
Temporal Sequence Learning and Data
Reduction for Anomaly Detection

TERRAN LANE and CARLA E. BRODLEY
Purdue University

The anomaly-detection problem can be formulated as one of learning to characterize the
behaviors of an individual, system, or network in terms of temporal sequences of discrete data.
We present an approach on the basis of instance-based learning (IBL) techniques. To cast the
anomaly-detection task in an IBL framework, we employ an approach that transforms
temporal sequences of discrete, unordered observations into a metric space via a similarity
measure that encodes intra-attribute dependencies. Classification boundaries are selected
from an a posteriori characterization of valid user behaviors, coupled with a domain heuristic.
An empirical evaluation of the approach on user command data demonstrates that we can
accurately differentiate the profiled user from alternative users when the available features
encode sufficient information. Furthermore, we demonstrate that the system detects anoma-
lous conditions quickly — an important quality for reducing potential damage by a malicious
user. We present several techniques for reducing data storage requirements of the user profile,
including instance-selection methods and clustering. An empirical evaluation shows that a
new greedy clustering algorithm reduces the size of the user model by 70%, with only a small
loss in accuracy.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection

General Terms: Security, Experimentation

Additional Key Words and Phrases: Anomaly detection, clustering, data reduction, empirical
evaluation, instance based learning, machine learning, user profiling

Terran Lane’s work was supported, in part, by contract MDA904-97-C-0176 from the Mary-
land Procurement Office, and by sponsors of the Purdue University Center for Education and
Research in Information Assurance and Security (CERIAS). Carla E. Brodley’s work was
carried out under NSF grant 9733573–IIS.
Authors’ addresses: T. Lane, School of Electrical and Computer Engineering and CERIAS,
Purdue University, 1285 Electrical Engineering Building, W. Lafayette, IN 47907-1287; email:
terran@ecn.purdue.edu; C. E. Brodley, School of Electrical and Computer Engineering and
CERIAS, Purdue University, 1285 Electrical Engineering Building, Purdue University, W.
Lafayette, IN 47907-1287; email: brodley@ecn.purdue.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1094-9224/99/0800–0295 $5.00

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999, Pages 295–331.

1. INTRODUCTION

In this paper we examine the problem of anomaly detection as one of
learning to characterize the behaviors of an individual, system, or network
in terms of temporal sequences of discrete data. Although here we focus on
user-oriented anomaly detection at the level of shell command input, the
methods we present are generalizable to learning on arbitrary streams of
discrete events such as GUI events, network packet traffic, or system call
traces.

The anomaly-detection problem is a difficult one, especially at the level of
user command traces. It encompasses a broad spectrum of possibilities,
from a trusted system user turning from legitimate usage to abuse of
system resources, to system penetration by sophisticated and careful hos-
tile outsiders, to one-time use by a co-worker “borrowing” a workstation, to
automated penetration launched by a relatively naive attacker via a
scripted attack sequence. Time spans of interest vary from a few seconds to
months. Patterns may only appear in data gathered from a number of
different hosts and networks, possibly spread over thousands of miles
geographically. The amount of available data can be truly staggering, as
security officers may be responsible for thousands of hosts, each of which
can generate megabytes of audit data per hour. Selection of data sources
can also be difficult. Do the patterns of interest show themselves most
clearly in command data, system call traces, network activity logs, CPU
load averages, disk access patterns, or any of the hundreds of other possible
sources? The patterns of interest may be corrupted by noise or interspersed
with examples of normal system usage. Indeed, normal usage may vary
greatly as the user changes tasks or software and learns new behaviors and
command actions. Differentiating innocuous anomalies from those associ-
ated with actual abuse, misuse, or intrusion is a further difficulty. On top
of all of this, a practical security system must be accurate; false alarms
reduce user confidence in the system, while falsely accepting anomalous or
hostile activities render the system useless.

Subsets of the general problem have been addressed by specialized
techniques. Short-term (“hit and run”) attacks and attacks launched by
automated scripts can often be detected by pattern matching to databases
of known attack patterns (for example, Kumar [1995]; Staniford-Chen et al.
[1996]). Similarly, there are numerous free and commercial programs for
detecting the presence of known vulnerabilities and viruses by signatures
[Farmer and Venema 1995; Gordon 1996]. In this work we address the
subset of anomaly detection oriented to long-term, low profile, human-
generated patterns in which known misuse signatures are insufficient to
distinguish the space of possible anomalies. By long term, we mean
penetration or exploitation that occurs over a period of days or weeks,
rather than hit-and-run scenarios, and by low profile we mean attacks that
are unlikely to flag conventional alarms (such as data theft, as opposed to
data destruction or denial of service, which are more likely to be noticed
through their effects). Human-generated patterns are those that occur at

296 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

the user interface level (such as the command line or GUI), rather than
machine-generated events such as network packet traces, system calls, or
scripted attack sequences.

The subset of anomaly detection described above encompasses not only
intrusions but also hostile activities by a trusted user, and even relatively
“innocuous” policy violations such as inappropriate use of system resources
by an authorized user. Host-based anomaly detection at the user level can
be viewed as a continuous monitoring process of the internal state of the
system, working in conjunction with perimeter defenses such as passwords,
firewalls, and network-based intrusion-detection systems [Heberlein et al.
1990]. Additionally, multisensor intrusion-detection systems such as
AAFID [Balasubramaniyan et al. 1998] or EMERALD [Porras and Neu-
mann 1997] allow integration of a user monitor, such as the one presented
here, with other knowledge sources, to yield a comprehensive and robust
view of the system state.

We take a machine-learning viewpoint of the anomaly-detection problem,
in which the task is to train a classifier with known “normal” data to
distinguish normal from anomalous behaviors. We focus on an instance-
based learning (IBL) model in which query data is classified according to its
relation to a set of previously encountered exemplar instances. The system
we present stores historical examples of user behavior to reference when
assessing the normalcy of newly encountered behavioral data.

In the rest of this paper we examine methods for representing the
anomaly-detection domain as an instance-based learning task, including a
temporal encoding of discrete data streams and a definition of similarity
suitable for discrete temporal sequence data. We present two classes of
methods for data reduction in this domain: one based on instance selection
through accumulated activity statistics and one based on instance cluster-
ing. We finish with an empirical examination of performance at differenti-
ating users under this learning scheme.

2. LEARNING FROM TEMPORAL SEQUENCE DATA

To approach anomaly detection as a machine-learning task, we must define
both the learning model and representational format for the input data.
One popular and highly general class of machine-learning techniques is
instance-based learning (IBL) [Aha et al. 1991]. In this model, the concept
of interest is implicitly represented by a set of instances that exemplify the
concept (the instance dictionary). A previously unseen query instance is
classified according to its relation to stored instances. A typical scheme is
k-nearest-neighbor classification, in which a new instance is given the label
of the majority of the k dictionary instances closest to it, where “closest” is
a domain-specific measure. In continuous domains, for example, the simi-
larity measure is often taken to be the Euclidean distance. IBL techniques
may be contrasted to learning techniques that build explicit models of the
data such as parametric statistical models [Fukunaga 1990], artificial
neural networks [Ripley 1996], or decision trees [Quinlan 1993]. To adapt

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 297

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

the anomaly-detection task to the IBL learning framework, we need to
choose a fixed-length vector (feature vector) representation of the data and
to define the concept of “closeness,” or similarity of two vectors.

An important difference between our task and the traditional classifica-
tion task of IBL is that we do not have labeled instances of multiple classes.
We clearly have instances of the valid user’s normal working behaviors, but
instances of hostile behaviors are a different matter—leaving aside the
practical difficulty of obtaining instances of hostile activity,1 there is an
issue of coverage. Because the space of possible malicious behaviors and
intruder actions is potentially infinite, it is difficult or impossible to
demonstrate complete coverage of the space from a finite training corpus.
Furthermore, it is often the previously unseen attack that represents the
greatest threat (indeed, the very purpose of this work is to augment
systems that use pattern databases to detect known threats). Finally, for
reasons of privacy, it is desirable that a user-based anomaly-detection
agent only employ data that originate with the profiled user or are publicly
available. Releasing traces of one’s own normal behaviors, even to assist
the training of someone else’s anomaly detector, runs the risk that the data
will be abused to subvert the original user’s security mechanisms. Thus, we
are faced with a learning situation in which only positive instances are
available (where we assign positive to the class “normal behaviors” and
negative to the class “anomalous behaviors”). When only positive examples
are available, many standard IBL algorithms (such as the k-nearest-neighbor
rule, for example) automatically classify all new examples as positive. In
Section 2.2.5 we discuss a classification rule that employs only positive
examples. Learning from only positive examples presents a challenge for
classification, since it can easily lead to overgeneralization [Iba 1979].

A widely acknowledged difficulty with instance-based learning tech-
niques is the overhead incurred by explicitly storing a set of class exem-
plars. In a dynamic environment such as anomaly detection, the size of the
instance dictionary can conceivably grow without bounds, requiring data-
reduction techniques to reduce the resource consumption of the IBL sys-
tem. Possible solutions include removal of instances from the dictionary
and rerepresentation of instances in another, less space-intensive form. In
this paper we explore the use of instance selection and clustering algo-
rithms to reduce dictionary size. Instance-selection methods use accumu-
lated usage statistics, such as the number of times a dictionary instance is
most similar to a query instance, to choose items to remove from the
dictionary. In the clustering formulation, a group of similar dictionary

1Examples (usually simulated) of machine-level attack logs (such as network packet logs or
system call traces) are available, but traces of real attacks at the human command level are
considerably rarer. A recent call for examples of such data by the CERIAS security research
center has, to date, yielded no instances of such data. Currently such data are often not stored,
not because such threats do not exist, but because adequate automated analysis tools are
lacking.

298 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

instances is replaced with a single exemplar instance without regard to
usage statistics.

2.1 Alternate Approaches to Sequence Learning

Many traditional approaches to learning from temporal sequence data are
not applicable to the anomaly-detection domain, when the base data
consists of discrete, unordered (i.e., nominal-valued) elements such as
command strings. For time series of numeric values, techniques such as
spectral analysis [Oppenheim and Schafer 1989], principal component
analysis [Fukunaga 1990]; linear regression [Casella and Berger 1990];
linear predictive coding [Rabiner and Juang 1993]; nearest-neighbor
matching, ~g, e!-similarity [Bollobás et al. 1997; Das et al. 1997]; and
neural networks [Chenoweth and Obradovic 1996] have proven fruitful.
Such techniques typically employ a Euclidean distance, or related distance
measure, defined for real-valued vectors.

There are a number of learning algorithms that are amenable to learning
on spaces with nominal-valued attributes, but they typically make the
assumption of the independence of attributes. For example, decision trees
[Quinlan 1993] are well suited to representing decision boundaries on
discrete spaces. The bias used to search for such structures generally
employs a greedy search that examines each feature independently of all
others. This bias ignores internal relations arising from causal structures
in the data-generating process.

One method of circumventing this difficulty is to convert the data to an
atemporal representation in which the causal structures are represented
explicitly. Norton [1994] and Salzberg [1995] independently used such a
technique to enable the learning domain to recognize coding regions in
DNA fragments. DNA coding, while not temporal, does exhibit interrela-
tions between positions that are difficult for conventional learning systems
to acquire directly. The features extracted from the DNA sequences are
selected by domain experts and cannot be generalized to other sequential
domains. Although such an approach could be applied to the anomaly-
detection domain, it would require considerable effort on the part of a
domain expert, and the developed features would apply only to that data
source. We are interested in developing techniques that can be applied
across different data sources and tasks.

There also exist learning methods explicitly developed to model sequence
data. Methods for learning the structure of deterministic finite-state au-
tomata, for example, have been widely studied [Angulin 1987; Rivest and
Schapire 1989; Aslam and Rivest 1990]. DFAs, however, are not well suited
to modeling highly noisy domains such as human-generated computer
interface data. There exist stochastic extensions to finite-state automata
such as hidden Markov models [Rabiner 1989], which are often more
effective in noisy domains. We are currently investigating the application of
such models to this domain.

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 299

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

2.2 The IBL Representation of Anomaly Detection

We have developed a prototype anomaly-detection system that employs an
instance-based learning framework to classify observed user behaviors as
normal or anomalous. We give a brief overview of the system information
flow (shown schematically in Figure 1) here and describe the individual
blocks in more detail below. Data enters the system, in the upper left, as an
undifferentiated sequence of discrete symbols (UNIX shell command lines
in this work) and is passed through a parser (Tokenize()) which reduces
the data stream to an internal format and does preliminary feature
selection. The resulting data stream is compared to the user’s historical
profile via a similarity measure (Sim()), yielding a temporal sequence of
real-valued similarity measures (indicating instantaneous similarity of
observed data to the profile). Because the instantaneous similarity measure
stream is highly noisy, classification on the basis of this signal is difficult.
To solve this problem, we introduce a noise-suppression filter (F()). Clas-
sification of the smoothed data stream is via a threshold decision module
(Class()) whose decision boundaries are set through examination of an
independent, parameter-selection set of the user’s historical data. The
final, binary class stream (upper right) is the detector’s estimation of the
current state of the input data (1 being “normal” and 0 “abnormal”).

The components described above suffice to operate the detection system
in a batch mode. In this mode the detector accumulates a single, fixed
profile and employs it for all further classifications. In an operational
setting we face the additional difficulty that human behaviors are dynamic
and what is considered “normal” behavior is likely to change over time.
This problem is known in the machine learning community as concept drift,
and requires a system that can dynamically update the user profile and
classification parameters. In such an online-learning mode, the detector
employs the feedback loop shown in Figure 1 to update the profile and

Fig. 1. Information flow in the instance-based anomaly-detection system.

300 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

classification thresholds. In this paper we are interested in examining the
effects of profile data-reduction techniques in isolation. To prevent interac-
tions with the additional complexities of the online mode feedback loop, we
perform all experiments in batch mode. Elsewhere [Lane and Brodley
1998], we have examined some of the online learning issues involved with
adapting user models to changing behaviors.

2.2.1 Feature Extraction. In our environment we have been examining
UNIX shell command data, captured via the (t)csh history file mecha-
nism. The history data are parsed by a recognizer for the (t)csh command
language and emitted as a sequence of tokens in an internal format. Each
“word” of the history data (e.g. a command name, group of command flags,
or shell metacharacters) is considered to be a single token. The resulting
alphabet is very large (over 35,000 distinct symbols in our complete data)
and, as the frequency of some of these tokens is quite low, gathering
adequate statistics over this large an alphabet is difficult. We have inves-
tigated different methods for reducing the alphabet size and found that
omitting file names in favor of a filename count (e.g. cat foo.c bar.c
gux.c is converted to cat ,3.) greatly constrains the alphabet size (to
just over 2,500 distinct tokens) and in an empirical evaluation, yields
improved anomaly-detection performance.

2.2.2 The Similarity Measure. We examined several measures for com-
puting the similarity between two discrete-valued temporal instances
[Lane and Brodley 1997b]. Here we describe the measure that we found
performs the best on average in empirical evaluations.

The similarity measure operates on token sequences of equal, fixed
length. Although we examine only UNIX shell command data in this work,
tokens may in general be any symbols drawn from a discrete, finite,
unordered alphabet (e.g., GUI events, keystrokes, system calls). For a
length l, the similarity between sequences X 5 ~x0, x1, . . . , xl21! and Y
5 ~y0, y1, . . . , yl21! is defined by the pair of functions:

w~X, Y, i! 5 H 0 if i , 0 or xi Þ yi

1 1 w~X, Y, i 2 1! if xi 5 yi

(where w~X, Y, i! 5 0 for i , 0, so that w~X, Y, 0! is well defined when
x0 5 y0) and

Sim~X, Y! 5 O
i50

l21

w~X, Y, i!.

The converse measure, distance, is defined to be

Dist~X, Y! 5 Simmax 2 Sim~X, Y!

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 301

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

where Simmax is the maximum attainable similarity value for a given
sequence length: Simmax 5 Sim~X, X!.

An example similarity calculation is depicted in Figure 2. The function
w~X, Y, i! accumulates weight linearly along matching subsequences (bot-
tom curve) and Sim~X, Y! is the integral of total weight over time (area
under the weight curve). In the limiting case of identical sequences, this
measure reduces to Simmax 5 (

i51

l i 5 l~l 1 1! / 2. Thus, a run of contigu-
ous matching tokens will accumulate a large similarity, while changing a
single token, especially in the middle of the run, can greatly reduce the
overall similarity. This measure depends strongly on the interactions
between adjacent tokens as well as comparisons between corresponding
tokens in the two sequences (i.e., tokens at the same offset, i, within each
sequence). The sequence length l is a user-dependent parameter, explored
in Lane and Brodley [1997a], where the best value was found to be
dependent on the profile and on the opponent being detected. Plausible
values for l are small integers in the range 8 . . . 15, and the setting l 5 10
was found to be an acceptable compromise across users.

A user profile is a collection of sequences, D, selected from a user’s
observed actions.2 The similarity between the profile and a newly observed
sequence, X, is defined to be

SimD~X! 5 max
Y[D

$Sim~Y, X!%.

This rule is related to the 1-nearest-neighbor classification rule[Fukunaga
1990], although we are not actually performing classification at this stage,
we are defining similarity to known patterns. We examined the possibility

2The problem of guaranteeing that the observed history used to profile a user actually
originates with that user is critical. We do not examine this problem here, but assume that the
known data are accurate.

cd <1> cat <1> tar <2> less <1>

cd <1> ls -laF tar <2> less <2>

Final Similarity Score: 9

Fig. 2. Example of sequence similarity calculation. Two sequences are compared, element by
element. The bottom curve represents the weight contributed by each match and the final
similarity is the area under this curve.

302 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

of using an average similarity to the entire profile, but found that such a
measure has much lower accuracy than the measure given here. An
average across the entire profile decreases the classifier’s ability to resolve
fine-structure patterns in the classification space.

2.2.3 Segmenting the Event Stream. Because the similarity measure is
defined for fixed-length sequences only, it is necessary to partition the raw
event stream into component subsequences. This raises the question of
optimal sequence alignments: where should each sequence be defined to
start? Our approach is based on the data-reduction techniques in Section 4.
Initially the system segments the data stream into all possible overlapping
sequences of length l (thereby replicating each token l times). Thus, every
position i of the event stream is considered the starting point for a
sequence of length l, referred to as the i th sequence, or the sequence at time
step i. For example, under sequence length l 5 6, the tokenized data
stream “cat ,3. . ,1. ls -l | more ” is converted to three instance
sequences “cat ,3. . ,1. ls -l ”, “,3. . ,1. ls -l | ”, and “.
,1. ls -l | more ”. After data reduction via instance selection or
clustering (see below), the sequences remaining in the profile are consid-
ered as defining the desired alignments.

2.2.4 Noise Suppression. In practice, we found that the instantaneous
similarity stream, produced by comparing an input data stream to a user
profile, is far too noisy for effective classification. We attribute the high
degree of noise to natural variations in the user’s actions and patterns. For
example, the user may temporarily suspend writing a paper to deal with
urgent incoming email, thus disrupting his or her standard paper-writing
routine. Such a disruption will appear as a spuriously low similarity spike
within an overall high similarity period. We therefore employ a noise-
reduction filter before selecting decision thresholds or performing classifi-
cation. We employ a trailing window mean-value filter, defined as

vD~j! 5
1

W
O

i5j2W11

j

SimD~i!

where SimD~i! is the similarity of the i th token sequence to the user profile
D; W is the window length; and vD~j! is the final value of sequence j with
respect to D. In a comparison of the mean-value filter with a median-value
filter, we found that, while the median filter is generally more effective at
short window lengths (W , 80), performance for the two methods is
approximately equivalent at longer window lengths [Lane and Brodley
1997b]. We use the mean-value filter here because we employ W 5 100,
and the mean filter can be made to run quickly more easily. We note that
while a great deal of damage can be inflicted in less than the window
length, such short-term attacks can be handled more readily by matching
known attack signatures [Kumar and Spafford 1994]. We are primarily

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 303

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

concerned here with the class of long-term, low-profile attacks such as
resource theft or industrial data theft.

2.2.5 Classification and Threshold Selection. The similarity-to-profile
measure transforms the nominal vector (vectors of l discrete, unordered
elements) representation into a real-valued time series on which numerical
classification can be performed. Assessing the similarities of all points in a
new command trace to the user profile yields a probability distribution P $T%

over similarity values. Due to the structure of the similarity measure
(Section 2.2.2), the range of similarity values (and thus P $T%) is 0 . . . l~l 1
1! / 2. When multiple classes are observable, their probability distributions
can be used to construct Bayes-optimal decision boundaries [Fukunaga
1990]. In the anomaly-detection domain, however, we possess data from the
profiled user only, so the Bayes-optimal boundary is unobservable to us.
Furthermore, for most of the data sets we examined, the unweighted
Bayes-optimal threshold is overly critical of the profiled user. In Figure 3,
normal (U0) and anomalous (U1) similarity distributions are displayed
together with the Bayes-optimal classification threshold and an alternative
possible classification threshold (the acceptable false alarm threshold,
described below). Sequences whose similarity to the profile falls to the right
of the classification threshold are labeled normal, while points falling to the
left are labeled abnormal. The area under distribution U0 and to the left of
the threshold is then the false alarm probability (the probability of the
valid user being falsely accused of being anomalous), while the area under
distribution U1 and to the right of the threshold is the probability of falsely
accepting an anomalous user. In this example, employing the unweighted

0 5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

0.15

0.2

0.25

Similarity to profile

Fr
eq

ue
nc

y

U0 = Profiled User

U1 = Anomalous User (Unobservable distribution)

Bayes-optimal threshold
Acceptable False Alarm
threshold

Fig. 3. Comparison of unweighted Bayes-optimal decision boundary and acceptable false
alarm rate boundary. The rightmost curve (user U0) represents the profiled user.

304 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

Bayes-optimal threshold for classification yields an unacceptably high false
alarm rate.

In light of the above, we must seek another method for selecting a
decision boundary. Conveniently, the constraints of our domain provide us
with a practical heuristic: constrain the false alarm rate. This yields a
Neyman-Pearson hypothesis test [Casella and Berger 1990], for a nonpara-
metric distribution of the form:

class~v! 5 H 1 if P$T%~v! $ r
0 if P$T%~v! , r

where v is the similarity of a sequence to be classified to a particular profile
D, 1 denotes “normal,” 0 denotes “anomalous,” and r is the specified false
alarm rate. The test, as given above, does not uniquely determine decision
thresholds. We implement this test by selecting two decision thresholds,
tmax and tmin, based on the upper and lower r / 2 quantiles of the similarity
distribution observed on a “parameter selection” data set that is indepen-
dent of both training and testing data. Similarity values falling between
the decision thresholds are labeled normal and those falling outside are
labeled abnormal. The lower threshold, tmin, detects sequences that are too
different from known behaviors, while the upper threshold, tmax, detects
sequences that are improbably similar to historical behaviors, perhaps
indicating a replay attack.

The parameter r selects the width of the acceptance region on the
similarity-to-profile axis. Thus, it encodes the trade-off between false alarm
and false accept error rates. A smaller value of r yields a wider acceptance
region and corresponds to a lower false alarm rate. Simultaneously, how-
ever, anomalous values have a greater chance of falling into the broader
acceptance region, so false accept rates rise. The choice of a particular point
on the error rate trade-off curve depends on site-specific factors such as
security policy and estimated cost of errors.

3. EMPIRICAL ANALYSIS: BASE SYSTEM

Before presenting methods for reducing the amount of data that must be
stored in the user profile, we give an empirical performance analysis of the
base classification system as described in Section 2.2. In this mode the
profile contains all available training data.

3.1 Performance Criteria

We employ two methods for evaluating the performance of anomaly-
detection systems. In addition to the traditional accuracy measurements,
we argue that the mean time to generation of an alarm is a useful quantity
to consider.

The goal in the anomaly-detection task is to identify potentially mali-
cious occurrences, while falsely flagging innocuous actions as rarely as

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 305

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

possible. We denote the rate of incorrectly flagging normal behaviors as the
false alarm rate and the rate of failing to identify abnormal or malicious
behaviors as the false acceptance rate. Under the null hypothesis that all
behavior is normal, these correspond to Type I and Type II errors, respec-
tively. The converse accuracy rates are referred to as the true accept
(ability to correctly accept the profiled user as normal) rate and the true
detect (ability to correctly detect an anomalous user) rate. For the detector
to be practical, it is important that the false alarm rate be low. Users and
security officers will quickly learn to ignore the “security system that cries
wolf” if it flags innocuous behavior too often. Finally, a practical security
system must be resource-conservative in both space and time.

Detection accuracy does not, however, tell the complete story. A second
important issue is time to alarm (TTA), which is a measure of how quickly
an anomalous or hostile situation can be detected. In the case of false
alarms, the time to alarm represents the expected time until a false alarm
occurs. We wish the time to alarm to be short for hostile users so that they
can be dealt with quickly and before doing much harm, but long for the
valid user so that normal work is interrupted by false alarms as seldom as
possible. We define TTA to be the mean run length of “normal” (i.e.,
nonalarm) classifications. This value represents the mean number of com-
mands over which no alarm will be generated for a given user. For the valid
user, this gives a sense of how long work can progress before being
interrupted by a false alarm, while for an opponent this measures how long
malicious use can continue before being spotted.

3.2 Data Sources and Collection

Of the literally thousands of possible data sources and features that might
characterize a system or user, we chose to examine UNIX shell command
data. The UNIX operating system is widely used and extensively studied in
both the security and operating systems communities. The user environ-
ment is highly configurable with a rich command language, and permits a
large range of possible behaviors. In the UNIX model, most user interac-
tions take place through a command line environment (a shell), so com-
mand data is strongly reflective of user activities. Finally, there are
available mechanisms to make collection of shell command data convenient
in the UNIX environment.

Lacking shell traces of actual misuse or intrusive behaviors, we demon-
strate the behavior of the detection system on the task of differentiating
different authorized users of the UNIX hosts in the Purdue MILLENNIUM
machine learning lab. In this framework, an anomalous situation is simu-
lated by testing one legitimate user’s command data against another
legitimate user’s profile. This framework simulates only a subset of the
possible misuse scenarios — that of a naive intruder gaining access to an
unauthorized account — but it allows us to evaluate the approach. It is to
be hoped that the “naive intruder” scenario comprises a large enough
fraction of all attacks to make progress in this domain of practical benefit.

306 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

Nonetheless, we acknowledge our inability to generalize these result to
broader definitions of abuses until we are able to test these techniques
against real misuse data.

We acquired shell command data from eight different UNIX users over
the course of more than two years. The amount of data available varies
among the users from just over 15,000 tokens to well over 100,000 tokens,
depending on their work rates and when each user entered and left the
study. Because of computational constraints and for testing uniformity, we
employ a subset of 7,000 tokens from each user, representing approxi-
mately three months of computer usage.

3.3 Experiment Structure

Because user behaviors change over time, the effective lifetime of a static
user profile, as employed in the work described here, is limited. Thus we
constructed experiments to evaluate the detector’s performance over a
limited range of future activities. The separation of the 7,000 token
training data into three groups (or folds): train, parameter selection, and
test data is shown in Figure 4. The initial 1,000 tokens of each user’s data
are taken as training (profile construction) data, the following 1,000 tokens
for parameter-selection data (used to set the decision thresholds tmax and
tmin), and the 3,000 following tokens to test performance for that profile. To
guard against isolated data anomalies,3 three folds of train, parameter
selection, and test data are produced for each user. All tests are repeated
for each fold.

From each test set, a profile is constructed with l 5 10 (the fixed
sequence length for the similarity measure) and W 5 100 (the window
length for the noise-suppression filter). The resulting profile was tested
against the corresponding test set for each user (a total of 82 test pairings).
A “self” test pairing — testing the profiled user’s data against his or her

3For example, we found that our users tend to experience large behavioral changes at the
beginning of academic semesters. The batch mode detection system presented here is highly
sensitive to such changes.

Complete Training Data: 7000 instances

Train 1

Train 2

Train 3

Param 2

Param 1

Param 3

Test 1

Test 2

Test 3

Fig. 4. Division of training data into train, parameter selection, and test data sets.

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 307

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

own profile — allows us to examine false alarm rates, while a “nonself”
pairing allows us to examine false accept rates.

The acceptable false alarm rate, r, determines how the classification
thresholds, tmax and tmin, are set and has a substantial impact on the
trade-off between false alarm and false accept errors. Because the notion of
an “acceptable” false alarm rate is a site-dependent parameter, we wish to
characterize the performance of the system across a spectrum of rates. We
took r [$0.5,1,2,5,10%%, which yields a performance curve for each
profile/test set pair. This curve, which expresses the trade-off between false
alarm and false accept errors, with respect to r, is known as a Receiver
Operating Characteristic (ROC) curve [Provost and Fawcett 1998]. A ROC
curve allows the user to evaluate the performance of a system under
different operating conditions or to select the optimal operating point for a
given cost trade-off in classification errors.

It should be noted that this experimental structure assumes that the
training data is “pure,” i.e., that no instances of anomalous or hostile
behaviors appear in the training data. In practice, the issue of initializing
the system with known behaviors is critical and the assumption of data
purity may not hold. Although we do not attempt to address this issue, it
has been examined by other researchers. HAYSTACK, for example, initial-
izes users as members of hand-crafted behavioral classes [Smaha 1988].

3.4 Accuracy Results

An example of accuracy results for a test fold of a single profile (that of
USER6) is shown in Figure 5. Each column in this plot displays the

USER 0 USER 1 USER 2 USER 3 USER 4 USER 5 USER 6 USER 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Tested user

Profile 6

Fig. 5. Accuracy results for base system, single fold, profile for USER6. Each column shows
accuracy for one test set against Profile 6. The plus symbols denote adversaries, while the
circle symbols denote USER6.

308 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

accuracy results for a single test set when tested against the profile. When
the test set originates with the profiled user (i.e., USER6 tested against
Profile 6), the results indicate the ability to correctly identify the valid user
(true accept rate). This condition is denoted with an “o” symbol on the plot.
When the test set originates with a different user (e.g., USER3 tested
against Profile 6), the results indicate the ability to correctly flag an
anomalous condition (true detect rate). This condition is denoted with a “1”
symbol on the plot. In both cases, accuracy increases in the positive
direction on the Y axis. The spectrum of results in each column is gener-
ated by testing at different values of r, the acceptable false alarm rate, as
described in Sections 2.2.5 and 3.3. Because r encodes the size of the
acceptance region, it yields a trade-off in detect versus accept accuracies.
The smallest value of r tested (r 5 0.5%) yields the widest acceptance
region and corresponds to the highest (most accurate) point on the true
accept column (USER6). But because the acceptance region is wide, more
anomalous points fall into it and are accepted falsely. Thus, this value of r
corresponds to the lowest accuracy in each of the true detect columns
(USER{0-5,7}).

Profile 6 was selected to highlight a number of points. First is that
accuracy is highly sensitive to the particular opponent. USER1 and US-
ER3, for example, display quite different detection accuracies. Because of
this variance, simple statistics such as mean detection accuracy are insuf-
ficient to evaluate the system’s performance. Second, although the accept-
able false alarm rate parameter r was tested across the range 0.5%–10%,
all of the observed false alarm rates are greater than this (13.4%–21.2%).
This is a result of the training and parameterization data failing to fully
reflect the behavioral distribution present in the testing data. Because the
user has changed behaviors or tasks over the interval between the genera-
tion of training and testing data, the profile does not include all of the
behaviors present in the test data. This phenomenon is actually exacer-
bated by the batch-mode experimental setup used here. In tests of the
online version of this system [Lane and Brodley 1998], we found that
continuously adapting to the user’s behaviors (thus shortening the delay
between training and testing) improves true accept accuracy.

A third source of false accept error is demonstrated in Figure 6, where
the profiled user (USER6) and USER5 have many behaviors in common—
mostly “generic” account maintenance such as directory creation and file
copy and remove operations. This high degree of similarity is reflected in
the substantial overlaps in the similarity distributions, making differenti-
ation impossible within this space. By contrast, USER3 is mainly engaged
in programming and writing during this time. There are two possible
sources for the degree of overlap between USER5 and USER6. First, the
underlying observations do not encode sufficient information to distinguish
the two users. Many other data sources are available for user profiling and
could be used in conjunction with the techniques presented here in an

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 309

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

operational security system.4 The second, and more fundamental, source of
error is in the similarity measure itself. The measure presented in this
paper is fairly coarse (with only O~l2! possible values for a sequence length
of l) and models only a single type of temporal interaction. We are currently
investigating more sophisticated similarity measures such as edit distance
[Cormen et al. 1992] and hidden Markov models [Rabiner 1989].

The complete set of all accuracies for all folds and all profiles is displayed
in Figure 7. This plot is not intended as a reference for individual accuracy
values, but to convey a sense of the general performance of the system
under different operating conditions and to highlight some behavioral
characteristics of the detection system. In this figure each column displays
the same data as in Figure 5 — all tests against a single profiled user. Now,
however, all three folds are given for each profile.

The overall impression in this plot is that many of the accuracy points
are clustered toward the top of the plot, indicating that accuracy perfor-
mance is generally high. The notable exception is Profile 4, which has high
accuracy only for true accept (USER4 tested against Profile 4). This is an
example of the decision thresholds being set to artificially extreme values,
resulting in a spuriously large acceptance region. Thus the system has
effectively decided that “everything is USER4,” and no real differentiation
is being done — it simply accepts most behaviors as normal. Examination
of USER4’s training data reveals that this user appears to devote entire
shell sessions to single tasks (such as the compile-debug cycle), which
appear as rather repetitious and monotonous patterns. Because this user is

4A number of such data sources are described in Denning [1987]; Lunt and Jagannathan
[1988]; Smaha [1988]; and Heberlein et al. [1990].

0 5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

0.15

0.2

0.25

0.3

Similarity to profile 6

Fr
eq

ue
nc

y

USER6

USER5

USER3

Fig. 6. False accept errors: USER5’s data bears high resemblance to the profiled user’s
(USER6).

310 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

working in the X-Windows environment, tasks can be assigned to single
shell sessions, and those shell sessions may be long-lived (some are over
2,000 commands). So the training data may display only one or two
sessions and a very small number of behaviors, while the parameter-
selection data displays a different (but also small) set of behaviors. Because
there may be little overlap between training and parameter selection data,
the observed similarity-to-profile frequency distribution is distorted and
the selected decision thresholds are poorly chosen.

A converse behavior occurs with Profile 3. Although not as dramatic as
the Profile 4 case, this profile displays relatively low true accept rates
(denoted by the “o” symbol) in comparison to other profiles. This is an
example of the system deciding that “nothing is USER3” because the
acceptance region was set too narrowly. As with USER4, this arises
because different behaviors are displayed in the training and testing data.
In this case the parameter-selection data reflects the training data well,
but the test data is different from both of them. As a result, the acceptance
range is narrowly focused to high-similarity behaviors, but the behaviors
encountered in the testing data are of lower similarity.

Both of these cases can be ameliorated by online training. When the
system is constantly updating the profile, the chances of missing important
behaviors are smaller. In general, however, changing user behaviors
present a serious problem, because sudden large changes may appear very
similar to the very anomalies that the system is designed to detect. We
explore these issues in Lane and Brodley [1998].

Profile 0 Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Fig. 7. Base system accuracies for all users and folds. Each column now displays a single
profile tested against all test sets (the equivalent of Figure 5). Again, plus symbols denote
adversary accuracies, while the circle symbols denote valid user accuracies.

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 311

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

3.5 Time to Alarm Results

We measure all alarm times in token counts rather than wall-clock time.
Token count is more nearly correlated with the quantity of interest—how
much damage can a hostile user cause before detection — than is wall-clock
time.

An example of time-to-alarm results is shown in Figure 8. Analogously to
Figure 5, this plot displays a single fold of tests against a single profile
(USER1’s profile in this case). Each point denotes a mean time to genera-
tion of an alarm. The circle symbols represent the generation of false
alarms, which we wish to be rare occurances, while the plus symbols are
true alarms, which we wish to receive as quickly as possible. Each column
shows a spectrum of results, corresponding to the different settings of the
acceptable false alarm rate, r (Section 2.2.5). Note that the time axis here
is logarithmic and that the false alarms occur nearly an order of magnitude
more slowly than do the true alarms. This difference is disproportionally
greater than the accuracy difference between true accept and true detect,
indicating that false alarms occur in clusters separated by long stretches,
while true alarms occur more sporadically but more often. This is a
desirable behavior, as it leads to rapid detection of adversaries, while false
alarms occur rarely and in blocks, so that many false alarms can be verified
at once.

The complete time-to-alarm results for the base system are shown in
Figure 9. Here each column shows the results of all tests and all folds for a
single profiled user. The important result in this plot is that the times to
generation of false alarms (represented by the “o” symbols) are generally

USER 0 USER 1 USER 2 USER 3 USER 4 USER 5 USER 6 USER 7
10

1

10
0

10
1

10
2

10
3

10
4

M
ea

n
T

im
e

to
 A

la
rm

Tested User

Profile 1

Fig. 8. Time-to-alarm results for the base system, single fold, profile for USER1. Each
column shows mean time-to-alarm for one test set against Profile 1. The plus symbols denote
adversaries, while the circle symbols denote USER1. Times are in token counts and the time
axis is logarithmic.

312 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

much longer than the times to true detections (denoted by the “1” symbols)
for a given profile. The difference is often better than an order of magni-
tude, and is sometimes better than two. When the underlying accuracy
results are poor, as in the case of USER4’s profile, the time-to-alarm results
are similarly poor. In this case, since the system is marking most behaviors
as normal, true alarms are generated nearly as rarely as false alarms.

4. STORAGE REDUCTION

A widely acknowledged weakness of instance-based learning algorithms is
the large data storage requirement for accurate classification. A number of
techniques have been examined for reducing this memory overhead, many
of which are reviewed by Wilson and Martinez [1999]. In an operational
setting, data reduction is critical, since the size of the profile directly
impacts the time required for classification. In this section we describe two
classes of techniques that we investigated for reducing the storage require-
ments of the user profile and give empirical results demonstrating the
performance of these data-reduction methods.

4.1 Instance Selection

We note, first, that the chosen similarity measure selects only a single
historical sequence as most similar to a given input sequence. If we assume
that the characteristics of a user’s behavior change relatively slowly, we
can invoke locality of reference to predict that recently matched dictionary
sequences will be used again for detection in the near future. This suggests
an analogy to tasks in operating systems, such as page replacement, in
which some resources must be released in favor of others.

Profile 0 Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7
10

1

10
0

10
1

10
2

10
3

T
im

e
to

 A
la

rm

Fig. 9. Base system times-to-alarm for all users and folds. Each column displays a single
profile tested against all tests sets (the equivalent of Figure 8). The plus symbols denote
adversary times, while the circle symbols denote valid user times.

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 313

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

To examine the utility of this analogy, we implemented the least-
recently-used (LRU) pruning strategy. As parameter-selection instances
are examined and classified, the profile instance selected as most similar to
the query instance is time-stamped. The profile is constrained to the
desired size by removing the least-recently-used sequences. By analogy, we
also constructed and tested the pruning heuristics FIFO (equivalent to
preserving the most recently stored n sequences) and LFU (remove least
frequently used sequences). Finally, we employ uniformly random instance
selection as a base-line instance-selection method.

We employed the experimental structure described in Section 3.3, with
the addition of a final profile size parameter S, which sets the number of
sequences to remain in the user profile after instance selection. S describes
the severity of the pruning to be done, and can have a substantial impact
on the descriptiveness of the profile. Again, the trade-off between available
system resources and desired classification performance is a site-dependent
issue, so we examined the performance of each pruning method for S [

$100,250,500,750% instances.

4.1.1 Accuracy Results. Comparisons for accuracies in the performance
of instance-selection methods to the base system (described in Section 3.4)
are given in Figure 10. Each of these figures plots the accuracy results for
one instance-selection technique on the vertical axis against those for the
base system on the horizontal axis. The diagonal lines are equal-perfor-
mance lines. In the region to the right of these lines, the base system has
superior performance, while in the region above the diagonal the instance-
selection technique has superior performance. The points shown represent
all folds and tests for all profiles for a single setting of the profile size
parameter S. The results displayed here are for S 5 500 (i.e., preserve
only 500 of the original thousand instances in the profile after instance
selection). Other settings of S yield more-or-less extreme versions of the
results displayed here, but do not change the fundamental nature of the
results. The “o” symbols denote true accept accuracies (rate of correctly
recognizing the profiled user) while “1” symbols denote true detection
accuracies (rate of correctly distinguishing an impostor).

The first notable feature in these graphs is that overall the base system
has superior true accept accuracy but inferior true detect accuracy.5

Accuracy impacts are a natural result of reducing the profile size because
as information is removed from the profile, it becomes more likely that new
query instances will fail to find a good match in the profile. This can
potentially affect true accept accuracy only, while leaving true detect
accuracy unchanged. The results from the instance-selection techniques,
however, demonstrate a different class of behavior. Here true detect rates
actually increase. In these cases the range of similarity values accepted as

5Although visually it may appear that the distinction is complete, the base system actually
has superior true detection accuracy in approximately 16% of the cases. These points all occur
at the extreme ends of the accuracy scale; the margin of victory is slight.

314 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

normal is set too narrowly. This improves true detections because an
adversary’s behavior has a smaller chance of being similar enough to be
accepted, but decreases true acceptance. The instance-selection systems
biased their concepts toward rejecting more classes of behaviors. They have
effectively decided that “nobody is the profiled user.”

The basic process by which accuracy is impacted is the same for all of the
instance-selection techniques. The important difference between them is
the ability to control informational loss. By carefully choosing the instances
to preserve in the profile, the accuracy impacts can be minimized. Smaller
accuracy impacts appear as clustering of the points near the iso-perfor-
mance line at the diagonal. The worst technique in terms of accuracy is the
FIFO method (b), which keeps only the S newest instances in the profile.
Clearly, a great deal of important information is being lost by discarding

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparative Accuracies

Base system

ra
nd

om

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparative Accuracies

Base system

F
IF

O

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparative Accuracies

Base system

LR
U

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparative Accuracies

Base system

LF
U

(a)

(c)

(b)

(d)

Fig. 10. Comparison of accuracy results for base system versus random (a), FIFO (b), LRU
(c), and LFU (d) instance-selection strategies. Base system accuracies are plotted on the
horizontal scale, while accuracies of the instance-selection techniques are plotted on the
vertical scale. Points falling to the right of the diagonal indicate higher accuracies for the base
system, while points above the diagonal indicate higher accuracies for the instance-selection
strategy. The circle symbols denote true accept accuracies and the plus symbols are true detect
accuracies.

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 315

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

older instances (a result that casts some doubt on the assumption of
locality of reference employed by the instance-selection techniques dis-
cussed here). Simply randomly selecting S instances to keep, (a), is
superior to FIFO. Both LRU (c) and LFU (d) beat random. The difference
between the two is slight, even by nonvisual measures. LRU sacrifices an
average of 3.6% on true accept rate to gain 3.5% on true detect rate, while
LFU loses 3.7% to gain 3.4%.6 At smaller values of S (final profile size), the

6To measure the relative accuracy performance between two systems, we employ a mean of
accuracy value differences. Thus the difference in true detect rates between method 1 and
method 2 is 1 / N (t[opponent_test_sets~accuracymethod1~t! 2 accuracymethod2~t!! where N is the

number of opponent test sets.

10
1

10
0

10
1

10
2

10
3

10
1

10
0

10
1

10
2

10
3

Comparative Mean Times to Alarm

Base system

ra
nd

om

10
1

10
0

10
1

10
2

10
3

10
1

10
0

10
1

10
2

10
3

Comparative Mean Times to Alarm

Base system

F
IF

O

10
1

10
0

10
1

10
2

10
3

10
1

10
0

10
1

10
2

10
3

Comparative Mean Times to Alarm

Base system

LR
U

10
1

10
0

10
1

10
2

10
3

10
1

10
0

10
1

10
2

10
3

Comparative Mean Times to Alarm

Base system

LF
U

(a) (b)

(c) (d)

Fig. 11. Comparison of time-to-alarm results for base system versus random (a), FIFO (b),
LRU (c), and LFU (d) instance-selection strategies. Base system TTAs are plotted on the
horizontal scale, while TTAs of the instance-selection techniques are plotted on the vertical
scale. Points falling to the right of the diagonal indicate higher TTAs for the base system,
while points above the diagonal indicate higher TTAs for the instance-selection strategy. The
circle symbols denote time to generation of a false alarm and the plus symbols are times to
generation of true alarms. All times are in token counts, and both time axes are logarithmic.

316 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

effect is more pronounced, but the margins are still not dramatic. At S 5
100, for example, (reducing the profile to a tenth of its original size), the
corresponding figures for LRU are 28.6% and 17.8%, compared to 23.7%
and 16.1% for LFU.

4.1.2 Time-to-Alarm Results. Comparative results for the time-to-alarm
measure are given in Figure 11. The plots are analogous to those in Figure
10, but give times-to-alarms for the same conditions. Times are in token
counts and both time axes are logarithmic. In the region to the right of the
diagonal, the base system has longer time-to-alarm, while above the
diagonal the instance selection technique has longer TTA. It is apparent
that instance selection decreases (or leaves unchanged) time-to-alarm in all
cases. This is a consequence of the accuracy trade-off observed in the
previous section. Improved ability to detect an adversary corresponds to a
shorter TTA, while poorer ability to validate the profiled user also yields
shorter TTA (i.e., more false alarms per unit time). Again, points close to
the iso-performance diagonal correspond to minimal performance impact
due to instance selection. Not surprisingly, we observe the same relations
among the instance-selection techniques that we found in the last section.
In particular, FIFO incurs the largest performance changes, while LRU
and LFU are approximately equivalent, both beating random instance
selection.

4.2 Clustering

An alternate method for reducing data storage is to modify the representa-
tion of sets of points within the data space. For example, Salzberg [1991]
represented sets of points as hyper-rectangles, while Domingos [1995]
induced rules that cover subsets of the instance base. We have examined
techniques that attempt to locate clusters of similar instances (with respect
to the similarity measure defined in Section 2.2.2) within the data. A
cluster can be represented by a single exemplar instance, or center point,
which is the instance having the smallest distance to all other instances in
the cluster. By discarding all other elements of the cluster, substantial
space and time savings can be realized. Although the practical effect of this
process is the same as that of the instance-selection methods described
above, the clustering process employs knowledge about the relationships
among elements within the profile, while the pruning methods employ
knowledge about the relationship between individual profile elements and
the “external” parameter-selection data.

One popular class of clustering algorithms is based on the Expectation-
Maximization (EM) procedure [Moon 1996]. These methods attempt to
simultaneously maximize an optimality criterion across all clusters
through gradient descent on the cluster likelihood space. The basic process
is to assign all points to clusters and evaluate the optimality criterion
under that labeling. The evaluation yields a parameter set used to reassign
points to clusters. This basic loop is repeated until the optimality criterion
converges to a stable point. A common implementation of this process is the

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 317

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

K-means algorithm, or its discrete analog, K-centers. In these algorithms,
clusters are parameterized by their centroid (continuous) or center (dis-
crete) points and radii, and the search locates K clusters.

Clustering methods based on EM are popular because they are general
and often highly effective. However, when many local optima are present in
the likelihood space, the quality of the solution produced can be very
sensitive to the initial assignment of points to clusters. A larger difficulty
for the anomaly-detection domain is that K, the the number of clusters to
be sought, must be known a priori, yet it is not clear how to determine the
number of “natural” clusters in the user behavioral data. Furthermore, the
convergence rate of these methods is not guaranteed and is often related to
the number of clusters sought. For a large K, the search time for a stable
solution can be prohibitive.

As a response to these difficulties, we propose a greedy clustering
algorithm that builds individual clusters consecutively, attempting to min-
imize the criterion

val~C! 5
O

x[C
O

y[C
Dist~x, y!

?C?2

for each cluster C. This measure is a generalization of the mean interclus-
ter distance employed for clustering [Fukunaga 1990]. From an initial seed
point, the cluster is grown incrementally by including the point that
increases val~C! the least, until the halting criterion is reached. Growth is
halted when the value of the cluster’s criterion function reaches a local
minimum. Because, in some cases, the cluster value monotonically ap-
proaches Simmax, the halting criterion we actually use is that the first
derivative of val~C! be within e of 0 for some (empirically selected) value of
e. As each sequence is added to a cluster, it is removed from the set of
available sequences. When the cluster is complete, we define the center of
the cluster Ccent to be the point possessing the minimum total distance to
all other points in C. The similarity between a sequence X and a cluster is
then Sim~X, Ccent!.

In practice, we have found that this cluster-selection algorithm is some-
what too lenient — it accepts points that decrease the cluster’s effective-
ness in classification. We solve this in a manner analogous to the pruning
process employed in decision-tree learning [Quinlan 1993]. After growing a
single cluster to completion according to the halting criterion, the cluster-
ing algorithm removes outlying points and returns them to the pool of
available sequences (to make it possible for them to contribute to different
clusters). Our pruning function removes points from the cluster that fall
outside the cluster mean radius — i.e., points whose distance to the center
is greater than the mean distance to the center of all points in the cluster.
Points falling within the mean radius are discarded and the final cluster is

318 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

represented only by its center and mean radius. We realize substantial
space savings by discarding all cluster elements other than the center.

The complete clustering algorithm is structurally similar to the single
cluster construction algorithm. We sequentially select individual clusters
by their ability to maximize the analog of mean intracluster distance:

val$C1, C2, . . . , Cn% 5

O
i51

n O
j51

n

Dist~Ci, cent, Cj, cent!

n2
.

In this case we found the single cluster halting criterion to be ineffective
because, typically, all of a data set’s points are exhausted before the
derivative of the intracluster distance approaches 0. When we allow the
clustering process to absorb all available points, many of the clusters were
found to either not contribute to classification accuracy or to be actively
harmful. Instead, we halt the clustering process when the the minimum
intercluster value of all current clusters falls below a threshold C. C
determines when the clustering process will be halted and how many
clusters will be constructed. A small value of C produces many clusters,
while a large one allows many of the original profile points to remain. We
examine the effects of the parameter C below.

4.2.1 Comparison of Clustering Techniques. We examined the perfor-
mance of the K-centers and greedy clustering methods for storage reduc-
tion under the experimental conditions described in Section 3.3. The
additional parameters examined were K, the number of clusters to locate
for the K-centers method, and C, the global halting criterion for the greedy
clustering method. For K-centers, we ran the search to 10,000 cycles or
convergence, and examined K [$50,75,100,125,150% clusters. We note
that this corresponds to a fairly extreme degree of data compression —
retaining only K sequences total in the profile — but we were unable to
examine the system behavior for larger K, as the search failed to converge
or reach an acceptable solution in the allotted number of search cycles. For
the greedy clustering method, we examined C [$0.25,0.5,0.75% and used
a fixed, empirically selected e 5 0.005.

A comparison of the accuracies of the two clustering techniques is given
in Figure 12 (a). In this figure the test accuracies of the greedy clustering
system with C 5 0.25 are plotted vertically against the accuracies for the
K-centers clustering system with K 5 150 on the horizontal. The diagonal
line is the iso-performance surface. In the region to the right of this line the
K-centers system has superior performance, while in the region above the
diagonal the greedy clustering technique has superior performance. The “o”
symbols represent true acceptance rates, while the “1” symbols represent
true detection rates. The corresponding times-to-alarm are given in (b).

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 319

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

The interpretation of these plots is not as clear-cut as those of the plots
in Section 4.1. Because both methods employ a reduced profile, neither has
uniformly superior performance in the way that the base system is uni-
formly superior to the instance-selection methods. Nonetheless, some
trends are evident. The greedy clustering method has generally stronger
true detection accuracy (at a mean accuracy value difference of 4.5% over
K-centers), but slightly poorer true acceptance accuracy (0.5% lower). The
important distinction is revealed in the time-to-alarm results. In this
measure, the greedy system has superior results in both time to false alarm
(an average of 5.3 longer) and time to true detection (an average of 16.3
shorter). Thus, in terms of practical impact, although the greedy clustering
system has a marginally lower true acceptance rate, it is generating false
alarms more rarely.

In part, the disparity between the two systems can be attributed to the
final profile size. The settings K 5 150 and C 5 0.25 were chosen for
display here because the profiles they produce are most nearly comparable
in size. After reduction by clustering, the K-centers profiles contain only
150 instances, while the greedy profiles contain approximately 300 in-
stances, of which about 180 are cluster centers and the other 120 are
original instances not assigned to any cluster. Reaching complete parity in
profile sizes is difficult; increasing K beyond 150 could, in theory, produce
profiles of equivalent size to those located by the greedy clustering algo-
rithm. But it was found that the K-centers algorithm did not converge to an
acceptable solution in the allowed time frame (10,000 search iterations) for
K .. 150. The search also did not converge for K 5 150, but the solutions
located were generally of much higher performance than those for larger
values of K. This occurs because the K-centers algorithm attemps to
optimize all K clusters simultaneously, and the combinatorics of assigning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparative Accuracies

Kcenters, K=150

G
re

ed
y,

 C
=

0.
25

10
1

10
0

10
1

10
2

10
3

10
1

10
0

10
1

10
2

10
3

Comparative Mean Times to Alarm

Kcenters, K=150

G
re

ed
y,

 C
=

0.
25

(a) (b)

Fig. 12. Comparisons of accuracy (a), and time-to-alarm (b) for greedy clustering method
with C 5 0.25 (vertical axis) versus K-centers clustering with K 5 150 (horizontal axis). The
diagonal is the equal performance line. Circles denote true accept rate/time to false alarm and
pluses denote true detect rate/time to true detection.

320 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

points to K clusters makes the search difficult for large K. Decreasing K
improves the convergence of the algorithm, but yields a smaller final profile
and poorer performance. For the data sets tested here, K 5 150 is found to
be most effective.

Decreasing C (the parameter controlling the termination of the greedy
search for new clusters) allows the greedy clustering algorithm to search
further and locate more clusters, thereby decreasing total profile size. But
as C 5 0.25 already yields about 180 clusters, it is not possible to reduce
the profile to 150 instances solely by decreasing C.

Increasing C, on the other hand, causes premature halting of the
clustering process and yields fewer clusters (e.g., typically fewer than 5
clusters at C 5 0.75) and a large number of retained original points (more
than 900, or greater than 90% of the original profile for C 5 0.75). Doing
so does improve accuracy with respect to the K-centers system, but this is
to be expected given the much larger profile of the greedy system in this
case.

Thus, the best performance of the K-centers system is beaten in this
domain by a rather conservative setting of the greedy clustering system.
We attribute this to the dimensionality of the space (attempting to optimize
K 5 150 clusters simultaneously is combinatorially difficult). While the
K-centers algorithm is guaranteed to converge to a locally optimal cluster
assignment, there is no guarantee of time bounds on the convergence. In
this domain, we have found that the performance of the K-centers based
system is bounded largely by the convergence rate. The greedy clustering
method does not suffer from the same scaling difficulties because it is
guaranteed to terminate.

We note, in passing, that the clusters constructed by the greedy cluster-
ing algorithm make intuitive sense, in terms of the actions being performed
by the underlying sequences. For example, we have identified clusters that
correspond to “programming,” “paper writing,” “reading email,” and “navi-
gating directories.” An example of such an “intuitive” cluster is shown in
Figure 13.

4.2.2 Comparison of Clustering to Base System. Because the greedy
clustering algorithm is shown to have superior performance to the

Fig. 13. An example cluster produced by the greedy clustering algorithm from User 7’s data.
Each line is a single subsequence of commands and flags. The first line shown is the center
point of the cluster. The symbols **SOF** and **EOF** denote the start and end of shell
sessions, respectively.

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 321

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

K-centers algorithm for this data, we present only its results here. The
relative performance of the greedy clustering and base systems is displayed
in Figure 14. In this figure, the test accuracies of the greedy clustering
system with C 5 0.25 are plotted vertically against the accuracies for the
base system (full user profile) on the horizontal. The diagonal line is the
iso-performance surface. In the region to the right of this line the base
system has superior performance, while in the region above the diagonal
the greedy clustering technique has superior performance. The circle
symbols represent true acceptance rates, while the plus symbols represent
true detection rates. The corresponding times-to-alarm are given in (b).

The situation in this comparison is analogous to those in Section 4.1; a
reduced user profile (approximately 300 instances for the greedy system
with C 5 0.25) compared to the full user profile (1,000 instances) of the
base system. Not surprisingly, the base system has better overall perfor-
mance in both accuracy and time-to-alarm (note that the time to false
alarms is longer for the base system, while the time to true detection is
shorter for the base system). What is interesting is that the greedy
clustering technique does not display the same behavior that the instance-
selection techniques do. Recall that the instance-selection systems pro-
duced true accept and true detect rates that were well separated by the
iso-performance diagonal line. That result is characteristic of a “nobody is
the profiled user” problem — enough data was removed from the profile
that the systems were unable to characterize the profiled user well, so they
marked too many situations as anomalous. The greedy clustering system
does not seem to suffer from this fault. It has lower accuracy on both true
detect and true accept, indicating that it has lost ground against the full
profile, but has done so gracefully. Rather than learning an incorrect
generalization (“nobody is the profiled user”), the greedy clustering method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparative Accuracies

base system, full profile

G
re

ed
y,

 C
=

0.
25

10
1

10
0

10
1

10
2

10
3

10
1

10
0

10
1

10
2

10
3

Comparative Mean Times to Alarm

base system, full profile

G
re

ed
y,

 C
=

0.
25

(a) (b)

Fig. 14. Comparisons of accuracy (a) and time-to-alarm (b) for greedy clustering method with
C 5 0.25 (vertical axis) versus the base system with the full user profile (horizontal axis).
The diagonal is the equal performance line. Circles denote true accept rate/time to false alarm
and pluses denote true detect rate/time to true detection.

322 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

has preserved the correct characterization of the user’s behavior and has
degraded gracefully under the pressure of reduced profile size. The
K-centers clustering method displays a similar form of degradation.

4.2.3 Comparison of Clustering to Instance Selection. Since the LRU
and LFU instance-selection techniques have comparable performance and
are the most effective of the instance-selection techniques we examined, we
compare only LRU to the greedy clustering method. The most nearly
comparable settings, in terms of profile size, for the two systems are C 5
0.25 (yielding approximately 300 instances in the final user profile) and
S 5 250 (or 250 instances retained in the profile after LRU instance
selection). Comparisons of the two system are displayed in Figure 15. In
this figure the test accuracies of the greedy clustering system with C 5
0.25 are plotted vertically against the accuracies for the LRU instance-
selection system with S 5 250 on the horizontal. The diagonal line is the
iso-performance surface. In the region to the right of this line the LRU
system has superior performance, while in the region above the diagonal
the greedy clustering technique has superior performance. The “o” symbols
represent true acceptance rates, while the “1” symbols represent true
detection rates. The corresponding times-to-alarm are given in (b).

The difference between the systems is substantial. The LRU system
generally has much higher true detection rates, but much lower true
acceptance rates. This difference is reflected in the TTA plot, where we find
that LRU has much shorter time to detection of an anomaly (by an average
of 61.3 tokens) at the cost of a shorter time to generation of false alarms
(38.9 tokens on average). This type of result is reminiscent of those in
Section 4.1 and, indeed, the cause is similar. The profiles produced by the
LRU algorithm often do not preserve important behavior exemplars that

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparative Accuracies

LRU, S=250

G
re

ed
y,

 C
=

0.
25

10
1

10
0

10
1

10
2

10
3

10
1

10
0

10
1

10
2

10
3

Comparative Mean Times to Alarm

LRU, S=250

G
re

ed
y,

 C
=

0.
25

(a) (b)

Fig. 15. Comparisons of accuracy (a) and time-to-alarm (b) for greedy clustering method with
C 5 0.25 (vertical axis) versus LRU instance selection with S 5 250 (horizontal axis). The
diagonal is the equal performance line. Circles denote true accept rate/time to false alarm and
pluses denote true detect rate/time to true detection.

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 323

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

are needed to provide high similarity matches to the test data. The result is
improperly set decision thresholds that reject a large proportion of test
data, yielding high detection rates for opponents, but low acceptance rates
for the profiled user. The characteristic separation between accept rate and
detect rate points is not as dramatic as those in Section 4.1.1 because the
comparison is not against the full profile, but against a profile selected by
the greedy clustering algorithm. The existence of a clear separation is an
additional indication that the greedy clustering system is performing in the
same fashion (albeit at lower overall accuracies) as the base system.
Overall the greedy algorithm appears in most cases to produce superior
profiles to those generated by the LRU selection process.

4.3 Summary of Data-Reduction Techniques

Because user behavioral profiles can, potentially, grow without bounds, it
is necessary to examine methods for reducing the size of the profile. Profile
reduction not only saves space but time, since the running time of the
classification operation in an instance-based learning system is related to
the number of instances in the instance dictionary. We examined two
classes of techniques for reducing the profile size: instance-selection tech-
niques based on examining the interactions of profile instances with
external parameter selection data and clustering techniques based on
examining the relations of instances within the profile.

Within the class of instance-selection techniques, we found that the LRU
and LFU methods were comparable, and both soundly beat other contend-
ers. FIFO, the other “intelligent” instance-selection technique, performed
poorly, even losing to random-element selection. All of the instance-selec-
tion techniques, however, display the same class of performance degrada-
tion. They all generalize to an incorrect concept of user behavior, in which
they tend to classify novel data as anomalous, resulting in an improved
ability to recognize impostors at the cost of a decreased ability to accept the
profiled user. The major difference between these methods is in the degree
to which they succumb to this incorrect generalization.

The clustering methods exhibit a different class of behavior. Rather than
learning to incorrectly label too many query instances as anomalous, they
degrade in a more uniform manner, losing both true accept and true detect
accuracy as the profile is reduced. This is a preferable form of degradation,
as it preserves the concept of user behavior rather than replacing it with a
“nobody is the profiled user” concept. In the limit, the correct concept is
likely to scale better, while the “nobody is the profiled user” concept could
reduce to marking all behaviors as anomalous.

The greedy clustering algorithm outperforms the K-centers method in
this domain. The difference appears to result from K-centers’s slow conver-
gence for large K. As K (the number of clusters to locate) grows, K-centers
takes longer to converge to a solution. By the time K is as large as the
number of clusters located by the greedy method (approximately 180),

324 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

K-centers does not locate an acceptable cluster solution in an acceptable
time (10,000 search iterations).

5. PRACTICAL IMPLEMENTATION ISSUES

Although it is likely that the system presented here does not possess the
level of performance necessary for a fielded anomaly-detection system, it is
nonetheless educational to examine the results given above in terms of
practical utility and to consider some ways of rectifying weaknesses in the
present system.

5.1 Impersonation Rates

One measure of the practical effectiveness of an anomaly-detection system
is the chance that an impostor can find a valid user to impersonate
successfully. “Successful impersonation” can be interpreted in a number of
ways, and we examine two of them. First, we may consider that an
impersonation is successful if an impostor appears indistinguishable from a
valid user. For example, if the impostor displays times-to-alarm (TTAs)
that are at least as long as those of a valid user, the impostor may be
considered successful. A summary of this measure appears in Table I.

Table I displays incidences of successful impersonations for the greedy
clustering system at a halting threshold of C 5 0.25 (see Section 4.2) and
an acceptable false alarm rate threshold of 0.005 (see Section 2.2.5).
Whenever an impostor’s mean time-to-alarm (averaged across all test folds)
meets or exceeds that of the valid user, the impersonation is considered
successful and is denoted “I.” The valid user is always considered successful
in impersonating him or herself. We see that under this measure, success-
ful impersonations are relatively difficult to achieve, the notable exception
being impersonations of USER4. Overall, there are only nine imperson-
ations out of 56 possible, or about a one in six chance. USER4 is particu-
larly bad, as observed in Section 3.4, because of the way in which his
behaviors change over time. As we discuss in the next section, online
learning methods can probably compensate for most or all of the difficulty.
If we disregard USER4, there are only two impersonations out of 49

Table I. Impersonation Incidence for the Greedy Clustered System at an acceptable false
alarm level of 0.005. The valid users are listed on the left and impostors across the top. The

character “I” represents an instance of a successful impersonation

USER0 USER1 USER2 USER3 USER4 USER5 USER6 USER7

USER0 I - - - - - - -
USER1 - I - - - - - -
USER2 - - I - - I - -
USER3 - - - I - - - -
USER4 I I I I I I I I
USER5 I - - - - I - -
USER6 - - - - - - I -
USER7 - - - - - - - I

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 325

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

possible, or about a one in 25 chance. If we relax the acceptable false alarm
threshold to 0.1 (allowing more false alarms in exchange for fewer false
accepts), the figures improve to 6 / 56 5 10.7% with USER4 and no
successful impersonations without USER4.

A more conservative way to estimate the impersonation rate, however, is
to examine the chance of an impostor going undetected for some fixed
period of time. The results of such an analysis appear in Table II. The three
subtables display the incidence of successful impersonations at TTA cutoffs
of 10, 100, and 500 tokens (recall, however, that all TTAs are measured
after the smoothing window, Section 2.2.4, was applied so an additional W
5 100 tokens were observed in addition to the TTA cutoff value). If an
alarm has not, on average, been issued within the specified cutoff, the
impersonation is considered successful and is denoted with “I.” Note that
under this definition, if a false alarm occurs within the cutoff period, then
the valid user is considered to have been unsuccessful at impersonating
him or herself.

Table II. Impersonation Incidents for fixed time frames under the greedy clustering system
with a acceptable false alarm rate of 0.005. The valid user appears on the left and the
impostors across the top. “-” characters denote successful detections and “I” characters

denote successful impersonations.

USER0 USER1 USER2 USER3 USER4 USER5 USER6 USER7

10 tokens
USER0 I I I I I I I I
USER1 I I I I I I I I
USER2 I I I I I I I I
USER3 I I I I I I - I
USER4 I I I I I I I I
USER5 I - I I I I - -
USER6 I I I I I I I I
USER7 - I I I I - I I

100 tokens
USER0 I I I I - I I I
USER1 - I - I I I - -
USER2 I - I - - I - -
USER3 - - - I - I - -
USER4 I I I I I I I I
USER5 I - - - - I - -
USER6 I I I I - I I I
USER7 - - - - - - - I

500 tokens
USER0 I - I - - I - -
USER1 - I - - - - - -
USER2 - - - - - I - -
USER3 - - - - - - - -
USER4 I I I I - I I I
USER5 - - - - - - - -
USER6 I - I - - - I -
USER7 - - - - - - - -

326 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

We see from Table II that impersonation is relatively easy at short time
frames; at a cutoff of 10 tokens, impersonations are successful 50 out of 56
possible times (or 89%). This is, however, not terribly surprising, since the
explicit goal of the techniques employed here is to detect long-term attacks
rather than hit-and-run scenarios (Section 1). When we extend the TTA
cutoff to 100 tokens (or just twice the minimum possible detection time of
the smoothing window length), the situation improves. At this level, there
are 30 out of 56 successful impersonations, or 61%, and by 500 tokens it has
dropped to 15 incidents, or about 27%. When we relax the acceptable false
alarm threshold to 0.1, the corresponding rates are 29% and 11%. As above,
the presence of USER4 is an important factor. When we omit USER4 from
consideration, the rates are 55% at a cutoff of 100 tokens and an acceptable
false alarm rate of 0.005, and only 16% at 500 tokens and a 0.005
acceptable false alarm rate.

5.2 Performance Improvements

Although the system described in this paper has a number of demonstrated
weaknesses, there are many possible modifications that would likely im-
prove performance substantially. Here we discuss some approaches that
could be taken to improve performance, with the goal of reaching a
fieldable system. We are currently investigating a number of these issues.

Online training. As we have seen in the empirical results, the detection
system displays dramatically poor detection ability for some profiles (either
ability to detect impostors or to correctly identify the valid user, Section
3.4). To some extent this is a result of actual behavioral similarities
between the users (as illustrated, e.g., in Figure 6). But a second source of
such errors stems from an interaction between the normal behavioral
changes of the users and the batch mode training employed in these
experiments. USER4, for example, displays a very narrow set of behaviors
across the training data, but a different set of behaviors in the parameter-
selection data. Thus the profile does not reflect observed behaviors well and
the classification thresholds are set very permissively, resulting in poor
ability to detect impostors. The batch mode training framework is simply
not responsive enough to adapt to such behavioral changes. In other work
[Lane and Brodley 1998], we examined an online training extension to this
system, in which the user profile and classification thresholds are modified
after every observed token. We found that such a framework dramatically
improves performance and greatly reduces the impact of behavioral change.
We did not employ the online training framework in this work because we
wished to examine the effects of the various data reduction strategies in
isolation, without the possibility of interaction with another factor; but
online training techniques should be employed in a fielded application.

Feature set engineering. Although here we employ only command line
data (even suppressing file names), many other data sources are available
and could provide valuable information for discrimination. Features such
as file names, extensions, or types; login times and time of day; network

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 327

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

activity; working directory; and even GUI events are all potential sources of
important user characteristics. Careful analysis and engineering of such
data sources is likely to provide greater discrimination between users and
reduce the degree of overlap between users illustrated in Figure 6.

Alternative similarity measures. In addition to adding more informa-
tion sources, it may be possible to take better advantage of the information
we already employ. The similarity measure we employ here (see Section
2.2.2) is relatively coarse and captures only one notion of temporal interac-
tions. Using a different measure, or multiple together, may allow finer
discrimination within the data framework already available. In other work,
[Lane 1999], we investigated the use of hidden Markov models as user
profiles and similarity measures. Other possible measures that we are or
will investigate include edit distance [Cormen et al. 1992]; stochastic
context-free grammars [Charniak 1997]; or frequent episode analysis [Sri-
kant and Agrawal 1996].

Metalearning and hierarchical classifiers. It is likely that no single
sensor will possess the breadth of capability to handle the full anomaly-
detection problem. But multiple sensors can be combined in a metalearning
framework such as voting, boosting [Freund and Schapire 1997] or stacking
[Schaffer 1994] to yield an overall more accurate classifier (assuming that
the base-level classifiers are at least minimally competent and make
statistically independent errors). It is notable that recent intrusion-detec-
tion frameworks such as AAFID [Balasubramaniyan et al. 1998] or EMER-
ALD [Porras and Neumann 1997] take advantage of such possibilities by
employing hierarchical classification schemes.

Domain knowledge. The system presented here employs relatively
little domain knowledge, assuming only that the data is represented as a
stream of nominal events. By including a priori domain knowledge avail-
able from a security expert (for example, “Pay special attention to activity
on critical files such as /etc/passwd or the Windows NT registry”)
performance could be improved at the cost of decreasing generality of the
techniques (a trade-off worth making for a fielded system).

Automatic parameter selection. The system presented here possesses
a number of parameters that must be set: sequence length l, noise suppres-
sion window length W, and greedy cluster halting criteria e and C. The
results presented here apply single parameter settings to all users and
profiles simultaneously. We found that there is a significant impact of
parameter settings on both detection accuracy and time to detection. If the
parameters can be properly set on a per-profile basis, then performance can
likely be improved. We are currently investigating methods for automati-
cally adapting system parameters to the profiled user.

6. CONCLUSIONS

This work has demonstrated a technique for mapping the temporal data in
the anomaly-detection task onto a space in which IBL learning can be
formulated. The results demonstrate that this technique can be useful in

328 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

such tasks when the underlying data supports sufficient class separation.
Furthermore, the system is biased toward detecting anomalous conditions
quickly, but rarely generating false alarms. We demonstrate two classes of
data-reduction methods for limiting profile size. We found that instance-
selection techniques, based on relations between instances in the user
profile and external parameter-selection data, were susceptible to improper
generalizations of the normalcy concept. Clustering-based methods, stipu-
lated on examining relations solely among instances within the profile, did
not suffer from this misgeneralization. We showed a new clustering tech-
nique based on sequential, greedy selection of clusters. The greedy cluster-
ing technique was able to produce a large saving in storage requirements,
with an overall small loss in accuracy. K-centers clustering was unable to
match the performance of greedy clustering in this domain in either
convergence rate or detection accuracy.

In summary, we have presented a machine-learning-oriented approach to
anomaly detection, and demonstrated that, in this framework, it is possible
to learn to distinguish anomalous behavior patterns from normal ones. We
believe that, in general, both the computer security and machine-learning
communities can benefit from further interactions. The machine-learning
community has studied many pattern-recognition techniques that could be
valuable for a variety of security problems, while computer security tasks
present a number of challenging issues that can motivate new research
directions for the machine-learning community.

ACKNOWLEDGMENTS

We thank Gene Spafford and the members of the Purdue University Center
for Education and Research in Information Assurance and Security, the
members of the Purdue machine-learning lab, and our reviewers for their
helpful comments. We also thank our data donors, and especially USER4
whose data forced us to examine this domain more closely than we might
otherwise have done.

REFERENCES

AHA, D. W., KIBLER, D., AND ALBERT, M. K. 1991. Instance-based learning algorithms. Mach.
Learn. 6, 1 (Jan. 1991), 37–66.

ANGLUIN, D. 1987. Learning regular sets from queries and counterexamples. Inf. Comput. 75,
2 (Nov. 1, 1987), 87–106.

ASLAM, J. A. AND RIVEST, R. L. 1990. Inferring graphs from walks. In Proceedings of the 3rd
Annual Workshop on Computational Learning Theory (COLT ’90, Rochester, NY, Aug. 6–8),
M. Fulk and J. Case, Eds. Morgan Kaufmann Publishers Inc., San Francisco, CA, 359–370.

BALASUBRAMANIYAN, J. S., GARCIA-FERNANDEZ, J. O., ISACOFF, D., SPAFFORD, E., AND ZAMBONI,
D. 1998. An architecture for intrusion detection using autonomous agents. Tech. Rep.
COAST TR 98/05. Purdue University, West Lafayette, IN.

BOLLOBÁS, B., DAS, G., GUNOPULOS, D., AND MANNILA, H. 1997. Time-series similarity
problems and well-separated geometric sets. In Proceedings of the 13th Annual Symposium
on Computational Geometry (Nice, France, June 4–6, 1997), J.-D. Boissonnat, Ed. ACM
Press, New York, NY, 454–456.

CASELLA, G. AND BERGER, R. L. 1990. Statistical Inference. Brooks-Cole, CA.

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 329

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

CHARNIAK, E. 1997. Statistical techniques for natural language parsing. AI Mag. 18, 4,
33–43.

CHENOWETH, T. AND OBRADOVIC, Z. 1996. A multi-component nonlinear prediction system for
the S&P 500 index. Neurocomputing 10, 3, 275–290.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990. Introduction to Algorithms. MIT
Press, Cambridge, MA.

DAS, G., GUNOPULOS, D., AND MANNILA, H. 1997. Finding similar time series. In Proceedings
of the ACM SIGMOD International Workshop on Data Mining and Knowledge Discovery
(Aug.), R. Ng, Ed. ACM Press, New York, NY.

DENNING, D. E. 1987. An intrusion-detection model. IEEE Trans. Softw. Eng. 13, 2, 222–232.
DOMINGOS, P. 1995. Rule induction and instance-based learning: A unified approach. In

Proceedings of the 14th International Joint Conference on Artificial Intelligence (AAAI-95,
Montreal, Que., Canada). Morgan Kaufmann, San Mateo, CA, 1226–1232.

FARMER, D. AND VENEMA, W. 1995. SATAN overview (Security Administrator Tool for
Analyzing Networks).

FREUND, Y. AND SCHAPIRE, R. E. 1997. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55, 1, 119–139.

FUKUNAGA, K. 1990. Introduction to Statistical Pattern Recognition. 2ND Academic Press
Prof., Inc., San Diego, CA.

GORDON, S. 1996. Current computer virus threats, countermeasures, and strategic solutions,
White paper. McAfee Associates.

HEBERLEIN, L. T., DIAS, G. V., LEVITT, K. N., MUKHERJEE, B., WOOD, J., AND WOLBER,
D. 1990. A network security monitor. In Proceedings of the IEEE Symposium on Research
in Security and Privacy (Oakland, CA). IEEE Computer Society Press, Los Alamitos, CA,
296–30304.

IBA, G. A. 1979. Learning disjunctive concepts from examples. Master’s Thesis. MIT Press,
Cambridge, MA.

KUMAR, S. 1995. Classification and detection of computer intrusions. Ph.D.
Dissertation. Purdue University, West Lafayette, IN.

KUMAR, S. AND SPAFFORD, E. 1994. An application of pattern matching in intrusion
detection. Tech. Rep. CSD-TR-94-013. Purdue University, West Lafayette, IN.

LANE, T. 1999. Hidden Markov models for human/computer interface modeling. In
Proceedings of the IJCAI-99 Workshop on Learning About Users. 35–44.

LANE, T. AND BRODLEY, C. E. 1997a. An application of machine learning to anomaly
detection. In Proceedings of the 20th National Conference on National Information Systems
Security. Vol.1 (Baltimore, MD). National Institute of Standards and Technology, Gaithers-
burg, MD, 366–380.

LANE, T. AND BRODLEY, C. E. 1997b. Sequence matching and learning in anomaly detection for
computer security. In Proceedings of the AAAI-97 Workshop on AI Approaches to Fraud
Detection and Risk Management (AAAI-97). 43–49.

LANE, T. AND BRODLEY, C. E. 1998. Approaches to online learning and concept drift for user
identification in computer security. In Proceedings of the Fourth International Conference
on Knowledge Discovery and Data Mining. 259–263.

LUNT, T. F. AND JAGANNATHAN, R. 1988. A prototype real-time intrusion-detection expert
system. In Proceedings of the IEEE Symposium on Research in Security and Privacy. IEEE
Computer Society Press, Los Alamitos, CA, 59–66.

MOON, T. K. 1996. The expectation-maximization algorithm. IEEE Trans. Signal Process. 44,
1, 47–59.

NORTON, S. W. 1994. Learning to recognize promoter sequences in E. coli by modeling
uncertainty in the training data. In Proceedings of the 12th National Conference on
Artificial Intelligence (vol. 1) (AAAI ’94, Seattle, WA, July 31-Aug. 4, 1994), B. Hayes-Roth
and R. E. Korf, Eds. Amer. Assn. for Artificial Intelligence, Menlo Park, CA, 657–663.

OPPENHEIM, A. V. AND SCHAFER, R. W. 1989. Discrete-Time Signal Processing. Prentice-Hall,
Inc., Upper Saddle River, NJ.

PORRAS, P. AND NEUMANN, P. 1997. EMERALD: Event monitoring enabling responses to
anomalous live disturbances. In Proceedings of the 20th National Conference on National

330 • T. Lane and C. E. Brodley

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

Information Systems Security. Vol.1 (Baltimore, MD). National Institute of Standards and
Technology, Gaithersburg, MD, 353–365.

PROVOST, F. AND FAWCETT, T. 1998. Robust classification systems for imprecise
environments. In Proceedings of the 15th National Conference on Artificial Intelligence:
Innovative Applications of Artificial Intelligence (AAAI ’98/IAAI ’98, July 26–30, 1998,
Madison, WI), J. Mostow, C. Rich, and B. Buchanan, Eds. Amer. Assn. for Artificial
Intelligence, Menlo Park, CA, 706–713.

QUINLAN, J. R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA.

RABINER, L. AND JUANG, B.-H. 1993. Fundamentals of Speech Recognition. Prentice-Hall
signal processing series. Prentice-Hall, Inc., Upper Saddle River, NJ.

RABINER, L. R. 1989. A tutorial on hidden Markov models and selected applications in speech
recognition. Proc. IEEE 77, 2 (Feb.).

RIPLEY, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge University Press,
New York, NY.

RIVEST, R. L. AND SCHAPIRE, R. E. 1989. Inference of finite automata using homing
sequences. In Proceedings of the 21st Annual ACM Symposium on Theoretical
Computing. 411–420.

SALZBERG, S. 1991. A nearest hyperrectangle learning method. Mach. Learn. 6, 3 (May 1991),
251–276.

SALZBERG, S. 1995. Locating protein coding regions in human DNA using a decision tree
algorithm. J. Comput. Biology 2, 3, 473–485.

SCHAFFER, C. 1994. Cross-validation, stacking, and bi-level methods for stacking: Meta-
methods for classification learning. In Selecting Models from Data: Artificial Intelligence
and Statistics, P. Cheeseman and W. Oldford, Eds. Springer-Verlag, Vienna, Austria.

SMAHA, S. E. 1988. Haystack: An intrusion detection system. In Proceedings of the Fourth
Conference on Aerospace Computer Security Applications. 37–44.

SRIKANT, R. AND AGRAWAL, R. 1996. Mining sequential patterns: Generalizations and
performance improvements. In Proceedings of the Fifth International Conference on Extend-
ing Database Technology (Avignon, France).

STANIFORD-CHEN, S., CHEUNG, S., CRAWFORD, R., DILGER, M., FRANK, J., HOAGLAND, J., LEVITT,
K., WEE, C., YIP, R., AND ZERKLE, D. 1996. GrIDS--a graph-based intrusion detection system
for large networks. In Proceedings of the 19th Conference on National Information Systems
Security (Oct.). National Institute of Standards and Technology, Gaithersburg, MD.

WILSON, D. R. AND MARTINEZ, T. R. 1999. Reduction techniques for exemplar-based learning
algorithms. Mach. Learn. 34.

Received: February 1999; accepted: July 1999

Temporal Sequence Learning and Data Reduction for Anomaly Detection • 331

ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999.

