
Designing a Framework for Active Worm Detection on Global Networks

Vincent Berk
vberk@ists.dartmouth.edu

George Bakos
gbakos@ists.dartmouth.edu

Robert Morris
Robert.Morris.Sr@dartmouth.edu

Institute for Security Technology Studies
Thayer School of Engineering

Dartmouth College
Hanover, New Hampshire

Abstract

Past active Internet worms have caused widespread
damage. Knowing the connection characteristics of such
a worm very early in its proliferation cycle might provide
first responders an opportunity to intercept a global scale
epidemic.

We are presenting a scalable framework for detecting,
in near-realtime, active Internet worms on global networks,
both public and private. By aggregating network error mes-
sages resulting from failed attempts at packet delivery, we
are able to infer deviant connection behavior of hosts on in-
terconnected networks. The Internet Control Message Pro-
tocol (ICMP) provides such error notification. Using a po-
tentially unlimited number of collectors and analyzers, we
identify ‘blooms’ of activity. The connection characteristics
of these ‘blooms’ are then correlated to identify worm-like
behavior, and an alert is raised.

Promising results have been produced with a simulated
Internet worm, demonstrating that new worms can be de-
tected within the first few minutes after release, depending
on the level of participating router coverage.

1 Introduction

Active worms have caused major problems since the
early days of the Internet (see [14], and [3]). As the Internet
grows, there are more potential targets to infect when the
next worm hits. In addition to an increasing number of
active worms, the speed at which they propagate has also
increased. This can again be attributed to the rapid growth

of the Internet; realizing that more systems on the Internet
leads to higher connectivity resulting in greater propagation
speeds. This makes early response to new events a key
priority in limiting the damage a worm can do.

In our work we focus on detecting active Internet worms
very early on in their life cycle through non-intrusive
techniques. This has led us to investigate routing error mes-
sages, such as the ICMP destination unreachable message.
The main consideration was to limit any privacy concerns
that could arise from conventional Internet monitoring
through traffic sniffing, while still providing the fastest
detection time possible.

Because of the random scanning behavior of Internet
worms, many vacant IP addresses will be probed. Routers
have the option of generating error messages to notify the
sender that an unused IP was addressed. Therefore, in-
fected hosts will elicit vastly more destination unreachable
messages than uninfected hosts do, making them stand out
clearly. Thus only a small portion of these messages is
needed to indicate malicious behavior.

We propose a system in which a portion of the Internet
routers generate duplicate ICMP destination unreachable
messages and forward those to a central collection point.
We present how these messages can be analyzed and corre-
lated to produce worm alerts. Promising results have been
obtained in a simulated test environment and we discuss
the challenges and difficulties faced by implementing this
system on the Internet.

2 Background

In this section we introduce the ICMP destination
unreachable message, and how and when it is produced.
We also discuss active Internet worms in more depth,
focusing on the properties that make it detectable using
ICMP destination unreachable messages.

2.1 Internet Control Message Protocol

The purpose of the Internet Control Message Proto-
col (ICMP) is to provide feedback on problems in IP
communication and routing. (See RFC 792 [13].) The
message type that we are particularly interested in is the
‘Destination Unreachable’ message. In its various forms, it
relays information on unreachable hosts, networks, ports,
and services as well as various other codes that are of
lesser importance to our work. Destination Unreachable
messages are identified by the ICMP ‘type’ field value of
3; therefore, we will refer to these messages as ICMP-T3.
Furthermore, the RFC states that routers should be able to
generate ICMP-T3 messages, not that they should generate
them. This means that these messages are not necessarily
always returned. We will now explore the two destination
unreachable messages most relevant to this project.

ICMP-T3 host unreachable messages are generated by
local network routers (also called stub routers). When a
packet arrives that is destined for an IP address on that local
network, the router will try to contact a machine associated
with that IP address. If, after repeated attempts, no host
replies, that router responds to the original sender with an
ICMP-T3 host unreachable. We will explore briefly how
this is done.

In order for the router to communicate with a host on
the local network it will have to match the IP address to an
interface address on that local network medium (e.g. MAC
address on Ethernet). This is done by sending an ARP
(Address Resolution Protocol, see RFC 826 [11]) request
out on that medium. The ARP request is received by all
systems within that broadcast domain. If a system recog-
nizes its own IP address it will respond to the router with
its interface address. The router can now send the actual
packet to that interface. If, after repeated attempts, no host
on the local network responded to the routers requests, the
router will generate the ICMP-T3 host unreachable.

ICMP-T3 network unreachables are generated by transit
level routers. A router can be considered transit level when
it is not responsible for directly delivering packets to a local
network but rather passing on packets to other routers for

further routing. Although there is often no clear distinction
between stub routers and transit level routers (many routers
perform both tasks), we will adopt the concept of dedicated
transit level routers for now to explain how and when
ICMP-T3 network unreachables are generated.

When a packet is delivered to a transit level router for
further routing, that router will consult its routing tables
to decide what to do next with the packet. On its way
from source to destination, a packet traverses several (in
some cases 10 to 20) transit level routers. If there is no
corresponding entry in the routing table, the packet cannot
be forwarded. The router will discard the packet and return
an ICMP-T3 network unreachable. Again, the ICMP-T3 is
sent to the originator of the failed packet.

What makes an ICMP-T3 message useful for analysis
is that parts of the original packet will be encapsulated.
According to RFC 792 [13], at least the original IP header
and 8 bytes of the payload should be included. (RFC 1812
[1] dictates even more bytes should be included by routers.)
This means that when a TCP/IP packet is embedded in an
ICMP-T3, it should include (amongst others) the original
source IP address, destination address, source port, and
destination port as well as the original packet (and payload)
size. This is enough to determine at least some of the
packet originator’s intent. Our experience is that many
routers include more of the payload than the required first
8 bytes, possibly leading to even more information on the
senders intentions. (See figure 2 for a graphical view of an
ICMP-T3 message.)

With this in mind, the authors performed several random
scans on the Internet, taking care to avoid reserved address
space. We sent out connection requests (1 packet total)
and awaited the response, which was either a connection
response, a connection reset, a destination unreachable or
no response at all (keeping in mind that routers are not
required to respond). Table 1 is data captured during the
propagation of the Nimda Internet worm. For tables 2
and 3 we selected IP addresses at random. All three tables
suggest that in most cases no response will be returned
at all, however, of all the responses, the ICMP-T3 was
the most frequently observed. To make this clear we
present table 4 showing what fraction of the responses were
destination unreachables.

2.2 Active Internet Worms

Active worms are different from viruses in that they are
completely autonomous entities. A virus generally binds
to executable code (both in system executables and scripts

Table 1. Target selection scan events - Nimda
target selection

SYN 18369 100 %

ACK/SYN 506 2.75 %
RST 519 2.83 %
ICMP t3 4858 26.45 %
no response 12486 67.97 %

Table 2. ICMP ping requests (type 8) - random
target selection

ping requests 111656 100 %

ping replies 2158 1.93 %
ICMP t3 14351 12.85 %
no response 95147 85.21 %

Table 3. TCP port 80 connections - random
target selection

SYN 1981444 100 %

ACK/SYN 9374 0.47 %
RST 16369 0.83 %
ICMP t3 125946 6.36 %
no response 1829755 92.34 %

contained in email) and requires that code to be run to prop-
agate. Even email worms are essentially viruses in that they
piggy-back on email communications for propagation, al-
though that statement has been debated (see [3]). Active
worms, on the other hand, will autonomously select targets,
attempt infection, and propagate their code to new infec-
tors. We summarize the operational steps of an active Inter-
net worms as follows, keeping in mind that these steps are
iterated repeatedly:

� Target Selection

� Attack

� Code Propagation

Each infected host, in an active worm event, is itself an
attacking system. It is solely responsible for target selec-
tion, target list maintenance (if any) and exploitation of
some vulnerability in the targets’ architecture. Individually,
there is nothing to distinguish a worm-infected host from

Table 4. Relative responses. What part of the
responses were ICMP-T3?

Selection Algorithm Total Responses ICMP-T3

Nimda (table 1) 32.03 % 82.57 %
Random Ping (table 2) 14.79 % 86.92 %
Random Port 80 (table 3) 7.66 % 83.02 %

any other malicious process, thus we will have to correlate
the behavior of multiple systems and identify similarities,
within a given time window. The propagation efforts of
a single hostile host will be referred to in this work as a
“bloom” of activity.

Although there are many different target selection
techniques (see [16]), some form of probing needs to be
done at a certain point. This can be before the worm
is launched so that it carries a target list, but in general
worms use some method of scanning IP addresses across
the Internet. Code Red II and Nimda (see [5] and [7])
both used target selection methods that gave targets IPs
that were numerically closer to the infected host a higher
chance of being selected for probing. This will invariably
cause probes to IP addresses that cannot be reached, which
might elicit a ‘destination unreachable’ response by a
router. Keeping in mind that IP address selection will be
more or less random, we can once again consult tables 1, 2,
and 3, which were produced with random scanning, to get
an idea of the reactions that a propagating worm provokes.

An important part of a virus is its hiding technique but
for active worms this is not a priority since, in general, they
do not piggy-back on other network protocols, meaning
that worm propagation is clearly visible on the network
medium. Although simple hiding techniques are often
used, the main focus is on fast propagation. Another
aspect of worms is their payload. If the payload is aimed
at disabling the system, by wiping the disks for example,
it should not be released before the worm has a chance
to propagate sufficiently. If it is released too soon, the
epidemic might die out due to lack of propagation. For
more on computer-virus infection modeling see [8] and [2].

3 Implementation

We constructed an active worm to create a reliable test
environment and restricted it to propagate within a finite do-
main. This ensures that test results can be reproduced and

improved upon as well as being able to continuously test
new detection algorithms. In this section, we explain how
we implemented the active Internet worm detection system
and how data is collected from the Internet.

3.1 Simulating Worms

Being able to develop and test new algorithms and
detection concepts is vital to our research; therefore, it
has been important to have an isolated test environment
in which results can be reproduced reliably. For this
reason, we have built an active worm that is restricted in its
propagation by only allowing it to produce copies of itself
on the local machine.

Our target selection mechanism is based on random
selection of IP addresses within a specified range. The
random generator is seeded with the creation time of this
instance of the worm, thus ensuring each new instance
will exert unique random target selection behavior. In the
near future, we expect to add several other well known
target selection techniques, such as the target selection
mechanism used by Code Red and NIMDA (see [16], [7],
[6] and [5]).

The experiments were conducted on POSIX compliant
operating systems. Worm simulations were run on a
single processor i386 machine under LINUX. The analysis
framework was tested on a 14 CPU Ultra SPARC III
cluster, although a pair of Pentium 4 systems were also
capable of handling test loads.

In our simulation, we replaced the attack step with a
query to a data structure that holds information on all the
vulnerable IP addresses. This list is compiled before the
first instance of the worm is launched. Using such a list can
be done efficiently with shared memory since all instances
of the worm will remain on one physical computer. Since
it is known up front which hosts are vulnerable, the need to
simulate attacks is eliminated. Actual hosts with vulnerable
services are not needed. When our worm targets an IP
address that is both vulnerable and not yet infected, it
will fork a copy (launch an independent copy) of itself
using that vulnerable IP address as the new source address.
This way the system will have a separate process for each
instance of the worm and each process will keep track
of the IP address that was compromised at its creation,
thus simulating many infected systems on one physical host.

When an IP address is not reachable, the worm instance
will generate a crafted network packet building the ICMP
destination unreachable message that would have been
generated if the attack probe had actually occurred. The

creation of that packet simulates a routers response. This is
done by first creating an embedded packet originating from
the IP address that identifies this worm instance going to
the target address that was selected (and was not reachable).
Next, this packet is encapsulated in an ICMP destination
unreachable message originating from the actual physical
host’s IP address going to our detection framework for
processing. Note that no connection requests are generated
for non-vulnerable machines that are actually reachable.
This specific subset of IP addresses just causes a delay in
the worm to simulate the successful connection attempt, but
failure to infect. (See figure 2 for a graphical overview of
the encapsulation of the original datagram in an ICMP-T3
response.)

To simulate network latency, we force each instance
of the worm to sleep briefly (1 to 10 milliseconds) after
sending out a packet. This way we can simulate up to one
thousand vulnerable hosts in a search space of our choice.
The size of the search space determines the fraction of
vulnerable hosts, which directly influences propagation
speed.

3.2 Routers and Coverage

As mentioned before, arbitrary unsolicited traffic often
elicits ICMP-T3 messages from routers across the Internet.
Our active worm detection methods rely on receiving
a ‘blind carbon copy’ of as many of these messages as
possible. This means that the router has to forward a
copy of such a message to a central collection point. To
facilitate data collection, we distribute a slightly modified
version of the popular LINUX kernel 1 that will upgrade
the router to create a duplicate of every ICMP-T3 message
that this router generates. That duplicate is forwarded to
a central collection location for processing. Optionally, if
site policy dictates, the original can be discarded while still
sending a copy to the central collector. We will call these
routers ‘ICMP-BCC routers’. (See figures 1, 2 and 3 for,
respectively the original connection attempt, the creation of
the ICMP-T3 message, and that message being returned to
both original sender as well as the analysis framework. The
router in these pictures depicts an ICMP-BCC router.)

Originally, an ICMP-T3 message should contain the
original IP header and at least 8 bytes of next layer protocol
(see RFC 792 [13]). As per RFC 1812 [1] the ICMP-T3
message should contain as much of the original message
as possible, with a maximum of 576 bytes for the entire
packet. From this embedded information, we can retrieve

1The 66 line kernel DIFF is available from our website at:
http://www.ists.dartmouth.edu/IRIA/projects/dibs/

packet
origin

IP Header

Transport Data

Figure 1. Original connection attempt

the original packet’s sending IP address and can also infer
much of the intent of the packet, i.e. port 80 connection
request, DNS traffic, etc. Pseudo-random target selection
results in a distribution of attack packets across a large
portion of the Internet. To identify an infected host, it is
important to gather ICMP-T3 messages resulting from
its behavior from as many different routers as possible.
As ICMP-T3 messages are generally produced by routers
very close to either the source (network unreachables) or
destination (host unreachables) of the packet, we need to
instrument a significant portion of the Internet address
space with ICMP-BCC enabled routers.

Any given host initiating arbitrarily targeted unsolicited
traffic is likely to provoke ICMP-T3 responses from routers
throughout the world. Since we aim to receive legitimate
copies of ICMP-T3 messages, without sniffing for them,
they will have to be forwarded by the router that generates
them. Therefore, because ICMP-T3 messages are gener-
ated close to the targeted network, many routers need to be
converted all over the Internet. Further research is needed
to identify the appropriate scope of coverage.

Our introduction to ICMP-T3 messages included several
tables (table 1, 2 and 3) that suggest that the actual number
of ICMP-T3 messages is going to be relatively low. It
should be noted that the lack of response to the majority
of the connection attempts may indicate that routers have
been configured to silently drop incoming packets, without
returning any error message. An ICMP-BCC enabled
router could similarly be configured to silently drop
failed packets while still providing a properly constructed
ICMP-T3 to a central collection point. Optimally, with
100% participation this would provide a nearly complete

IP Header

> 8 bytes payload

IP Header

> 8 bytes payload

IP Header

ICMP Msg Header

Original Packet ICMP Message

Figure 2. Original packet is embedded in
ICMP-T3 response

packet
origin

analysis
system

Figure 3. ICMP-T3 response is returned to
sender and analysis system

view of all failed communication attempts. (See table 5.)

Table 5. Relative responses to the central col-
lector from a ICMP-BCC router

Selection Algorithm No Responses + ICMP-T3

Nimda (table 1) 94.42 %
Random Ping (table 2) 98.06 %
Random Port 80 (table 3) 98.7 %

3.3 Detection Framework

The stream of data grows as more and more routers
across the Internet forward copies of their ICMP-T3 mes-
sages to a central location. Since analysis is done on the
fly, the system has to scale with the increase in ICMP-T3
messages. Here we explain how our collection, analysis,
and detection systems are implemented and how we deal
with the large volumes of data that flow into the system
during the propagation of an active Internet worm.

The Collector

ICMP-BCC routers send the copies of their ICMP-T3
packets to a single process collector that buffers and
stores them in a rotating packet store. This packet store is
continuously rotated and reflects the messages of the last

�
seconds where

�
is based on available disk-space and bytes

per second input flow:

���������
	����	�����	����������� ����� �"!���	
The collector then makes two copies of the packet and

sends them off to two analyzers. The collector divides
the entire IPv4 address space by the number of analyzers
available. This means that each analyzer covers a fixed
range of IP addresses. One of the copies of the packet
is sent to the analyzer handling the IP range that the
embedded source address falls in. Likewise, the other copy
is sent to the analyzer that takes care of the IP address range
that the embedded destination address falls in. This way the
analysis load is divided over the available analyzers. The
number of analyzers can be changed dynamically to suit
the current load of the system and can be any number. This
is what makes the framework scalable. Theoretically, an
analyzer could be spawned for each new IP address (source
and/or destination) that is encountered, up to #%$�& analyzers.
(IPv4 uses 32 bit IP addresses.)

The Analyzers

In the analyzer, one copy of the message will be ana-
lyzed based on source IP-address and the other copy will be
analyzed based on destination IP-address. The packet will
be stored for a pre-determined amount of time ' �

. If for a
certain IP-address the number of stored ICMP-T3 messages
exceeds a given threshold (say 30) further investigation is
initiated.

Further investigation begins by counting the number of
recurring source and destination port numbers. Any of sev-
eral tracks can be chosen if the port count for any port (
exceeds a given threshold) for any protocol * , with *
being either TCP, UDP or ICMP: (port can be replaced by
type/code-pair for ICMP).

1. One IP address has contacted at least) different other
IP addresses on exactly the same port (using the same
protocol * in the last ' �

seconds.

2. One IP address was contacted by at least) different
other IP addresses on the same port (using the same
protocol * in the last ' �

seconds.

3. One IP address has contacted one other IP address at
least) times on the same port (using the same proto-
col * in the last ' �

seconds.

4. One IP address was contacted by one other IP address
at least) times on the same port (using the same
protocol * in the last ' �

seconds.

Two other cases can be detected:

5. One IP address has contacted one other IP address on
at least) different ports in the last ' �

seconds.

6. One IP address was contacted by one other IP address
on at least) different ports in the last ' �

seconds.

Any protocol other than TCP, UDP, or ICMP will
generate an Alert whenever the total number of different
IP destination addresses for the failed connection attempts
exceeded threshold) .

In any of the first four cases, an Alert is sent to the cor-
relation engine. The correlation engine collects alerts from
all the analyzers and tries to identify similarities between
them. Case 1 is the most relevant case since it could be a
direct indication of actual active worm propagation. We
will explore case 1 shortly. Case 2 can also be a sign of
active worm propagation but is not expected to be seen
until much later in the life cycle of the worm, although that

is highly unlikely. This is because the chances are very
small that in a given ' �

there are enough ()) infected hosts
that select the same target for attack. More likely, case 2 is
the sign of a server being disconnected from the network.
Imagine a web-server with a severed connection, the
number of failed connections will initially be large but will
decline over time as current sessions time out and people
start to realize that the service is no longer available. It
could also indicate the activation of a payload in a D-DOS
attack, after the target was successfully disabled or simply
taken off the wire, although chances are that the worm had
already been detected through a flood of Case 1 Alerts.

Case 3 and 4 most likely indicate a disconnected
machine that is part of an autonomous communication.
The ICMP-T3 messages are a sign of the service trying to
reconnect. Case 5 and 6 are probably the result of a vertical
port-scan of a single host, thus attempting to connect to
various ports on one machine. (These messages will be host
unreachables if the actual system is unreachable, but could
also be port, or service unreachable messages, depending
on the filtering rules of the router.)

Case 1 is most likely a sign of active probing by one
host of many different hosts on the same service port.
This could be a horizontal port-scan looking for a single
vulnerability. This is what was previously defined as a
‘bloom’. If multiple hosts start showing a bloom of similar
activity (scanning for the same service) then we might be
observing an Internet worm propagating. If the number
of detected blooms (with similar parameters) increases
exponentially, we may assume we have detected a new
active Internet worm and captured its basic characteristics.

The Correlator

The analyzers produce Alerts based on IP addresses and
one of the six possible behavioral patterns, observed over
a small time span. None of these Alerts by themselves
directly indicate a propagating Internet worm. For further
analysis the behavior of many systems needs to be com-
pared and evaluated. Therefore, all the Alerts produced by
the analyzers are forwarded to the Correlator.

The Correlator compares all the Alerts received in the
previous ' �

time span and identifies all the similarities
between those Alerts. If a certain number (currently 4) of
IP addresses exhibit identical behavior a Worm Warning is
issued. This final stage reports to the user and gives a list of
the IP addresses, their scanning behavior, protocol and port
numbers, and time stamps. Each new instance (IP address)
with similar behavior will now also be reported directly and
connected to the matching Worm Warning. When a Worm

Warning is issued, the user can decide what action to take.

The number of similar Alerts that will trigger a Worm
Warning within the ' �

time span is still unclear. Good
results were obtained with values between 4 and 6, keeping
in mind detection time will increase, and false-positive
rate will decrease as this number increases. However, we
suspect that as the participating router coverage on the
Internet grows, we will be forced to increase the value to
suppress false positives.

4 Results

In this section we look at the test results that we have
collected so far with the system described in the previous
section. We use real-world data to calibrate the many
parameters of the detection system, as well as to improve
on our worm model. The most important calibration is that
of the baseline. Many ICMP-T3 messages get generated
in normal Internet traffic, but rarely as many as an actively
propagating worm does. Even if normal traffic generates
an alert or even a bloom, the relevance of that event will
be small since it is never matched by other hosts showing
similar behavior.

4.1 Worm Simulation

In our worm model we do not account for a dynamically
changing Internet. That includes ignoring human patch
rate. The main reason for doing this is that only the initial
propagation of the worm is of relevance to us. The primary
goal is to detect active Internet worms in their earliest
stages of propagation. The most tell-tale signature is the
exponential increase of blooms with similar characteristics.

The primary parameters are the number of vulnerable
hosts and the number of reachable hosts. Figure 4 depicts
our worm model propagating over time. Time is in seconds
and each point in the graph indicates a newly infected host.
This is done in an environment with 800 vulnerable hosts
out of a total addressable space of 1 million IP addresses.
Note that reachable machines (regardless of vulnerability)
will not provoke ICMP-T3 responses.

Figure 4 depicts the simulated worm propagating over
the time-span of about 450 seconds that it took to infect
all 800 vulnerable hosts. The dotted line next to it is the
Sigmoid Curve given by the formula:

� � �
��� 	������
	��

Where ������� represents a linear function to scale and
translate the curve to match the test data. Finding the
proper parameters for ������� is the task of the Correlator.
Initial comparison with exponential curves was less suc-
cessful since it cannot give a prediction of the epidemic.
(Exponential curves grow infinitely and never slope down.)
Although the Kermack and McKendrick model (see [2])
gives a far more accurate representation of the life cycle of
an epidemic, it proved significantly harder to implement in
the Correlator. Furthermore, it increased processing load
without a significant increase in accuracy over the Sigmoid
approximation. The goal is to provide an estimation of the
course of the epidemic very early on, updating the estimate
as more Alerts flow into the Correlator. Most notably,
expected duration and total infected systems is estimated.

Although there is a striking similarity between both
graphs, it needs to be remarked that the simulation curve
is slightly steeper and overshoots the Sigmoid Curve
at the end. Looking at the data for Code Red (fig: 5,
taken from: http://www.caida.org/analysis/security/code-
red/gifs/compare-cumulative-ts.gif) it is clear that the curve
flattens out in the end. This has been attributed to infected
systems being taken off-line as well as infected systems
being cleaned and patched (see [4]). Since our simulation
does not account for these factors, our curve continues
and flattens out only at the very end where nearly all
vulnerable systems have been infected. For our work, only
the initial, near-exponential growth is relevant for detection.

Since each worm instance crafts its own ICMP-T3
response packets, our simulation assumes a 100% ICMP-
BCC router coverage in their address space. Every
connection attempt to an unreachable host will result in an
ICMP-T3, as if it was generated by an ICMP-BCC router.
Determining the effects of router coverage on detection
speed and accuracy of detection will be the focus of future
research.

4.2 Detection Results From Worm Simulation

With the given 100% ICMP-BCC router coverage,
the collection engine gets an ICMP-T3 packet for every
infection attempt that any of the worm instances make.
See table 6 for the current set of system parameters. The
worm uses the same protocol and destination port for all its
attempts within a propagation run. This makes destination
port (and protocol * invariant over the duration of a single
experiment and are thus left out of the graphs. Figure 6
shows the results of an experiment with 100 vulnerable
hosts.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450

Infected Hosts

Seconds

’simworm.800.1M.data’
sig(x)

Figure 4. Solid curve is the simulated worm.
Dotted line is the Sigmoid Curve.

Figure 5. Code red propagation, infected
hosts, from [4]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180

HOSTS

TIME (seconds)

Figure 6. Propagating Worm. Dotted line is
detection curve.

Table 6. Parameters for detection framework
for the presented results The) threshold
indicates number of packets with matching
characteristics.

Parameter Value

' �
(received packet timeout) 600 seconds

) (threshold) 25
* (protocol) TCP
((destination port) 80

The first curve (figure 6) represents accumulatively
each new instance of the worm. Every point indicates a
newly infected machine as reported by the worm processes
themselves. The curve closely following the first is the
accumulated result from the detection system. When a host
has been classified as ‘infected’, it will remain infected
to prevent reporting of one infected host twice. However,
if that host starts to exert scan behavior with different
characteristics than for its last detection, it will be reported
again for this separate incident. This ensures that if a single
system is hit by two different active worms, the detection
of the first does not obscure the detection of the second
infection.

The time between infection and detection with a 100%
ICMP-BCC router coverage is about 5 seconds. At least 4
individual hosts showing blooms with similar characteris-
tics will need to be identified before a sequence of events is

classified as a potential active worm. This point occurs 43
seconds after the initial host has been infected. Note that
it took 19.7 seconds before a second, vulnerable host was
found and infected by the first.

As the router coverage decreases, the number of ICMP-
T3 messages that the collector receives will decrease with
it in a linear fashion. Since blooms are not identified until
threshold) is exceeded, it will take proportionally longer
for the alert to be raised. One way to offset this is by
lowering threshold) , while increasing time window ' �
(to avoid purging messages prematurely). Invariably this
will produce more false-positives, as well as increasing the
load on the analysis system. Future experiments need to
be done to determine the exact relationship between these
factors.

To simulate regular network background ICMP-T3
traffic, the experiments were done while injecting a steady
stream of recorded background noise. This noise consists
of random ICMP-T3 messages directed at our collector.
The injection speed is 2M-bit per second and does not
significantly change the average latency between infection
and detection. However, it does increase processing load
and memory usage of the detection system, specifically that
of the analyzers. Even if a random system would produce
bloom-like behavior, connecting to the same destination
port on many different hosts, it is unlikely that a Worm
Warning would be raised. The Correlator will not start
tracking blooms until at least four hosts have exerted
exactly the same behavior.

5 Conclusion

Although the current results look promising, there are
still many ways in which we intend to extend and improve
the system. Until we have sufficient participating routers
across the Internet, we are forced to conduct our tests in
an experimental environment. Finally, in addition to early
detection, rapid response should not be ignored. Novel
ways of fast response, with or without the intervention of
the administrator, still need to be researched in-depth.

Furthermore, the framework that we propose has many
parameters and characteristics. As of now we do not have
any significant information on the values and behavior of
these parameters. Most notably, we have very little quan-
titative information on the critical number of participating
routers to adequately detect active worms on the Internet,
in a reasonable amount of time to allow any response to
make a difference. The behavior of the false-positive rate
compared to router coverage is also largely unknown. Each

of the parameters governing the detection in itself warrants
further investigation.

5.1 Research Direction

As participating router coverage of the Internet is
relatively low, we are looking for way to improve the
detection algorithm. Much of the background noise might
actually be valuable data. Tests were performed with very
high thresholds to filter most of the background noise. In
the real-world version of the system the thresholds are
significantly lower to improve detection speed at the cost
of an increased false-positive rate. This leads us to believe
that the critical ICMP-BCC router coverage on the Internet
should be relatively high.

This relationship between coverage, thresholds, and
infection-detection latency is as yet not well known. In
addition to researching this relationship, we are exper-
imenting with various other detection and classification
algorithms to improve accuracy and detection speed while
reducing the need of wide-spread ICMP-BCC router cover-
age across the Internet. In order to do this it is important
to identify networks that have a high likelihood of being
targeted by active worms. ICMP-BCC routers will be most
effective at these networks.

Essential to continued viability of this system under
heavy load is the ability to dynamically pre-filter messages
corresponding to a known worm event. This will free
up critical resources to enable continued monitoring and
alerting of unrelated, yet concurrent events. This dynamic
filtering mechanism is not yet developed.

In order to direct the resources of first responders
appropriately it is important to give an early warning of
a possible Internet worm. However, to avoid tying those
valuable resources up unnecessarily, we find it important
to give a prediction of the epidemic, very early on and
adjust the prediction as more and more messages come
in. This includes estimated machines that will be infected
and the duration of the epidemic. Current estimation is
done by fitting a Sigmoid curve. In the future we aim to
justify that this is usable as an approximation over the far
more complex Kermack and McKendrick model, for our
purposes.

5.2 Summary

We have presented a scalable method of detecting
active Internet worms in near-realtime on a global scale.

Our framework collects ICMP destination unreachable
messages from across the Internet and sorts them by source
and destination IP address. These connection statistics are
monitored over time and alerts will be raised when certain
thresholds are exceeded. An active worm can be identified
if multiple machines exert similar bloom-like connection
behavior with the same protocol characteristics.

For the collection of the ICMP destination unreachable
messages, we rely on Internet routers to forward copies of
those messages that they generate to a central collector.
From there, they are distributed to an array of analyzers
that all report back to a Correlator system. The analyzers
generate reports of significant behavior and create a set of
identifying characteristics. Based on those characteristics
the Correlator determines whether an active worm is prop-
agating by comparing reports received from other analyzers.

Further studies are needed to show what the effects
of coverage are on the latency between initial infection
and detection. Also, increased background noise has a
significant impact on performance, which can only be
mended by dedicating more analyzers to the system. We
hope to address both these issues by developing better clas-
sification, detection techniques and dynamic pre-filtering.

References

[1] F. Baker. Rfc 1812: Requirements for ip version 4 routers.
volume 1812 of Request for Comments. 1995.

[2] D. Daley and J. Gani. Epidemic Modelling. Cambridge Uni-
versity Press, 1999.

[3] M. W. Eichin and J. A. Rochlis. With microscope and tweez-
ers: An analysis of the internet virus of novermber 1988.
In Proceedings of the 1989 IEEE Computer Society Sympo-
sium on Security and Privacy, 1988. eichin89with.ps: mor-
ris worm.

[4] http://www.caida.org/analysis/security/code
red/coderedv2 analysis.xml. The spread of the code-
red worm (crv2).

[5] http://www.caida.org/analysis/security/code red/index.xml.
Caida analysis of code-red. 2002.

[6] http://www.incidents.org/react/code red.html. Code red.
2001.

[7] http://www.incidents.org/react/nimda.pdf. Nimda
worm/virus report.

[8] J. O. Kephart and S. R. White. Directed-graph epidemiolog-
ical models of computer viruses. In IEEE Computer Society
Symposium on Research in Security and Privacy, 1991.

[9] G. Mansfield, K. Ohta, Y. Takei, N. Kato, and Y. Nemoto.
Towards trapping wily intruders in the large. 1999.

[10] V. Paxson. End-to-end routing behavior in the Inter-
net. IEEE/ACM Transactions on Networking, 5(5):601–615,
1997.

[11] D. C. Plummer. Rfc 826: An ethernet address resolution
protocol. volume 826 of Request for Comments. 1982.

[12] P. Porras and A. Valdes. Live traffic analysis of tcp/ip gate-
ways. In ISOC Symposium on Network and Distributed Sys-
tems Security, 1998.

[13] J. Postel. Rfc 792: Internet control message protocol. vol-
ume 792 of Request for Comments. 1981.

[14] E. Spafford. The internet worm incident. In Euro-
pean Software Engineering Conference, volume 87 of Lec-
ture Notes in Computer Science, pages 446–468. Springer-
Verlag, 1989.

[15] S. Staniford. Analysis of spread of july infestation of the
code red worm. Technical report, Silicon Defense, 2001.

[16] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the
internet in your spare time. Usenix, 2002.

