16 machines—strictly better than the best case provided by
Bro’s algorithm.

Finally, to quantify the effectiveness of TRW, we use the
two measures proposed by Stanifordet al. [7]:

• Efficiency: the ratio of the number of detected scanners
(true positives) to all cases flagged asH1.

• Effectiveness: the ratio of the number of true positives
to all scanners (trues). This is the same asPD, detec-
tion rate.

Efficiency conveys a similar meaning to false positive rate,
but is more useful when the total number of true positives
is significantly smaller than the total number of samples.
Table 5 shows these values for the two sites. For ICSI,
because of 8 misses (6 HTTP worms and 2suspect),
TRW results in a lower effectiveness (0.973) than expected
(β = 0.99). But, the overall performance is excellent. We
compare TRW’s performance with that of Bro and Snort in
the next section.

5.2. Comparison with Bro and Snort

For simplicity, we exclude theworm andother bad
category because as configured at LBL and ICSI, Bro does
not perform scan-detection analysis for these. As through-
out the paper, we configure Bro’s algorithm withN = 20
distinct hosts.

For Snort, we consider itsportscan2 scan-detection
preprocessor, which takes into account distinct connections
rather than distinct TCPSYN packets—the latter can gen-
erate many false positives if a single host sends multi-
ple SYNs in the same failed connection attempt. We use
Snort’s default settings, for which it flags a source IP ad-
dress that has sent connections to 5 different IP addresses
within 60 seconds. (We ignore Snort’s rule for 20-different-
ports-within-60-seconds because our emphasis here is on
detecting scans of multiple hosts rather than vertical scans
of a single host.) We note that Snort’s algorithm can er-
roneously flag Web crawlers or any automated process to
fetch Web documents if there are more than 5 active Web
servers in a monitored network. It can also be easily evaded
by a scanner who probes a network no faster than 5 ad-

11

TRW Bro Snort
Type Total H1 N Max N H1 N Max N H1 N Max N
scan 121 121 4.0 6 121 21.4 28 63 16.8 369

benign 2811 30 - - 0 - - 57 - -
suspect 692 659 4.1 16 0 - - 28 7.9 33

Table 6. Comparison of the number of H1 across three categories for LBL dataset
TRW Bro Snort

Type Total H1 N Max N H1 N Max N H1 N Max N
scan 7 7 4.3 6 7 35.9 119 5 6.0 6

benign 96 0 - - 0 - - 0 - -
suspect 236 234 4.0 8 0 - - 2 6.0 6

Table 7. Comparison of the number of H1 across three categories for ICSI dataset

dresses/minute. Tables 6 and 7 show the number of (non-
local) hosts reported asH1 by the three algorithms.

Table 8 compares the efficiency and effectiveness across
the three algorithms for both datasets. Note that two mea-
sures for TRW differ from Table 5 because of the two cat-
egories (worm, other bad) excluded in this comparison.
Bro has the highest efficiency followed by TRW and Snort.
But Bro’s highest efficiency comes at a cost of low effec-
tiveness. Given its simple thresholds and limited time win-
dow, we expected that Snort would provide fast detection.
But, as shown in Tables 6 and 7, Snort was slower than
TRW on average. In contrast to TRW, which on average
flagged scanners when they hit no more than 5 distinct IP
addresses, Snort waited for more than 13 IP addresses. Snort
can increase the detection speed by loweringY or Z val-
ues.8 But, this will likely increase false alarms. Indeed, for
LBL, 38.5% of the alarms by Snort were due to false posi-
tives.

Compared with Snort and Bro, TRW provided the high-
est effectiveness while maintaining higher than 0.96 effi-
ciency. On average, detection was made when a target made
connections to 4.1 active or inactive IP addresses. This aver-
age number of give-away IP addresses to scanners orsus-
pects is about 3 times lower than that of Snort and about
5 times lower than that of Bro. In addition, TRW has the ad-
vantage over Snort that its analysis is not confined to a lim-
ited window of time: TRW has a wide dynamic range.

6. Discussion and Future Work

In this section we look at a number of additional dimen-
sions to the problem space. Addressing these is beyond the
scope of the present work, but we sketch our thinking on
how we will pursue them in our future work.

Leveraging Additional Information. TRW’s perfor-
mance is somewhat remarkable given the limited informa-
tion it uses. Potential refinements include: (1) factoring in

8 See§2 for the definitions ofY andZ

Trace Measures TRW Bro Snort
LBL Efficiency 0.963 1.000 0.615

Effectiveness 0.960 0.150 0.126
N 4.08 21.40 14.06

ICSI Efficiency 1.000 1.000 1.000
Effectiveness 0.992 0.029 0.029

N 4.06 36.91 6.00

Table 8. Comparison of the efficiency and effec-
tiveness across TRW, Bro, and Snort

the specific service (for example, we could use more con-
servative parameters for possible HTTP scanning than for
other ports, given the difficulty of confusing HTTP scan-
ners with HTTP proxies); (2) distinguishing between unan-
swered connection attempts and rejected connection at-
tempts, as the former might be more indicative of a com-
plete “shot in the dark” whereas the latter could sometimes
indicate a service that is temporarily off-line; (3) consider-
ing the time duration that a local address has been inactive,
to be robust to benign connection attempts made to tem-
porarily unavailable hosts; (4) considering the rate at which
a remote host makes connection attempts; (5) introducing a
component of correlation in the model, e.g., that two con-
secutive failed connection attempts are more suspect than
two failures separated by a success; (6) devising a model of
which local addresses and ports are historically more likely
to be visited by benign sources or scanners (per our origi-
nal plan for anomaly detection outlined in the Introduction).

However, incorporating information such as the above
is a two-edged sword. It may provide additional detection
power—something to keep in mind for the discussion of
other issues in this section—but at the cost of complicat-
ing use of the model, analysis of its properties, and, poten-
tially, undermining its performance in some situations.

Managing State. The need to track for each remote host
the different local addresses to which it has connected can
in fact require a large amount of state. For example, imag-

12

ine the operation of the algorithm during aSYN flooding
attack with spoofed remote addresses. Virtually every arriv-
ing SYN will require the instantiation of state to track the
new purported remote host. If, however, we cap the state
available to the detector, then an attacker can launch a flood
in order to exhaust the state, and then conduct a concurrent
scan with impunity.

How to Respond. As shown in§5, TRW is much more
effective at detecting low-volume scanners than Bro or
Snort. However, this then raises the question of what to do
with the alerts. For example, Table 5 shows that TRW de-
tects nearly 14,000 scanners in the LBL dataset (presum-
ably almost all of these are worms), vastly more than the
122 detected by Bro at the site. As mentioned in the Intro-
duction, LBL uses Bro’s scanner detection decisions to trig-
gerblockingof the hostile remote host. However, the site re-
ports that the blocking mechanism cannot scale to 1000’s of
blocks per day (this is why the site does not block HTTP
scanners, because at times the endemic HTTP scans from
worms can reach such levels). Thus, there is future work
needed on mechanisms for determining whether a particular
scanner is “block-worthy,” i.e., will the given scanner con-
tinue to scan to a degree significant enough that they merit
blocking or some form of rate control, or can they be ig-
nored because they are scanning at a rate (or for a service
of sufficiently low interest) that the site can afford to let the
scan run its course?

Evasion and Gaming. Any scan detection algorithm
based on observing failed connection attempts is suscep-
tible to manipulation by attackers who spoof remote ad-
dresses and cause innocent remote hosts to be penalized.
Depending on the reactive response taken when a scan is
detected, address spoofing could provide the attacker with
a great deal of leverage for denial-of-service. We note that
the operators at LBL recognize this risk, and address it us-
ing “white lists” of critical remote hosts that should neverbe
blocked. They have found this approach practical in today’s
environment, but this could change in the future if attack-
ers become more energetic in targeting the response sys-
tem. A possible additional approach here would be to have
a honeypot respond to some of the connection attempts to
see whether the remote host then completes the 3-way es-
tablishment handshake. If not, then the remote address is
potentially spoofed.

Another issue concerns ways for an attacker toevadede-
tection. For TRW, this is not so difficult. An attacker could
compile a list of known servers at a site (running services
other than those of interest to them) and then intermingle
connection attempts to those with the wider connection at-
tempts of a true scan. The successes of the camouflage con-
nections would then drive the random walk away from an
H1 decision. Countering this threat requires either incorpo-
rating service information (as discussed above) or model-

ing which combinations of addresses legitimate users tend
to access, and then giving less weight to successful connec-
tions not fitting with these patterns.

Distributed Scans. As stated in the Introduction, we
confined our work to the problem of determining whether
a single remote address corresponds to a malicious scanner.
It appears difficult to directly adapt our framework to deter-
mining whether a set of remote addresses collectively cor-
respond to malicious scanning (such as if they divide up
the address space and each probe just a couple of addresses
within it), because our algorithm depends on tracking suc-
cess/failure information of individual remotes. It may, how-
ever, be possible to extend our algorithm with post process-
ing to try to do so by combining a number of “low grade”
signals (either detected scanners, or those whose random
walks have taken them somewhat in the direction ofH1).

7. Summary

We have presented the development and evaluation of
TRW—Threshold Random Walk—an algorithm to rapidly
detect portscanners based on observations of whether a
given remote host connects successfully or unsuccessfully
to newly-visited local addresses. TRW is motivated by the
empirically-observed disparity between the frequency with
which such connections are successful for benign hosts
vs. for known-to-be malicious hosts. The underpinnings of
TRW derive from the theory ofsequential hypothesis test-
ing, which allows us to establish mathematical bounds on
the expected performance of the algorithm.

Using an analysis of traces from two qualitatively differ-
ent sites, we show that TRW requires a much smaller num-
ber of connection attempts (4 or 5 in practice) to detect ma-
licious activity compared to previous schemes used by the
Snort and Bro NIDS. TRW has the additional properties that
(1) even though it makes quick decisions, it is highlyaccu-
rate, with very few false positives, and (2) it is conceptu-
ally simple, which leads to both comprehensibility regard-
ing how it works, and analytic tractability in deriving theo-
retical bounds on its performance.

In summary, TRW performs significantly faster and also
more accurately than other current solutions.

8. Acknowledgements

The authors would like to thank Magdalena Balazinska,
Nick Feamster, Stuart Schechter, Robin Sommer, and Stuart
Staniford for their comments on earlier drafts of this paper,
and our shepherd, John McHugh.

References

[1] Nmap — free security scanner for network exploration & se-
curity audits.http://www.insecure.org/nmap/.

13

[2] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee,
J. Wood, and D. Wolber. A network security monitor. InProc.
IEEE Symposium on Research in Security and Privacy, pages
296–304, 1990.

[3] C. Leckie and R. Kotagiri. A probabilistic approach to detect-
ing network scans. InProceedings of the Eighth IEEE Net-
work Operations and Management Symposium (NOMS 2002),
pages 359–372, Florence, Italy, Apr. 2002.

[4] V. Paxson. Bro: a system for detecting network intruders
in real-time. Computer Networks (Amsterdam, Netherlands:
1999), 31(23–24):2435–2463, 1999.

[5] S. Robertson, E. V. Siegel, M. Miller, and S. J. Stolfo. Surveil-
lance detection in high bandwidth environments. InProceed-
ings of the 2003 DARPA DISCEX III Conference, pages 130 –
139, Washington, DC, 2003. IEEE Press. 22-24 April 2003.

[6] M. Roesch. Snort: Lightweight intrusion detection for net-
works. InProceedings of the 13th Conference on Systems Ad-
ministration (LISA-99), pages 229–238, Berkeley, CA, Nov.
7–12 1999. USENIX Association.

[7] S. Staniford, J. A. Hoagland, and J. M. McAlerney. Practical
automated detection of stealthy portscans. InProceedings of
the 7th ACM Conference on Computer and Communications
Security, Athens, Greece, 2000.

[8] A. Wald. Sequential Analysis. J. Wiley & Sons, New York,
1947.

[9] V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions:
global characteristics and prevalence. InProceedings of the
2003 ACM SIGMETRICS, volume 31, 1 ofPerformance Eval-
uation Review, pages 138–147, New York, June 11–14 2003.
ACM Press.

14

Appendix I
Conditional Expectation and Tail probability
of N

Following Wald, [8], we provide expressions for the con-
ditional expectation ofSN andXi whose ratio is the con-
ditional expectation ofN , E[N |Hj], j = 0, 1. Then, using
the central limit theorem, we provide the tail probability of
N , which can be useful to estimate the worst case scenar-
ios when this algorithm is used.

ForXi,

Xi|H0 =

{

ln 1−θ1

1−θ0

with prob.1− θ0

ln θ1

θ0

with prob.θ0

Xi|H1 =

{

ln 1−θ1

1−θ0

with prob.1− θ1

ln θ1

θ0

with prob.θ1

E[Xi|H0] = (1− θ0) ln
1− θ1

1− θ0

+ θ0 ln
θ1

θ0

(15)

E[Xi|H1] = (1− θ1) ln
1− θ1

1− θ0

+ θ1 ln
θ1

θ0

If we assume the sequential test ends withSN hitting,
equaling, eitherln η0 or ln η1, i.e.if we ignore any over-
shoot, then

SN |H0 =

{

ln η1 with prob.α
ln η0 with prob.1− α

SN |H1 =

{

ln η1 with prob.β
ln η0 with prob.1− β

E[SN |H0] = α ln η1 + (1− α) ln η0 (16)
E[SN |H1] = β ln η1 + (1− β) ln η0

Combining (8), (15), and (16), we obtain the approxi-
mate result in Equation(14).

For the tail probability ofN , we apply the central
limit theorem to

∑

i=1
Xi. Note that if the random walk,

∑no

i=1
Xi is greater than or equal to upper thresholdln η1

at observationno, then the sequential hypothesis test must
have terminated by then,i.e.N ≤ no. Conditioning on the
hypothesis for which hitting the upper threshold is more
likely, H1, we have:

Pr[

no
∑

i=1

Xi ≥ ln η1|H1] ≤ Pr[N ≤ no|H1] (17)

Normalizing the left hand side of (17) to mean zero vari-
ance one, yields:

Pr

[∑no

i=1
Xi − noE[Xi|H1]√
no · σ(Xi|H1)

≥ ln η1 − noE[Xi|H1]√
no · σ(Xi|H1)

|H1

]

(18)

whereσ(Xi|Hj) denotes the standard deviation ofXi given
hypothesisHj , j = 0, 1.

σ(Xi|H0) =
√

θ0(1− θ0) · ln
(

1− θ1

1− θ0

θ0

θ1

)

σ(Xi|H1) =
√

θ1(1− θ1) · ln
(

1− θ1

1− θ0

θ0

θ1

)

Applying the central limit theorem to (18) yields an ap-
proximate lower bound for the distribution ofN |H1, which
can be used as an approximation for the distribution itself,
where the error tends to be on the conservative side (i.e.
tends to under estimate the likelihoodN ≤ no). Thus,

Pr[N ≤ no|H1] ≈ 1−Φ

(

ln η1 − noE[Xi|H1]√
no · σ(Xi|H1)

)

(19)

whereΦ(x) equals the probability of a normally distributed
random variable with mean zero and variance one is less
than or equal tox.

Analogous reasoning for the lower threshold and condi-
tioning onH0 yields

Pr[N ≤ no|H0] ≈ Φ

(

ln η0 − noE[Xi|H0]√
no · σ(Xi|H0)

)

(20)

15

