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Abstract 
 

A small subset of machine learning algorithms, mostly 

inductive learning based, applied to the KDD 1999 Cup 

intrusion detection dataset resulted in dismal 

performance for user-to-root and remote-to-local attack 

categories as reported in the recent literature.  The 

uncertainty to explore if other machine learning 

algorithms can demonstrate better performance 

compared to the ones already employed constitutes the 

motivation for the study reported herein.  Specifically, 

exploration of if certain algorithms perform better for 

certain attack classes and consequently, if a multi-expert 

classifier design can deliver desired performance 

measure is of high interest.  This paper evaluates 

performance of a comprehensive set of pattern 

recognition and machine learning algorithms on four 

attack categories as found in the KDD 1999 Cup 

intrusion detection dataset.  Results of simulation study 

implemented to that effect indicated that certain 

classification algorithms perform better for certain attack 

categories: a specific algorithm specialized for a given 

attack category .  Consequently, a multi-classifier model, 

where a specific detection algorithm is associated with an 

attack category for which it is the most promising, was 

built.  Empirical results obtained through simulation 

indicate that noticeable performance improvement was 

achieved for probing, denial of service, and user-to-root 

attacks. 
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1. Introduction 
 

Literature survey indicates that, for intrusion detection, 

most researchers employed a single algorithm to detect 

multiple attack categories with dismal performance in 

some cases.  The set of machine learning algorithms 

applied in the literature constitutes a very small subset of 

what is potentially applicable for the intrusion detection 

problem.  Additionally, reported results suggest that much 

detection performance improvement is possible.  In light 

of the widely-held belief that attack execution dynamics 

and signatures show substantial variation from one attack 

category to another, identifying attack category specific 

detection algorithms offers a promising research direction 

for improved intrusion detection performance.  In this 

paper, a comprehensive set of pattern recognition and 

machine learning algorithms will be evaluated on the 

KDD data set [1], which is one of few public domain such 

data, utilizes TCP/IP level information and embedded 

with domain-specific heuristics, to detect intrusions at the 

network level. 

KDD dataset covers four major categories of attacks: 

Probing attacks (information gathering attacks), Denial-

of-Service (DoS) attacks (deny legitimate requests to a 

system), user-to-root (U2R) attacks (unauthorized access 

to local super-user or root), and remote-to-local (R2L) 

attacks (unauthorized local access from a remote 

machine).  KDD dataset is divided into labeled and 

unlabeled records.  Each labeled record consisted of 41 

attributes (features) [2] and one target value.  Target value 

indicated the attack category name.  There are around 5 

million (4,898,430) records in the labeled dataset, which 

was used for training all classifier models discussed in this 

paper.  A second unlabeled dataset (311,029 records) is 

provided as testing data [3].  Next, a brief and up-to-date 

literature survey of attempts for designing intrusion 

detection systems using the KDD dataset is presented. 

Agarwal and Joshi [4] proposed a two-stage general-to-

specific framework for learning a rule-based model 

(PNrule) to learn classifier models on a data set that has 

widely different class distributions in the training data.  

The PNrule technique was evaluated on the KDD testing 

data set, which contained many new R2L attacks not 

present in the KDD training dataset.  The proposed model 

was able to detect 73.2% of probing attacks, 96.9% of 

denial of service attacks, 6.6% of U2R attacks, and 10.7% 

of attacks in R2L attack category.  False alarms were 

generated at a level of less than 10% for all attack 

categories except for U2R: an unacceptably high level of 

89.5% false alarm rate was reported for the U2R category. 



Using Kernel Miner tool and the KDD data set [5], 

Levin created a set of locally optimal decision trees 

(called the decision forest) from which optimal subset of 

trees (called the sub-forest) was selected for predicting 

new cases.  Levin used only 10% of the KDD training 

data randomly sampled from the entire training data set.  

Multi-class detection approach was used to detect 

different attack categories in the KDD data set.  The final 

trees gave very high detection rates for all classes 

including the R2L in the entire training data set.  The 

proposed classifier achieved 84.5% detection for probing, 

97.5% detection for denial of service, 11.8% detection for 

U2R, and only 7.32% detection for R2L attack category in 

the KDD testing data set.  False alarm rates of 21.6%, 

73.1%, 36.4%, and 1.7% were achieved for probing, DoS, 

U2R and R2L attack categories, respectively. 

Ertoz and Steinbach [6] used shared nearest neighbor 

(SNN) technique, which is particularly suited for finding 

clusters in data of different sizes, density, and shapes, 

mainly when the data contains large amount of noise and 

outliers.  All attack records were selected from the KDD 

training and testing data sets with a cap of 10,000 records 

from each attack type: there are a total of 36 attack types 

from 4 attack categories.  Also 10,000 records were 

randomly picked from both the training and the testing 

data sets.  In total, around 97,000 records were selected 

from the entire KDD data set.  After removing duplicate 

KDD records, the data set size reduced to 45,000 records.  

This set was then used to train two clustering algorithms: 

K-means and the proposed SNN technique, which were 

compared in terms of detection rates achieved.  K-means 

algorithm, with number of clusters equal to 300, could 

detect 91.88% of probing, 97.85% of DoS, 5.6% of U2R, 

and 77.04% of the R2L attack records.  The proposed 

SNN technique was able to detect 73.43% of probing, 

77.76% of DoS, 37.82% of U2R, and 68.15% of the R2L 

records, while noting that no discussion on false alarm 

rates were reported by the authors.  Results suggested that 

SNN performed better than K-means for U2R attack 

category.  It is important to note that there was no 

independent testing data used.  Also the results are 

evaluated on a relatively small portion of KDD dataset 

and not on complete KDD testing dataset.  Hence the 

reported results show the performance of both algorithms 

on the training data set only, which is expected to result in 

high detection rates by default. 

Yeung and Chow [7] proposed a novelty detection 

approach using non-parametric density estimation based 

on Parzen-window estimators with Gaussian kernels to 

build an intrusion detection system using normal data 

only.  This novelty detection approach was employed to 

detect attack categories in the KDD data set.  30,000 

randomly sampled normal records from the KDD training 

data set were used as training data set to estimate the 

density of the model.  Another 30,000 randomly sampled 

normal records (also from the KDD training data set) 

formed the threshold determination set, which had no 

overlap with the training data set.  The technique could 

detect 99.17% of probing, 96.71% of DoS, 93.57% of 

U2R, and 31.17% of R2L attacks in the KDD testing 

dataset as intrusive patterns: authors did not report any 

information on false alarm rates.  As a significant 

limitation, it is important to note that this model detects 

whether a record is intrusive or not and not if the attack 

records belongs to a specific attack category. 

Literature survey shows that, for all practical purposes, 

most researchers applied a single algorithm to address all 

four major attack categories.  It is critical to question this 

approach that strives to identify a single algorithm that can 

detect attacks in all four attack categories.  These four 

attack categories including DoS, Probing, R2L, and U2R, 

have distinctly unique execution dynamics and signatures 

[8], which motivates to explore if in fact certain, but not 

all, detection algorithms are likely to demonstrate superior 

performance for a given attack category.  In light of this 

possibility, the study presented here will create detection 

models using a comprehensive set of pattern recognition 

and machine learning algorithms and select best 

performing (in terms of probability of detection and false 

alarm rates) algorithms for each attack category. 

In the event that certain subset of detection algorithms 

do offer improved probability of detection coupled with 

false alarm rates for a specific attack category, a multi-

classifier system will be attempted to improve the overall 

detection performance on the four attack categories as 

they exist in the KDD data sets. 

 

2. Simulation study 

 

This section will elaborate the methodology employed 

to test various algorithms on the KDD datasets.  First 

required data preprocessing and tools employed will be 

discussed in Section 2.1.  Cost matrix measure, which is 

employed to select best instances of a given classifier 

algorithm, will be presented in the following section.  

Parameter settings for various models will be described in 

Section 2.3.  Results of testing classifier algorithms will 

be discussed in Section 2.4. 

 

2.1. Data preprocessing and simulation tools 
 

Attributes in the KDD datasets had all forms - 

continuous, discrete, and symbolic, with significantly 

varying resolution and ranges.  Most pattern classification 

methods are not able to process data in such a format.  

Hence preprocessing was required before pattern 

classification models could be built.  Preprocessing 

consisted of two steps: first step involved mapping 

symbolic-valued attributes to numeric-valued attributes 



and second step implemented scaling.  Attack names (like 

buffer_overflow, guess_passwd, etc.) were first mapped to 

one of the five classes, 0 for Normal, 1 for Probe, 2 for 

DoS, 3 for U2R, and 4 for R2L, as described in [9].  

Symbolic features like protocol_type (3 different 

symbols), service (70 different symbols), and flag (11 

different symbols) were mapped to integer values ranging 

from 0 to N-1 where N is the number of symbols.  Then 

each of these features was linearly scaled to the range 

[0.0, 1.0].  Features having smaller integer value ranges 

like duration [0, 58329], wrong_fragment [0, 3], urgent 

[0, 14], hot [0, 101], num_failed_logins [0, 5], 

num_compromised [0, 9], su_attempted [0, 2], num_root 

[0, 7468], num_file_creations [0, 100], num_shells [0, 5], 

num_access_files [0, 9], count [0, 511], srv_count [0, 

511], dst_host_count [0, 255], and dst_host_srv_count [0, 

255] were also scaled linearly to the range [0.0, 1.0].  Two 

features spanned over a very large integer range, namely 

src_bytes [0, 1.3 billion] and dst_bytes [0, 1.3 billion]. 

Logarithmic scaling (with base 10) was applied to these 

features to reduce the range to [0.0, 9.14].  All other 

features were either boolean, like logged_in, having 

values (0 or 1), or continuous, like diff_srv_rate, in the 

range [0.0, 1.0].  Hence scaling was not necessary for 

these attributes. 

The KDD 1999 Cup dataset has a very large number of 

duplicate records.  For the purpose of training different 

classifier models, these duplicates were removed from the 

datasets.  The total number of records in the original 

labeled training dataset is 972,780 for Normal, 41,102 for 

Probe, 3,883,370 for DoS, 52 for U2R, and 1,126 for R2L 

attack classes.  After filtering out the duplicate records, 

there were a total of 812,813 records for Normal, 13,860 

for Probe, 247,267 for DoS, 52 for U2R, and 999 for R2L 

attack classes. 

The software tool LNKnet, which is a publicly 

available pattern classification software package [10],  

was used to simulate pattern recognition and machine 

learning models.  The only exception was for developing 

decision tree classifier models.  The C4.5 algorithm was 

employed to generate decision trees using the software 

tool obtained at [11].  All simulations were performed on 

a multi-user Sun SPARC machine, which had dual 

microprocessors, UltraSPARC-II, running at 400 MHz. 

System clock frequency was equal to 100 MHz.  The 

system had 512 MB of RAM and Solaris 8 operating 

system. 

 

2.2. Performance comparison measures 
 

Identifying an optimal set of settings for the topology 

and parameters for a given classifier algorithm through 

empirical means required multiple instances of detection 

models to be built and tested on the KDD datasets.  For 

instance, more than 50 models were developed using the 

multilayer perceptron algorithm alone.  Hence a 

comparative measure is needed to select the best model 

for a given classifier algorithm.  One such measure is the 

cost per example that requires two quantities to be 

defined: cost matrix and confusion matrix. 

A cost matrix (C) is defined by associating classes as 

labels for the rows and columns of a square matrix: in the 

current context for the KDD dataset, there are five classes, 

{Normal, Probe, DoS, U2R, R2L}, and therefore the 

matrix has dimensions of 5×5.  An entry at row i and 

column j, C(i,j), represents the non-negative cost of 

misclassifying a pattern belonging to class i into class j.  

Cost matrix values employed for the KDD dataset are 

defined elsewhere in [9]. These values were also used for 

evaluating results of the KDD’99 competition.  The 

magnitude of these values was directly proportional to the 

impact on the computing platform under attack if a test 

record was placed in a wrong category.   

A confusion matrix (CM) is similarly defined in that 

row and column labels are class names: a 5×5 matrix for 

the KDD dataset.  An entry at row i and column j, CM(i,j), 

represents the number of misclassified patterns, which 

originally belong to class i yet mistakenly identified as a 

member of class j.   

Given the cost matrix as predefined in [9] and the 

confusion matrix obtained subsequent to an empirical 

testing process, cost per example (CPE) was calculated 

using the formula, 
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where CM corresponds to confusion matrix, C 

corresponds to the cost matrix, and N represents the 

number of patterns tested.  A lower value for the cost per 

example indicates a better classifier model. 

Comparing performances of classifiers for a given 

attack category is implemented through the probability of 

detection along with the false alarm rate, which are widely 

accepted as standard measures.  

 

2.3. Pattern recognition and machine learning 

algorithms applied to intrusion detection 
 

Nine distinct pattern recognition and machine learning 

algorithms were tested on the KDD dataset.  These 

algorithms were selected so that they represent a wide 

variety of fields: neural networks, probabilistic models, 

statistical models, fuzzy-neuro systems, and decision 

trees.  An overview of how specific instances of these 

algorithms were identified as well as their intrusion 

detection performance on the KDD testing data set 

follows next. 



 

2.3.1. Multilayer perceptron (MLP).  Multilayer 

perceptron (MLP) [12] is one of most commonly used 

neural network classification algorithms. 

The architecture used for the MLP during simulations 

with KDD dataset consisted of a three layer feed-forward 

neural network: one input, one hidden, and one output 

layers.  Unipolar sigmoid transfer functions were used for 

each neuron in both the hidden and the output layers with 

slope value of 1.0.  The learning algorithm used was 

stochastic gradient descent with mean squared error 

function.  There were a total of 41 neurons in the input 

layer (41-feature input pattern), and 5 neurons (one for 

each class) in the output layer.  Multiple simulations were 

performed with number of hidden layer nodes varying 

from 40 to 80 in increments of 10.  Also for each 

simulation a constant learning rate (one of the four values 

0.1,0 0.2, 0.3, and 0.4) was used along with 0.6 as the 

weight change momentum value.  Different simulations 

had different learning rates that varied from 0.1 to 0.4 in 

steps of 0.1.  Randomly selected initial weights were used 

that were uniformly distributed in the range [-0.1, 0.1].  

Each epoch consisted of 500,000 samples having equi-

probable records from each of the five output categories.  

Initially a total of 30 epochs were performed on the 

training dataset.  Other simulations studied the effect of 

changing the number of training epochs: number of 

epochs was varied to 40, 50, 60, 100, etc.  The final 

model, which scored the lowest cost per example value of 

0.2393, consisted of 50 nodes in the hidden layer with a 

learning rate value equal to 0.1 and 60 epochs for training. 

 

2.3.2. Gaussian classifier (GAU).  Maximum likelihood 

Gaussian classifiers assume inputs are uncorrelated and 

distributions for different classes differ only in mean 

values.  Gaussian classifier is based on the Bayes decision 

theorem [13]. 

Four distinct models were developed using the 

Gaussian classifier: quadratic classifier with diagonal 

covariance matrix, quadratic classifier with tilted 

covariance matrix, linear classifier with diagonal 

covariance matrix, and linear classifier with tilted 

covariance matrix.  Linear discriminant classifier with full 

tilted matrix performed the best on the KDD testing 

dataset with cost per example value of 0.3622.  

 

2.3.3. K-means clustering (K-M).  K-means clustering 

algorithm [13] positions K centers in the pattern space 

such that the total squared error distance between each 

training pattern and the nearest center is minimized. 

Using the K-means clustering algorithm, different 

clusters were specified and generated for each output 

class.  Simulations were run having 2, 4, 8, 16, 32, 40, 64, 

75, 90, 110, 128, and 256 clusters.  Each simulation had 

equal number of clusters for each attack class.  For 

number of clusters (K) that are not integer powers of 2, 

after generating P clusters (P being an integer power of 2) 

where P>K, the cluster centers having minimum variance 

among its patterns were removed one at a time until the 

clusters were reduced to K.  An epoch consisted of 

presenting all training patterns in an output class for which 

centers are being generated.  Clusters were trained until 

the average squared error difference between two epochs 

was less than 1%.  During splitting, the centers were 

disturbed by � 1% of the standard deviation in each 

cluster so that new clusters are formed.  A random offset 

of � =1% was also added during each split.  The model 

that achieved the lowest cost per example value (0.2389) 

had 16 clusters in each class.   

 

2.3.4. Nearest cluster algorithm (NEA).  Nearest cluster 

algorithm [13] is a condensed version of K-nearest 

neighbor clustering algorithm.  Input to this algorithm is a 

set of cluster centers generated from the training data set 

using standard clustering algorithms like K-means, E & M 

binary split, and leader algorithm. 

Initial clusters were created using the K-means.  

Multiple simulations were performed using different set of 

initial clusters in each output class including 2, 4, 8, 16, 

32, 40, 64, 75, 90, 110, 128, and 256 clusters using the K-

means algorithm.  Euclidean distance was used as the 

distance measure.  Based on the minimum cost per test 

example, the nearest cluster model that performed the best 

had 32 clusters in each class during training.  The model’s 

cost per example for the KDD test data was equal to 

0.2466. 

 

2.3.5. Incremental radial basis function (IRBF).  

Incremental radial basis function (IRBF) neural networks 

[14] can also perform nonlinear mapping between input 

and output vectors similar to an MLP. 

A total of six simulations were performed using the 

IRBF algorithm.  Each simulation used initial clusters 

created using K-means algorithm: there were 8, 16, 32, 40, 

64, and 75 clusters each in different output classes.  

Learning rate for change in weights was 0.1 and those for 

changes in hidden unit means and variance were 0.01.  A 

separate diagonal covariance matrix was used for each 

hidden unit with minimum variance of 0.000001.  A total 

of 10 epochs were performed on the training data.  During 

each epoch, 500,000 records were randomly and 

uniformly sampled from each attack class.  Mean squared 

error cost function was used for these simulations.  Initial 

weights were randomly selected from a uniform 

distribution in the range of [-0.01, 0.01].  For each 

simulation using the IRBF, cost per example for the test 

dataset was calculated.  The model with 40 hidden nodes 

for each class performed best with the cost per example 

value equal to 0.4164. 

 



2.3.6. Leader algorithm (LEA).  Leader algorithm [15] 

partitions a set of M records into K disjoint clusters 

(where M ≥ K).  A rule for computing distance measure 

between records is assumed along with a threshold value, 

delta.  First input record forms the leader of first cluster.  

Each input record is sequentially compared with current 

leader clusters.  If the distance measure between the 

current record and all leader records is greater than delta, 

a new cluster is formed with the current record being the 

cluster leader. 

Different clusters were created for different output 

classes.  Multiple simulations were executed with distance 

threshold value, delta, assuming values from the set {0.05, 

0.2, 0.4, 0.6, 0.8, 1, 5, 10, 50, 70, 90, and 100}.  Records 

from each class were randomly presented during training.  

As the value of delta was increased, the number of 

clusters in each output class kept reducing.  Only one 

cluster per class was formed when delta was equal to 100.  

It was observed that the results were not reproducible as 

leader records for each cluster were dependent on the 

sequence in which the records were presented.  The results 

varied tremendously for larger values of delta.  Cost per 

example for test data was calculated for each simulation.  

The model that performed best had delta value equal to 

0.05 and cost per example value equal to 0.2528. 

 

2.3.7. Hypersphere algorithm (HYP).  Hypersphere 

algorithm [16] [17] creates decision boundaries using 

spheres in input feature space.  Any pattern that falls 

within the sphere is classified in the same class as that of 

the center pattern.  Spheres are created using an initial 

defined radius.  Euclidean distance between a pattern and 

sphere centers is used to test whether a pattern falls in one 

of the current defined spheres. 

Multiple simulations were performed with different 

initial radius, e.g. 0.05, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, and 

20.0.  The total number of epochs performed was equal to 

30.  All patterns present in the training dataset were used 

during each epoch.  Single nearest neighbor classification 

was used to classify patterns that were ambiguous or 

outside all hyperspheres created.  A total of 1066 

hyperspheres were formed after 30 epochs in all 

categories during training.  The Hypersphere model that 

performed the best had initial radius equal to 0.05 and 

cost per example value equal to 0.2486. 

 

2.3.8. Fuzzy ARTMAP (ART).  Fuzzy ARTMAP 

(Adaptive Resonance Theory mapping) [18] algorithm is 

used for supervised learning of multidimensional data. 

Fuzzy ARTMAP uses two ART’s – ARTa and ARTb.  

ARTa maps features into clusters.  ARTb maps output 

categories into clusters.  There is a mapping from ARTa 

clusters to ARTb clusters which is performed during 

training.  A constant vigilance value (distance measure) of 

0.999 was used for ARTb in all simulations.  Vigilance for 

ARTa was different for each simulation.  Five simulations 

were performed using fuzzy ARTMAP algorithm.  The 

vigilance values for ARTa during training were equal to 

0.95, 0.9, 0.85, 0.75, and 0.65, respectively one for each 

simulation.  And the corresponding testing vigilance for 

ARTa was equal to 0.9, 0.9, 0.8, 0.7, and 0.6, 

respectively.  Different vigilance parameters can be set for 

each ART.  Fuzzy ART parameters, alpha and beta, were 

set to 0.001 and 1.0 respectively.  The parameter alpha is 

used to define the initial long term memory values in 

ART.  The value of alpha should be set as small as 

possible.  The value of beta can vary in the range [0.0, 

1.0].  Smaller the value of beta larger is the effect of old 

weights during training.  Generally beta is set to 1.0 so 

that changes in weights should be dependent on current 

input patterns.  All inputs were normalized to the range 

[0.0, 1.0] prior to training.  Inputs were complement-

coded so that low feature values do not diminish during 

ART training.  A total of 20 epochs were performed on 

the training data.  During each epoch 200,000 records 

were sampled from each attack category given by Normal, 

Probe, DoS, U2R, and R2L with probabilities of 0.7, 0.08, 

0.2, 0.05, and 0.05, respectively.  The model that 

performed the best with respect to cost per example value 

had vigilance parameter equal to 0.95 and 0.9 for training 

and testing ARTa.  It had 0.999 as vigilance parameter for 

ARTb both during training and testing.  Cost per example 

for this model was equal to 0.2497. 

 

2.3.9. C4.5 decision tree (C4.5).  The C4.5 algorithm 

[C4.5 Simulator], developed by Quinlan [12], generates 

decision trees using an information theoretic 

methodology.  The goal is to construct a decision tree with 

minimum number of nodes that gives least number of 

misclassifications on training data.  The C4.5 algorithm 

uses divide and conquer strategy. 

Initial window was set to 20% of the records present in 

the KDD training dataset.  20% of records present in the 

initial window size were added after each iteration and the 

tree was retrained.  In all tests, at least two branches 

contained a minimum of two records.  The cost per 

example achieved for the best decision tree classifier 

model was equal to 0.2396. 

 

2.4. Classification performance of algorithms on 

KDD testing dataset 
 

Best performing instances of all nine classifiers 

developed through the KDD training dataset in Section 

2.3 were evaluated on the KDD testing data set.  For a 

given classifier, its probability of detection and false 

alarm rate performance on a specific attack category was 

recorded.  Simulation results are presented in Table 1.  

Both probability of detection (PD) and false alarm rate 



(FAR) are indicated for each classifier algorithm and each 

attack category. 

Table 1 shows that a single algorithm could not detect 

all attack categories with a high probability of detection 

and a low false alarm rate.  Results also show that for a 

given attack category, certain algorithms demonstrate 

superior detection performance compared to others.  

MLP, GAU, K-M, NEA, and RBF detected more than 

85% of attack records for probing category.  For attack 

records in DoS category, MLP, K-M, NEA, LEA, and 

HYP scored a 97% detection rate.  GAU and K-M, the 

two most successful classifiers for U2R category, detected 

more than 22% of attack records.  In case of R2L 

category, only GAU could detect around 10% of attack 

records.  Once the promising algorithms for each attack 

category are identified, the best algorithm can be chosen 

also considering the FAR values.  Hence, MLP performs 

the best for probing, K-M for DoS as well as U2R, and 

GAU for R2L attack categories. 

 

Table 1.  PD and FAR for various algorithms 
 

 Probe DoS U2R R2L 

PD 0.887 0.972 0.132 0.056 
MLP 

FAR 0.004 0.003 5E-4 1E-4 

PD 0.902 0.824 0.228 0.096 
GAU 

FAR 0.113 0.009 0.005 0.001 

PD 0.876 0.973 0.298 0.064 
K-M 

FAR 0.026 0.004 0.004 0.001 

PD 0.888 0.971 0.022 0.034 
NEA 

FAR 0.005 0.003 6E-6 1E-4 

PD 0.932 0.730 0.061 0.059 
RBF 

FAR 0.188 0.002 4E-4 0.003 

PD 0.838 0.972 0.066 0.001 
LEA 

FAR 0.003 0.003 3E-4 3E-5 

PD 0.848 0.972 0.083 0.010 
HYP 

FAR 0.004 0.003 9E-5 5E-5 

PD 0.772 0.970 0.061 0.037 
ART 

FAR 0.002 0.003 1E-5 4E-5 

PD 0.808 0.970 0.018 0.046 
C4.5 

FAR 0.007 0.003 2E-5 5E-5 

 

It is reasonable to state that the set of pattern 

recognition and machine learning algorithms tested on the 

KDD data sets offered an acceptable level of misuse 

detection performance for only two attack categories, 

namely Probing and DoS.  On the other hand, all nine 

classification algorithms failed to demonstrate an 

acceptable level of detection performance for the 

remaining two attack categories, which are U2R and R2L. 

Subsequent to the observation that for a given attack 

category, certain subset of classifier algorithms offer 

superior performance as empirically evidenced through 

results in Table 1, a multi-classifier design, where 

classifier components are selected among the best 

performing ones for a given attack category justifiably 

deserves further attention.  This very issue will be 

elaborated in the next section. 

 

3. Multi-classifier model 
 

Results in Section 2 suggest that the performance can 

be improved if a multi-classifier model is built that has 

sub-classifiers trained using different algorithms for each 

attack category.  Section 2 identified the best algorithms 

for each attack category: MLP for probing, K-M for DoS 

as well as U2R, and GAU for R2L.  This observation can 

be readily mapped to a multi-classifier topology as in 

Figure 1.  Table 2 shows the performance comparison of 

the proposed multi-classifier model with others in 

literature.  Results in Table 2 suggest that the multi-

classifier model showed significant improvement in 

detection rates for probing and U2R attack categories.  

Also the FAR was reasonably small for all attack 

categories. 

 

 
Figure 1. Multi-classifier model 

 

 

Table 2.  Comparative detection performance of 

Multi-classifier 
 

 Probe DoS U2R R2L 

PD 0.833 0.971 0.132 0.084 KDD Cup 

Winner FAR 0.006 0.003 3E-5 5E-5 

PD 0.833 0.971 0.132 0.084 KDD Cup 

RunnerUp FAR 0.006 0.003 3E-5 5E-5 

PD 0.73 0.969 0.066 0.107 Agarwal 

and Joshi FAR 8E-5 0.001 4E-5 8E-4 

PD 0.887 0.973 0.298 0.096 Multi-

Classifier FAR 0.004 0.004 0.004 0.001 

 

A second measure, the cost per example, can also be 

leveraged to elaborate further on the comparative 

performance assessment.  Winner of the KDD-99 

intrusion detection competition, who used C5 decision 

trees, obtained cost per example value of 0.2331.  

R2L 

Probe 

KDD 

record 

Multilayer 

Perceptron 

K-means 

Gaussian 

DoS & U2R 



Proposed multi-classifier model (created by selecting the 

best algorithms that could achieve the highest detection 

rates for each attack category) was able to achieve 0.2285 

cost per example value on the KDD dataset test.  This is 

better than that achieved by the KDD’99 Cup winner. 

 

4. Conclusions 

 

A simulation study was performed to assess the 

performance of a comprehensive set of machine learning 

algorithms on the KDD 1999 Cup intrusion detection 

dataset.  Simulation results demonstrated that for a given 

attack category certain classifier algorithms performed 

better.  Consequently, a multi-classifier model that was 

built using most promising classifiers for a given attack 

category was evaluated for probing, denial-of-service, 

user-to-root, and remote-to-local attack categories.  The 

proposed multi-expert classifier showed improvement in 

detection and false alarm rates for all attack categories as 

compared to the KDD 1999 Cup winner.  Furthermore, 

reduction in cost per test example was also achieved using 

the multi-classifier model.  However, none of the machine 

learning classifier algorithms evaluated was able to 

perform detection of user-to-root and remote-to-local 

attack categories significantly (no more than 30% 

detection for U2R and 10% for remote-to-local category).  

In conclusion, it is reasonable to assert that machine 

learning algorithms employed as classifiers for the KDD 

1999 Cup data set do not offer much promise for detecting 

U2R and R2L attacks within the misuse detection context. 
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