
Insertion� Evasion� and

Denial of Service�

Eluding Network Intrusion Detection

Thomas H� Ptacek

tqbf�securenetworks�com

Timothy N� Newsham

newsham�securenetworks�com

Secure Networks� Inc�

January� ����

�Not everything that is counted counts� and not everything that counts can be
counted��

Albert Einstein

�� � � yes� a game where people throw ducks at balloons� and nothing is what it
seems� � � �

Homer J� Simpson

Abstract

All currently available network intrusion detection �ID� systems rely
upon a mechanism of data collection�passive protocol analysis�which
is fundamentally �awed� In passive protocol analysis� the intrusion detec�
tion system �IDS� unobtrusively watches all tra�c on the network� and
scrutinizes it for patterns of suspicious activity� We outline in this pa�
per two basic problems with the reliability of passive protocol analysis�
�	� there isn
t enough information on the wire on which to base conclu�
sions about what is actually happening on networked machines� and ���
the fact that the system is passive makes it inherently �fail�open� mean�
ing that a compromise in the availability of the IDS doesn
t compromise
the availability of the network� We de�ne three classes of attacks which
exploit these fundamental problems�insertion� evasion� and denial of ser�
vice attacks�and describe how to apply these three types of attacks to
IP and TCP protocol analysis� We present the results of tests of the ef�
�cacy of our attacks against four of the most popular network intrusion
detection systems on the market� All of the ID systems tested were found
to be vulnerable to each of our attacks� This indicates that network ID
systems cannot be fully trusted until they are fundamentally redesigned�

�

� Introduction

Intrusion detection is a security technology that attempts to identify and iso�
late �intrusions� against computer systems� Di�erent ID systems have di�ering
classi�cations of �intrusion�� a system attempting to detect attacks against web
servers might consider only malicious HTTP requests� while a system intended
to monitor dynamic routing protocols might only consider RIP spoo�ng� Re�
gardless� all ID systems share a general de�nition of �intrusion� as an unautho�
rized usage of or misuse of a computer system�

Intrusion detection is an important component of a security system� and it
complements other security technologies� By providing information to site ad�
ministration� ID allows not only for the detection of attacks explicitly addressed
by other security components 	such as �rewalls and service wrappers
� but also
attempts to provide noti�cation of new attacks unforeseen by other components�

Intrusion detection systems also provide forensic information that potentially
allow organizations to discover the origins of an attack� In this manner� ID
systems attempt to make attackers more accountable for their actions� and� to
some extent� act as a deterrent to future attacks�

��� The CIDF Model of Intrusion Detection Systems

There are many di�erent ID systems deployed world�wide� and almost as many
di�erent designs for them� Because there are so many di�erent ID systems�
it helps to have a model within which to consider all of them� The Common
Intrusion Detection Framework 	CIDF
�� de�nes a set of components that to�
gether de�ne an intrusion detection system� These components include event
generators 	�E�boxes�
� analysis engines 	�A�boxes�
� storage mechanisms 	�D�
boxes�
� and even countermeasures 	�C�boxes�
� A CIDF component can be a
software package in and of itself� or part of a larger system� Figure � shows the
manner in which each of these components relate�

The purpose of an E�box is to provide information about events to the rest
of the system� An �event� can be complex� or it can be a low�level network
protocol occurrence� It need not be evidence of an intrusion in and of itself�
E�boxes are the sensory organs of a complete IDS� without E�box inputs� an
intrusion detection system has no information from which to make conclusions
about security events�

A�boxes analyze input from event generators� A large portion of intrusion
detection research goes into creating new ways to analyze event streams to
extract relevant information� and a number of di�erent approaches have been
studied� Event analysis techniques based on statistical anomaly detection���
graph analysis��� and even biological immune system models�� have been pro�
posed�

E�boxes and A�boxes can produce large quantities of data� This information
must be made available to the system�s operators if it is to be of any use� The
D�box component of an IDS de�nes the means used to store security information
and make it available at a later time�

�

Output: Reactions to Events

Event (E) Box

Storage (D) Box

Countermeasure
(C) Box

Analysis (A) Box

Raw Event Source

Output: Raw or Low-Level Events

Output:
Storage of Events
(locally or otherwise)

Output:
High Level,
Interpreted
Events

Figure �� CIDF component relationships

Many ID systems are designed only as alarms� However� most commercially
available ID systems are equipped with some form of countermeasure 	C�box

capability� ranging from shutting down TCP connections to modifying router
�lter lists� This allows an IDS to try to prevent further attacks from occurring
after initial attacks are detected� Even systems that don�t provide C�box capa�
bilities can be hooked into home�brewed response programs to achieve a similar
e�ect�

��� Network Intrusion Detection and Passive Analysis

Many ID systems are driven o� of audit logs provided by the operating system�
detecting attacks by watching for suspicious patterns of activity on a single
computer system� This type of IDS is good at discerning attacks that are initi�
ated by local users� and which involve misuse of the capabilities of one system�
However� these �host based� 	and multi�host
 intrusion detection systems have
a major shortcoming� they are insulated from network events that occur on a
low level 	because they only interpret high�level logging information
�

Network intrusion detection systems are driven o� of interpretation of raw
network tra�c� They attempt to detect attacks by watching for patterns of
suspicious activity in this tra�c� Network ID systems are good at discerning
attacks that involve low�level manipulation of the network� and can easily cor�
relate attacks against multiple machines on a network�

It�s important to understand that while network ID has advantages over
host�based ID� it also has some distinct disadvantages� Network ID systems
are bad at determining exactly what�s occurring on a computer system� host�
based ID systems are kept informed by the operating system as to exactly
what�s happening� It is probably impossible to accurately reconstruct what is
happening on a system by watching �shell�� �login�� and �telnet� sessions�

Network ID systems work by examining the contents of actual packets trans�

�

Internet

��

��
��
��
��

��

�� ��

exchanged

router
router

Traffic watched by monitor

end-system

Traffic

with

monitor

attacker

Ethernet

Figure �� An example network topology using a passive monitor

mitted on the network� These systems parse packets� analyzing the protocols
used on the network� and extract relevant information from them� This is typ�
ically accomplished by watching the network passively and capturing copies of
packets that are transmitted by other machines�

Passive network monitors take advantage of �promiscuous mode� access�
A promiscuous network device� or �sni�er�� obtains copies of packets directly
from the network media� regardless of their destination 	normal devices only
read packets addressed to them
� Figure � shows a simpli�ed network topology
in which a passive network monitor has been deployed�

Passive protocol analysis is useful because it is unobtrusive and� at the lowest
levels of network operation� extremely di�cult to evade� The installation of a
sni�er does not cause any disruption to the network or degradation to network
performance� Individual machines on the network can be 	and usually are

ignorant to the presence of sni�er� Because the network media provides a reliable
way for a sni�er to obtain copies of raw network tra�c� there�s no obvious way
to transmit a packet on a monitored network without it being seen�

��� Signature Analysis

The question of what information is relevant to an IDS depends upon what it is
trying to detect� For a system that is monitoring DNS tra�c� the names of the
hosts being queried for 	and the responses to these queries
 might be relevant�
For a system attempting to detect attacks against FTP servers� the contents of
all TCP connections to the FTP port would be interesting�

Some attacks can be discerned simply by parsing IP packets� an attempt
to circumvent a packet �lter using IP fragments is clearly observable simply by
examining the fragment o�set �elds of individual IP fragments� Other attacks
occur over multiple packets� or must be interpreted outside the context of the
actual protocol 	for instance� a DNS query might only be relevant if it involves

�

disk)

Storage (D) Box

Countermeasure
(C) Box

Ethernet

Passive
Protocol
Analyzer

Pattern-Matching
Signature
Analysis

(i.e., close connection)

(i.e., TCP stream reconstruction)

(i.e.,
detection of
"phf" string
in session)

(i.e., store contents
of connection on

Figure �� CIDF model of a network IDS

a certain host
�
Most ID systems identify such attacks using a technique called �signature

analysis� 	also called �misuse detection�
� Signature analysis simply refers to
the fact that the ID system is programmed to interpret a certain series of packets�
or a certain piece of data contained in those packets� as an attack� For example�
an IDS that watches web servers might be programmed to look for the string
�phf� as an indicator of a CGI program attack�

Most signature analysis systems are based o� of simple pattern matching al�
gorithms� In most cases� the IDS simply looks for a substring within a stream of
data carried by network packets� When it �nds this substring 	for example� the
�phf� in �GET �cgi�bin�phf��
� it identi�es those network packets as vehicles
of an attack�

Signature analysis and passive protocol analysis together de�ne the event
generation and analysis techniques used by the majority of commercially avail�
able ID systems� Figure � shows how these components �t into the CIDF model�
For simplicity�s sake� the remainder of this paper refers to systems that work
like this as �network ID systems��

��� The Need for Reliable Intrusion Detection

Because of its importance within a security system� it is critical that intrusion
detection systems function as expected by the organizations deploying them� In
order to be useful� site administration needs to be able to rely on the informa�
tion provided by the system� �awed systems not only provide less information�
but also a dangerously false sense of security� Moreover� the forensic value of
information from faulty systems is not only negated� but potentially misleading�

Given the implications of the failure of an ID component� it is reasonable
to assume that ID systems are themselves logical targets for attack� A smart
intruder who realizes that an IDS has been deployed on a network she is at�

�

tacking will likely attack the IDS �rst� disabling it or forcing it to provide false
information 	distracting security personnel from the actual attack in progress�
or framing someone else for the attack
�

In order for a software component to resist attack� it must be designed and
implemented with an understanding of the speci�c means by which it can be
attacked� Unfortunately� very little information is publicly available to IDS de�
signers to document the traps and pitfalls of implementing such a system� Fur�
thermore� the majority of commercially available ID systems have proprietary�
secret designs� and are not available with source code� This makes independent
third�party analysis of such software for security problems di�cult�

The most obvious aspect of an IDS to attack is its �accuracy�� The �accu�
racy� of an IDS is compromised when something occurs that causes the system
to incorrectly identify an intrusion when none has occurred 	a �false positive�
output
� or when something occurs that causes the IDS to incorrectly fail to
identify an intrusion when one has in fact occurred 	a �false negative�
� Some
researchers�� discuss IDS failures in terms of de�ciencies in �accuracy� and
�completeness�� where �accuracy� re�ects the number of false positives and
�completeness� re�ects the number of false negatives�

Other attacks might seek to disable the entire system� preventing it from
functioning e�ectively at all� We say that these attacks attempt to compromise
the �availability� of the system�

��� Points of Vulnerability in ID Systems

Each component identi�ed by the CIDF model has unique security implications�
and can be attacked for di�erent reasons�

As the only inputs of raw data into the system� E�boxes act as the eyes
and ears of an IDS� An attack against the event generation capabilities of an
IDS blinds it to what�s actually happening in the system it�s monitoring� For
example� an attack against the E�box of a network IDS could prevent it from
obtaining packets o� the network� or from appropriately decoding these packets�

Some intrusion detection systems rely on sophisticated analyses to provide
security information� In such systems� the reliability of the A�box components
used is important because an attacker that knows how to fool them can evade
detection � and complicated analytical techniques may provide many avenues
of attack� On the other hand� overly simplistic systems may fail to detect at�
tackers that intentionally mask their attacks with complex� coordinated system
interactions from multiple hosts���

The need for reliable data storage is obvious� An attacker that can subvert
the D�box components of an IDS can prevent it from recording the details of
her attack� poorly implemented data storage techniques can even allow sophisti�
cated attackers to alter recorded information after an attack has been detected�
eliminating its forensic value�

The C�box capability can also be attacked� If a network relies on these
countermeasures for protection� an attacker who knows how to thwart the C�box
can continue attacking the network� immune to the safety measures employed

�

by the system� More importantly� countermeasure capabilities can be fooled
into reacting against legitimate usage of the network � in this case� the IDS
can actually be turned against the network using it 	often un�detectably
�

It is apparent that there are many di�erent points at which an intrusion
detection system can be attacked� A comprehensive treatment of all potential
vulnerabilities is far outside the scope of this paper� Rather than attempting to
document general problems common to all ID systems� we focus on a speci�c
class of attacks against certain types of intrusion detection systems�

There exist several serious problems with the use of passive protocol analysis
as an event�generation source for signature�analysis intrusion detection systems�
This paper documents these problems� presents several attacks that exploit
them to allow an attacker to evade detection by ID systems� and veri�es their
applicability to the most popular commercial ID systems on the market�

�

� Problems with Network ID Systems

Our work de�nes two general problems with network intrusion detection� �rst�
that there is insu�cient information available in packets read o� the wire to
correctly reconstruct what is occurring inside complex protocol transactions�
and next� that ID systems are inherently vulnerable to denial of service attacks�
The �rst of these problems reduces the accuracy of the system� and the second
jeopardizes its availability�

��� Insu�ciency of Information on the Wire

A network IDS captures packets o� the wire in order to determine what is
happening on the machines it�s watching� A packet� by itself� is not as signi�cant
to the system as the manner in which the machine receiving that packet behaves
after processing it� Network ID systems work by predicting the behavior of
networked machines based on the packets they exchange�

The problem with this technique is that a passive network monitor cannot
accurately predict whether a given machine on the network is even going to see
a packet� let alone process it in the expected manner� A number of issues exist
which make the actual meaning of a packet captured by an IDS ambiguous�

A network IDS is typically on an entirely di�erent machine from the systems
it�s watching� Often� the IDS is at a completely di�erent point on the network�
The basic problem facing a network IDS is that these di�erences cause incon�
sistencies between the ID system and the machines it watches� Some of these
discrepancies are the results of basic physical di�erences� others stem from dif�
ferent network driver implementations�

For example� consider an IDS and an end�system located at di�erent places
on a network� The two systems will receive any given packet at di�erent points
in time� This di�erence in time is important� during the lag� something can
happen on the end�system that might prevent it from accepting the packet�
The IDS� however� has already processed the packet�thinking that it will be
dealt with normally at the end�system�

Consider an IP packet with a bad UDP checksum� Most operating systems
will not accept such a packet� Some older systems might� The IDS needs to
know whether every system it watches will accept such a packet� or it can end
up with an inaccurate reconstruction of what happened on those machines�

Some operating systems might accept a packet that is obviously bad� A poor
implementation might� for example� allow an IP packet to have an incorrect
checksum� If the IDS doesn�t know this� it will discard packets that the end�
system accepts� again reducing the accuracy of the system�

Even if the IDS knows what operating system every machine on the network
runs� it still might not be able to tell just by looking at a packet whether a
given machine will accept it� A machine that runs out of memory will discard
incoming packets� The IDS has no easy way to determine whether this is the
case on the end�system� and thus will assume that the end�system has accepted

�

the packet� CPU exhaustion and network saturation at the end�system can
cause the same problem�

Together� all these problems result in a situation where the IDS often simply
can�t determine the implications of a packet merely by examining it� it needs
to know a great deal about the networking behavior of the end�systems that
it�s watching� as well as the tra�c conditions of their network segments� Unfor�
tunately� a network IDS doesn�t have any simple way of informing itself about
this� it obtains all its information from packet capture�

��� Vulnerability to Denial of Service

A �denial of service� 	DOS
 attack is one that is intended to compromise the
availability of a computing resource� Common DOS attacks include ping �oods
and mail bombs � both intended to consume disproportionate amounts of re�
sources� starving legitimate processes� Other attacks are targeted at bugs in
software� and are intended to crash the system� The infamous �ping of death�
and �teardrop� attacks are examples of these�

Denial of service attacks can be leveraged to subvert systems 	thus com�
promising more than availability
 as well as to disable them� When discussing
the relevance of DOS attacks to a security system� the question of whether the
system is �fail�open� arises� A �fail�open� system ceases to provide protection
when it is disabled by a DOS attack� A �fail�closed� system� on the other hand�
leaves the network protected when it is forcibly disabled�

The terms �fail�open� and �fail�closed� are most often heard within the
context of �rewalls� which are access�control devices for networks� A fail�open
�rewall stops controlling access to the network when it crashes� but leaves the
network available� An attacker that can crash a fail�open �rewall can bypass
it entirely� Good �rewalls are designed to �fail�closed�� leaving the network
completely inaccessible 	and thus protected
 if they crash�

Network ID systems are passive� They do not control the network or main�
tain its connectivity in any way� As such� a network IDS is inherently fail�open�
If an attacker can crash the IDS or starve it of resources� she can attack the rest
of the network as if the IDS wasn�t even there� Because of the obvious suscep�
tibility to DOS attacks that network ID systems have� it�s important that they
be forti�ed against them�

Unfortunately� denial of service attacks are extremely di�cult to defend
against� The resource starvation problem is not easily solvable� and there are
many di�erent points at which the resources of an IDS can be consumed� Attacks
that crash the IDS itself are easily �xed� but �nding all such vulnerabilities is
not easily done�

� Attacks

We discuss in this paper three di�erent types of attacks against sni�er�based net�
work ID systems� Two of them attempt to subtly thwart protocol analysis� pre�

��

venting the signature�recognition system from obtaining adequate information
from which to draw conclusions� The third leverages simple resource�starvation
attacks to disrupt or disable the entire system�

All of our attacks involve an attacker that is speci�cally manipulating her
network usage to create abnormal� or even pathological� streams of tra�c�
In most cases� they require low�level packet forgery� However� unlike normal
�spoo�ng� attacks� these techniques are simpli�ed by the fact that the attacker
is manipulating her own sessions� not attempting to disrupt those of other users�
Two of our attacks are new � � and speci�c to tra�c analysis systems 	though
not necessarily to intrusion detection
� Both are mechanisms by which an at�
tacker can fool a protocol analyzer into thinking that something is 	or is not

happening on the network� The �rst of these� which we call �insertion�� in�
volves an attacker stu�ng the system with subtly invalid packets� the second�
�evasion�� involves exploiting inconsistencies between the analyzer and an end
system in order to slip packets past the analyzer�

��� Insertion

An IDS can accept a packet that an end�system rejects� An IDS that does this
makes the mistake of believing that the end�system has accepted and processed
the packet when it actually hasn�t� An attacker can exploit this condition by
sending packets to an end�system that it will reject� but that the IDS will think
are valid� In doing this� the attacker is �inserting� data into the IDS � no other
system on the network cares about the bad packets�

We call this an �insertion� attack� and conditions that lend themselves to
insertion attacks are the most prevalent vulnerabilities in the intrusion detection
systems we tested� An attacker can use insertion attacks to defeat signature
analysis� allowing her to slip attacks past an IDS�

To understand why insertion attacks foil signature analysis� it�s important
to understand how the technique is employed in real ID systems� For the most
part� �signature analysis� uses pattern�matching algorithms to detect a certain
string within a stream of data� For instance� an IDS that tries to detect a PHF
attack will look for the string �phf� within an HTTP �GET� request� which is
itself a longer string that might look something like �GET �cgi�bin�phf���

The IDS can easily detect the string �phf� in that HTTP request using a sim�
ple substring search� However� the problem becomes much more di�cult to solve
when the attacker can send the same request to a webserver� but force the IDS to
see a di�erent string� such as �GET �cgi�bin�pleasedontdetecttthisforme���
The attacker has used an insertion attack to add �leasedontdetectt�� �is�� and
�orme� to the original stream� The IDS can no longer pick out the string �phf�
from the stream of data it observes�

Figure � gives a simple example of the same attack� An attacker confronts the
IDS with a stream of ��character packets 	the attacker�originated data stream
�

�Vern Paxson of LBNL presented a paper describing several of the same attacks as we do
at roughly the same time�����

��

Accepted by Monitor

A T T A C K A T X T A C K

T X T C A A KRejected
by End-System

End-System Network Monitor

Sees "ATXTACK"Sees "ATTACK"

Attacker’s Data Stream

Figure �� Insertion of the letter �X�

in which one of the characters 	the letter �X�
 will be accepted only by the IDS�
As a result� the IDS and the end system reconstruct two di�erent strings�

In general� insertion attacks occur whenever an IDS is less strict in processing
a packet than an end�system� An obvious reaction to this problem might be to
make the IDS as strict as possible in processing packets read o� the wire� this
would minimize insertion attacks� However� another severe problem 	�evasion�
attacks
 occurs when this design approach is taken�

��� Evasion

An end�system can accept a packet that an IDS rejects� An IDS that mistakenly
rejects such a packet misses its contents entirely� This condition can also be
exploited� this time by slipping crucial information past the IDS in packets that
the IDS is too strict about processing� These packets are �evading� the scrutiny
of the IDS�

We call these �evasion� attacks� and they are the easiest to exploit and
most devastating to the accuracy of an IDS� Entire sessions can be carried
forth in packets that evade an IDS� and blatantly obvious attacks couched in
such sessions will happen right under the nose of even the most sophisticated
analysis engine�

Evasion attacks foil pattern matching in a manner quite similar to insertion
attacks� Again� the attacker causes the IDS to see a di�erent stream of data
than the end�system � this time� however� the end�system sees more than the
IDS� and the information that the IDS misses is critical to the detection of an
attack�

In the insertion attack we mentioned above� the attacker sends an HTTP
request� but muddies its contents on the IDS with additional data that make
the request seem innocuous� In an evasion attack� the attacker sends portions
of the same request in packets that the IDS mistakenly rejects� allowing her to

��

Sees "ATTCK"

A T T A C K A T KT C

T C A A KT

Attacker’s Data Stream

End-System Network Monitor

Sees "ATTACK"

Rejected
by Monitor

Accepted by End-System

Figure �� Evasion of the letter �A�

remove parts of the stream from the ID system�s view� For example� the original
request could become �GET �gin�f�� which would have no meaning to most ID
systems� Figure � shows the same type of attack�

��� Real World Insertion and Evasion

In reality� insertion and evasion attacks are not this easy to exploit� An attacker
usually does not have the luxury of injecting arbitrary characters into a stream�
However� these attacks can come into play well before pattern matching becomes
a consideration� One example of a place in which insertion attacks can be
leveraged at a very low level is stream reassembly� To understand how insertion
and evasion play into reassembly� we�ll �rst explain what we mean by the term�

Many network protocols are simple and easy to analyze� They involve one
system sending a single request to another� and waiting for that system to
respond� For example� a network monitor can easily determine the purpose of
a single UDP DNS query by looking at one packet�

Other protocols are more complex� and require consideration of many indi�
vidual packets before a determination can be made about the actual transaction
they represent� In order for a network monitor to analyze them� it must state�
fully monitor an entire stream of packets� tracking information inside each of
them� For example� in order to discover what is happening inside of a TCP
connection� the monitor must attempt to reconstruct the streams of data being
exchanged over the connection�

Protocols like TCP allow any amount of data 	within the limits of the IP
protocol�s maximum packet size
 to be contained in each discrete packet� A
collection of data can be transmitted in one packet� or in a group of them�
Because they can arrive at their destination out of order� even when transmitted
in order� each packet is given a number that indicates its place within the
intended order of the stream� This is commonly referred to as a �sequence

��

 Intended Order

C K A T A

CT KAA T

T
5 3 6 1 2 4

 Arrival Order

Figure �� Sequenced reassembly

number�� and we call collections of packets marked with sequence numbers
�sequenced��

The recipient of a stream of TCP packets has the responsibility of re�ordering
and extracting the information contained in each of them� reconstructing the
original collection of data that the sender transmitted� The process of taking
a collection of unordered� sequenced packets and reconstructing the stream of
data they contain is termed �reassembly�� Figure � shows an example of how a
stream of data tagged with sequence numbers might be reassembled�

Reassembly issues manifest themselves at the IP layer� as well� IP de�nes
a mechanism� called �fragmentation�� that allows machines to break individual
packets into smaller ones� Each individual fragment bears a marker that de�
notes where it belongs in the context of the original packet� this �eld is called
the �o�set�� IP implementations must be able to accept a stream of packet
fragments and� using their o�sets� reassemble them into the original packet�

Insertion attacks disrupt stream reassembly by adding packets to the stream
that would cause it to be reassembled di�erently on the end�system�if the end
system accepted the disruptive packets� The inserted packets could change the
sequencing of the stream 	consuming hundreds of sequence numbers
� preventing
the IDS from dealing properly with the valid packets that follow it� Packets can
be inserted that overlap old data� rewriting the stream on the IDS� And� in
some situations� packets can be inserted that simply add content to the stream
which changes its meaning�

Evasion attacks disrupt stream reassembly by causing the IDS to miss parts
of it� The packets lost by the IDS might be vital for the sequencing of the
stream� the IDS might not know what to do with the packets it sees after the
evasion attacks� In many situations� it�s fairly simple for the attacker to create
an entire stream that eludes the IDS�

��� Ambiguities

In many cases� defending against insertion and evasion attacks is easy� The
behavior that an attacker is exploiting to insert packets into the IDS is� in these
cases� simply wrong� The IDS might not be verifying a checksum or examining
a header �eld correctly� �xing the problem merely involves modifying the IDS

��

Section Info Needed Ambiguity

Section ����� Network Topology IP TTL �eld may not be large enough for the
number of hops to the destination

Section ����� Network Topology Packet may be too large for a downstream
link to handle without fragmentation

Section ����� Destination Con�guration Destination may be con�gured
to drop source�routed packets

Section ����� Destionation OS Destination may time partially received
fragments out di�erently depending on its OS

Section ����� Destination OS Destination may reassemble overlapping
fragments di�erently depending on its OS

Section ����� Destination OS Destination host may not accept TCP
packets bearing certain options

Section ����� Destination OS Destination may implement PAWS and silently
drop packets with old timestamps

Section ����� Destination OS Destination may resolve con�icting TCP
segments di�erently depending on its OS

Section ����� Destination OS Destination may not check sequence numbers
on RST messages

Figure �� Ambiguities identi�ed in this paper

to check these things�
In some cases� however� �xing the problem is not easy� There are situations

in which a network monitor cannot determine by looking at a packet whether
it will be accepted� This can be due to varying end�system behavior 	one op�
erating system might process a packet di�erently from another
� Basic network
ambiguities can also cause problems� In some cases� unless the IDS knows ex�
actly what path the packet is going to take to get to its destination� it won�t
know whether it will actually arrive there�

Attacks that exploit these kinds of problems cannot easily be defended
against unless the IDS has a source of information that resolves the ambiguity�
If the IDS knows what operating system is running on the destination system� it
may be able to discern whether a packet is acceptable to that system� If the IDS
can reliably track the topology of the network� it may be be able to determine
whether or not a packet will ever be received by an end�system� In general� we
say a tra�c analysis problem is �ambiguous� if an important conclusion about
a packet cannot be made without a secondary source of information�

Figure � shows the ambiguities this paper identi�es� Each ambiguity can po�
tentially be resolved if the IDS has certain information 	either a reliable view of
the topology of the network� the con�guration of the end�systems it�s watching�
or the OS and version of those systems
� This is� of course� not an exhaustive
list�

��

The next two sections of this paper provide examples of how insertion and
evasion attacks a�ect protocol analysis at the network 	IP
 and transport 	TCP

layers� These sections provide real�world examples of attacks on IP network ID
systems in great detail� working from the basic attacks we�ve de�ned here�

��

Line Description

��� No IP addresses set yet
��� Received packet is too short to be an IP datagram�
��� Received packet is too short to be an IP datagram�
��� IP version isn�t ���
��� IP �header length� �eld too small
��� IP �header length� is set larger than the entire packet
��� Bad header checksum
��� IP �total length� �eld is shorter than �header length�
��� Packet has IP options and ip dooptions	
 returns an error
��� Not addressed to this host
��� Too small to be a fragment

Figure �� FreeBSD ��� ip input	
 packet discard points 	netinet�ip input�c

� Network�Layer Problems

We begin our discussion of speci�c� observable problems in network intrusion
detection systems at the IP layer� An insertion or evasion problem occurring
within the IP processing of an IDS a�ects all higher levels of processing as
well� a problem that allows an attacker to insert an arbitrary IP packet allows
that attacker� by extension� to insert an arbitrary 	well�formed
 UDP or ICMP
packet� It is thus extremely important that an ID system be immune to insertion
or evasion attacks on this level�

��� Simple Insertion Attacks

There are many ways that an attacker can send an IP packet that only an IDS
will accept� We collected candidate methods by examining the IP driver source
code of the ���BSD operating system� Any condition that causes ���BSD to
drop a received packet must be accounted for in an intrusion detection system�
An inconsistency between ���BSD and an IDS represents a potential insertion
or evasion attack against that IDS� Figure � lists all the points in FreeBSD ����s
�ip input� routine that discard received datagrams�

����� Bad Header Fields

The easiest way for an IP datagram to be discarded by an endpoint is for it to
have an invalid header �eld� The header �elds of an IP packet are described in
RFC������

One problem with attempting to use packets with bad header �elds for in�
sertion attacks is that doing so often prevents the packet from being forwarded
by Internet routers� This makes it di�cult to use such packets for an attack�
unless the IDS is situated on the same LAN as the attacker 	in which case the

��

attacker can already manipulate the IDS via packet forgery
� A good example
is the �version� �eld� assigning a value other than � to this �eld will prevent
the packet from being routed�

Another problem with using bad header �elds is the fact that some of them
need to be correct for the packet to be parsed correctly 	�correctly� here meaning
�in the manner intended by the attacker�
� For instance� incorrectly specifying
the size of the IP packet itself� or the size of its header� may prevent the IDS
from locating the transport layer of the packet�

One IP header �eld that is easy to neglect is the checksum� It may seem
unnecessary for an IDS to verify the accuracy of the checksum on each captured
IP packet� however� a datagram with a bad checksum will not be processed
by most IP implementations� An IDS that does not reject packets with bad
checksums is thus vulnerable to a very simple insertion attack�

A harder problem to solve is the TTL �eld� The TTL 	time to live
 �eld
of an IP packet dictates how many �hops� a packet can traverse on its way to
its destination� Every time a router forwards a packet� it decrements the TTL�
When the TTL runs out� the packet is dropped� If the IDS is not on the same
network segment as the systems it watches� it is possible to send packets that
only the IDS will see by setting the TTL just long enough for the packet to reach
the IDS� but too short for the packet to actually arrive at its destination����

A similar problem occurs in relation to the �Don�t Fragment� 	DF
 �ag in
the IP header� The DF �ag tells forwarding devices not to split a packet up into
fragments when the packet is too large to be forwarded� but instead to simply
drop the packet� If the maximum packet size of the network the IDS is on is
larger than that of the systems it watches� an attacker can insert packets by
making them too large for the destination network and setting the DF bit����

Both of these problems can lead to ambiguities that are only solveable if the
IDS has an intimate knowledge of the topology of the network it is monitoring�

����� IP Options

The IP checksum problem is fairly simple to solve� an IDS can reasonably assume
that if the checksum is wrong� the datagram will not be accepted by the end�
system it�s addressed to� A trickier problem is that of parsing IP options� This
is more likely to vary between hosts� and the interpretation of options requires
specialized processing�

For example� most end�systems will drop a packet that is �strict source
routed��� when the host�s own address is not in the speci�ed source route� It
is reasonable for an IDS to drop such packets� avoiding an insertion attack�
However� many operating systems can be con�gured to automatically reject
source routed packets� Unless the IDS knows whether a source�routed packet�s
destination rejects such packets� the correct action to take is ambiguous�

Examination of source route options on IP packets may seem like an obvious
requirement for a security program� However� there are other options that must
be accounted for that are less obviously relevant� For instance� the �timestamp�
option requests that certain recipients of the datagram place a timestamp within

��

Line Option Description

��� Any Bad option length
��� Source Route Option o�set is less than ���
��� Strict Source Route This host is not one of the listed hops
��� Source Route This host is con�gured to drop source routed

packets
��� Source Route No route to next hop in route
��� Record Route Option o�set is less than ���
��� Record Route No route to next hop
��� Timestamp Option length is too short
��� Timestamp Timestamp recording space is full and the

over�ow counter has wrapped back to zero
��� Timestamp Not enough record space to hold timestamp

and IP address
��� Timestamp Not enough record space to hold timestamp

and IP address
��� Timestamp Bad timestamp type given

Figure �� FreeBSD ��� ip dooptions	
 packet discard points

the packet� The code that processes the timestamp option can be forced to
discard the packet 	if the option is malformed
� If the sni�er does not validate
the timestamp option in the same manner as the end systems it watches� the
inconsistency can be exploited� Figure � lists all the places in which FreeBSD
����s option processing code discards incoming datagrams�

Most IP option processing problems in the ���BSD option processing code
results in the transmission of an ICMP error message� notifying the sender of
the errant datagram of the problem� An IDS could potentially listen for such
messages to determine whether an oddly�speci�ed option is correct� This is not
always reliable� some operating systems 	Sun Solaris� for instance
 will rate�limit
ICMP� suppressing the error messages� Furthermore� tracking ICMP responses
to datagrams bearing options requires the IDS to keep state for each IP packet�
this will consume resources and potentially allow an attacker an avenue for a
denial of service attack�

��� MAC Addresses

Although obviously not an IP problem per se� the same implications for insertion
attacks exist due to link�layer addressing� An attacker on the same LAN as a
network monitor can direct link�layer frames to the IDS� without ever allowing
the host speci�ed as the IP destination to see the packet�

If the attacker knows the link�layer address of the IDS� she can simply address
her fake packet to the IDS� No other system on the LAN will process the packet�

��

10.0.0.1 / AB:AD:CA:FE:00:01

A T T X A C K

Sent to 10.0.0.1 at
Ethernet
AB:AD:CA:FE:00:01

�� ��

�
�
�
�

end-system monitor

Ethernet

attacker

10.0.0.2 / AB:AD:CA:FE:00:00

ATTACK ATTXACK

Sent to 10.0.0.1 at
Ethernet
AB:AD:CA:FE:00:00

Figure ��� Insertion Attacks at the Link Layer

but� if the IDS doesn�t check the MAC address on the received packet� it won�t
know this� Figure �� shows an example of an attacker that inserts a character
in the IDS by directing a packet to the IDS via the Ethernet link�layer�

Even if the attacker doesn�t know the link�layer address of the network mon�
itor� she can exploit the fact that the network monitor is operating in promis�
cuous mode by addressing the frame to a fake address� Again� unless the IDS
veri�es the destination address in the IP header against the correct link�layer
address 	and can do so reliably
� it can be fooled by falsely�addressed link�layer
frames�

��� IP Fragmentation

IP packets can be broken into smaller packets� and reassembled at the destina�
tion� This is termed �fragmentation�� and is an integral part of the IP protocol�
IP fragmentation allows the same information to travel over di�erent types of
network media 	which may have di�erent packet size limits
 without limiting
the entire protocol to an arbitrary small maximum packet size� A detailed
explanation of IP fragmentation can be found in Stevens��� or in RFC������

Because end�systems will reassemble a stream of IP fragments� it is impor�
tant that a network monitor correctly reassemble fragments as well� An IDS
that does not correctly reassemble fragments can be attacked simply by ensur�
ing that all data is exchanged between machines using arti�cially fragmented
packets�

����� Basic Reassembly Problems

Streams of IP fragments usually arrive in order� The last fragment in a stream
is clearly marked 	the IP header contains a �ag that speci�es whether more
fragments follow a given packet
� However� even though it rarely happens� the

��

protocol allows fragments to arrive in any arbitrary order� An end system must
be able to reassemble a datagram from fragments that arrive out of order�

Because fragments usually arrive in order� it�s easy to make the mistake of
assuming that they always will� An IDS that does not properly handle out�
of�order fragments is vulnerable� an attacker can intentionally scramble her
fragment streams to elude the IDS� It�s also important that the IDS not attempt
to reconstruct packets until all fragments have been seen� Another easily made
mistake is to attempt to reassemble as soon as the marked �nal fragment arrives�

Another signi�cant problem is the fact that received fragments must be
stored until the stream of fragments can be reassembled into an entire IP data�
gram� An IDS can be attacked by �ooding the network with partial� fragmented
datagrams� which will never be completed� A naive IDS will run out of memory
as it attempts to cache each fragment� since the fragmented packets are never
completed�

End�systems must deal with this problem as well� Many systems drop frag�
ments based on their TTL� to avoid running out of memory due to over�full frag�
ment queues� An IDS that eventually drops old� incomplete fragment streams
must do so in a manner consistent with the machines it�s watching� or it will
be vulnerable to insertion 	due to accepting fragment streams that end�systems
have dropped already
 or evasion 	due to dropping fragments that end�systems
have not yet discarded
 attacks�

����� Overlapping Fragments

It has long been known that there are serious security implications arising from
interactions between fragmentation and network access control devices 	like
packet �lters
� Two well�known attacks involving fragmentation allow attackers
to potentially evade packet �lters by employing pathological fragment streams�
The �rst of these attacks involves simply sending data using the smallest frag�
ments possible� the individual fragments will not contain enough data to �lter
on�

The second problem is far more relevant to ID systems� It involves frag�
mentation overlap� which occurs when fragments of di�ering sizes arrive out of
order and in overlapping positions� If a fragment arriving at an end�station
contains data that has already arrived in a di�erent fragment� it is possible that
the newly arrived data may overwrite some of the old data�

This presents problems for an IDS� If the IDS does not handle overlapping
fragments in a manner consistant with the systems it watches� it may� given
a stream of fragments� reassemble a completely di�erent packet than an end�
system in receipt of the same fragments� An attacker that understands the
speci�c inconsistency between an end�system and an IDS can obscure her attack
by couching data inside of overlapping fragment streams that will be reassembled
di�erently on the two systems�

Overlap resolution is further complicated by the fact that data from con�
�icting fragments is used di�erently depending on their positions� In some
situations� con�icts are resolved in favor of the new data� In others� the old

��

NT and Solaris see "ATTACK"
C H

T KAA T

T KAA T

I C

Reverse Overlap

Forward Overlap

Should Always Resolve
to "ATTACK", never "ATTICK"

Most OS’s will resolve this to
"ATTACH", but Windows

Figure ��� Forward and Reverse Overlap

Operating System Overlap Behavior

Windows NT ��� Always Favors Old Data
���BSD Favors New Data for Forward Overlap
Linux Favors New Data for Forward Overlap
Solaris ��� Always Favors Old Data
HP�UX ���� Favors New Data for Forward Overlap
Irix ��� Favors New Data for Forward Overlap

Figure ��� IP fragment overlap behavior for various OS�s

data is preferred and the new data is discarded� An IDS that does this incor�
rectly is vulnerable to evasion attacks� Figure �� shows the di�erent scenarios
involved in fragmentation overlap�

����� E�ects of End�System Fragmentation Bugs

ID systems aren�t the only IP implementations that can incorrectly handle over�
lapping fragments� The IP drivers in end�systems can have bugs as well� The
complexity of IP fragment reassembly makes the existence of incorrect imple�
mentations quite likely� Unless the IDS knows exactly which systems have non�
standard drivers� it is incapable of accurately reconstructing what�s happening
on them�

For example� Windows NT resolves overlapping fragments consistently in fa�
vor of the old data 	we were unable to create a fragment stream that forced Win�
dow NT to rewrite a previously received fragment
� This di�ers from ���BSD�
which resolves con�icts as suggested by the standard 	in favor of the new data in
cases of forward overlap
���� Figure �� gives examples of how several popular
operating systems resolve overlap�

��

The end result is that fragmentation reassembly is di�erent on the end�
system depending on the operating system� Unless the IDS knows which OS
the system is running� it will have absolutely no way of knowing what form of
con�ict resolution was performed� and thus no conclusive evidence of what was
actually reassembled�

����� IP Options in Fragment Streams

IP packets can bear options� When an IP packet is fragmented� the question
arises as to whether the options from the original packet should be carried on all
the fragments� RFC����� dictates that certain IP options are to be present in
every fragment of a datagram 	for example� the �security� option
� and others
must appear only in the �rst fragment�

A strict implementation of IP could discard fragments that incorrectly present
options� Many implementations do not� If the IDS doesn�t behave exactly like
the machines it�s watching in this respect� it will be vulnerable to insertion and
evasion attacks�

��� Forensic Information from IP Packets

It is an unfortunate fact that the IP version � protocol is in no way authenti�
cated� This poses some problems to ID systems attempting to collect evidence
based on information seen in IP headers� anyone can forge an IP packet appear�
ing to come from some arbitrary host�

This problem is particularly severe with connectionless protocols� In connec�
tion�oriented protocols� a weak conclusion can be drawn as to the origin of a
session based on whether a valid connection is created� the sequence numbers
employed by protocols like TCP provide at least cursory assurance that the
attack is originating at the address it appears to come from� An IDS can
observe that a connection uses consistantly correct sequence numbers and have
a reasonable assurance that it�s not being blindly spoofed�

Unfortunately� no such assurance exists with connectionless protocols� an
attack against the DNS� for instance� could be sourced from any address on the
net� It is important that operators of ID systems be aware of the questionable
validity of the addressing information they�re given by their system�

��

� TCP Transport�Layer Problems

A large portion of the attacks detected by ID systems occur over TCP connec�
tions� This imposes the requirement that an IDS be able to reconstruct the �ow
of data passing through a stream of TCP packets� If the IDS can�t do this in a
manner consistent with end systems it�s watching� it is vulnerable to attack�

For normal TCP connections� initiated by innocuous network applications
like �telnet�� this is not di�cult� Against an attacker� who is stretching the
TCP protocol to its limits 	and� in exploiting OS bugs� beyond those limits
 to
avoid detection� the problem is far more di�cult�

There are many di�erent ways to implement a TCP connection monitor�
Each has its advantages� and each has serious �aws� The lack of a canonical
�Right Way� to process a captured stream of TCP packets is a major problem
with network ID systems�

��� De�nition of Terms

TCP connection monitoring is a complicated subject� In order to simplify our
discussion� we de�ne several terms describing information used by the monitor to
track and record information �owing through a TCP session� For the most part�
these terms are synonymous with those used by the BSD TCP implementation�

Every TCP connection has four identi�ers 	two for the client� two for the
server
 which distinguish it from any other connection on the network� These
are the client 	or source
 and server 	or destination
 IP addresses� and the client
and server TCP port numbers� Two connections cannot exist on the network
that share these identi�ers� We�ll refer to this information as the �connection
parameters��

The TCP protocol speci�cation 	RFC������
 de�nes several �states� that
any given connection can be in� In this paper� we refer only to states observable
by an IDS 	those involving the actual exchange of data between two hosts
�
The vast majority of all possible connections exist in the �CLOSED� state�
meaning that no connection currently exists using those parameters� An active�
established connection is said to be in �ESTABLISHED� state� We�ll introduce
other states when they become relevant to our discussion�

TCP implements a reliable� sequenced stream protocol� By �reliable�� we
mean that each end of a connection can determine whether data it has sent was
successfully received� and can do something to remedy the situation when it
isn�t� TCP is �sequenced� because it employs �sequence numbers� to determine
where any piece of data represented in a packet belongs within a stream�

In order for an IDS to reconstruct the information �owing through a TCP
connection� it must �gure out what sequence numbers are being used� We
call the process that an IDS goes through to determine the current valid se�
quence numbers for a connection �synchronization�� A scenario in which the
IDS becomes confused about the current sequence numbers is termed �desyn�
chronization��

��

When an IDS is desynchronized from a connection� it cannot accurately re�
construct the data being passed through the connection� In many cases� ID
systems become completely blinded 	not reconstructing any data from the con�
nection
 when this occurs� Thus� a major goal of an attacker is to desynchronize
the IDS from her connections�

Along with sequence numbers� TCP tracks several other pieces of information
about a connection� TCP de�nes a �ow�control mechanism that prevents one
side of a connection from sending too much data for the other side to process�
this is tracked through each side�s �window�� TCP also allows for out�of�band
data to be sent in a stream� using the �urgent pointer��

This collection of state information can be represented internally on an end�
system in any manner� We refer to the abstract concept of the block of infor�
mation that an implementation must manage to follow a single connection as
a �TCP control block�� or �TCB�� A network IDS must maintain a TCB for
every connection that it watches�

����� IDS State Transition

TCBs are only useful for connections that are not 	in fact
 in CLOSED state�
Because it would be infeasible for an IDS to maintain a TCB for every possible
connection� any network IDS de�nes a mechanism by which TCBs can be created
for newly detected connections� and destroyed for connections that are no longer
relevant�

In our discussion of IDS TCP problems� we isolate three di�erent points at
which the processing of a connection by an IDS can be subverted� These are
TCB creation 	the point at which an IDS decides to instantiate a new TCB for a
detected connection
� stream reassembly 	the process an IDS uses to reconstruct
a stream associated with an open TCB
� and TCB teardown 	the point at which
the IDS decides to retire a TCB
�

Contributing to attacks against each of these three points are data insertion
attacks� which can allow an attacker to confuse the IDS as to what data is
actually arriving at the end�system� In some cases� such as within the context
of stream reassembly� data insertion attacks make the reliable monitoring of
a TCP session practically impossible� it is thus important the the IDS not be
vulnerable to insertion attacks� This is not an easy goal to achieve�

��� Simple Insertion Attacks

As with the IP protocol� there are several di�erent ways in which a single packet
can be inserted into an IDS� TCP input processing is complex� and there are
many di�erent cases that can cause a received packet to be dropped� As always�
if an IDS doesn�t process TCP packets in the same manner as the end�systems
it�s monitoring� it is potentially vulnerable to insertion attacks�

As with our analysis of IP monitoring� we used the source code to the ���BSD
kernel to obtain candidate cases for potential insertion attacks� Again� any point
in ���BSD�s tcp input	
 function that causes a received packet to be dropped

��

without complete processing was identi�ed as a possible problem� Figure �� lists
points in FreeBSD ����s tcp input	
 code where incoming segments are dropped�

A TCP segment is acknowledged if the receiving system generates a mes�
sage in response to the segment� when this occurs� we indicate whether this is
via an RST or ACK message� The transmission of a message in response to a
bad segment is signi�cant because an IDS could potentially detect invalid seg�
ments by examining the manner in which they are acknowledged� though this is
complicated both by resource and e�ciency issues� as well as the potential for
inconsistant behavior across di�erent operating systems�

����� Malformed Header Fields

Data from a TCP packet can be extracted and used in reassembly without
looking at many of the header �elds� This makes it dangerously easy to design
a TCP session monitor that is vulnerable to packet insertion� it is important to
validate the header �elds of a TCP packet before considering its data�

One very easily overlooked �eld is the �CODE�� which determines the type
of message being sent in a given TCP segment� The TCP code is speci�ed as a
series of binary �ags� Certain combinations of these �ags are invalid� and should
result in a discarded packet� Additionally� many TCP implementations will not
accept data in a packet that does not have the �acknowledge� 	�ACK�
 �ag set�

According to the TCP speci�cation� TCP implementations are required to
accept data contained in a SYN packet� Because this is a subtle and obscure
point� some implementations may not handle this correctly� If an IDS doesn�t
consider data in a SYN packet� it is vulnerable to a trivial evasion attack� if it
does� it may be vulnerable to insertion attacks involving incorrect end�system
implementations�

Another often overlooked TCP input processing issue is checksum compu�
tation� All TCP implementations are required to validate incoming packets
with the Internet checksum� Many ID systems fail to perform this check� pack�
ets can be inserted into these systems simply by sending TCP segments with
intentionally corrupt checksums�

����� TCP Options

As in IP� it is important that the IDS process TCP options correctly� Unfor�
tunately� processing of TCP options is signi�cantly trickier than processing IP
options� One reason for this is the fact that several TCP options have only
recently been created 	timestamp and window scale� for instance
� Another is
the fact that TCP speci�es rules for when a TCP option can appear within the
context of a connection� Certain options can be invalid in certain connection
states�

RFC������� introduces two new TCP options designed to increase the re�
liability and performance of TCP in high�speed environments� With these new

��

Line Acknowledged� Condition

��� No Actual received packet too short
��� No Bad checksum
��� No O�set too Short 	into TCP header
 or too long
��� No Actual received packet too short
��� RST No listening process
��� RST No listening process
��� No Connection is in CLOSED state
��� No Packet other than SYN received in LISTEN state
��� RST ACK packet received in LISTEN state
��� No Can�t track new connections
��� No Received RST packet in LISTEN state
��� RST ACK packet received in LISTEN state
��� No Any packet without SYN received in LISTEN state
��� No Broadcast or Multicast SYN received
��� No Out of resources
��� No in pcbconnect	
 failure
��� No Out of resources
��� No ACK packet� bad sequence numbers
��� No In SYN SENT state� received packet other than SYN
��� No In SYN SENT state� received packet has bad CC�ECHO
��� No In TIME WAIT state� packet has bad CC option
��� No Any other packet received in TIME WAIT state
��� ACK Bad timestamp 	too old

��� No In T�TCP� no CC or bad CC on non�RST packet
���� RST Listening user process has terminated
���� ACK Packet is out of receive window
���� No ACK bit not set on non�SYN data packet
���� RST ACK packet� bad sequence numbers
���� No Duplicate ACK
���� ACK ACK packet sent out of window
���� ACK In TIME WAIT state� received ACK

Figure ��� FreeBSD ��� tcp input	
 packet drop points 	netinet�tcp input�c

��

options came the possibility that TCP options could appear on packets that
were not SYN segments� a departure from the previous convention� RFC����
dictates that options can only appear in non�SYN segments if the option has
been speci�ed and accepted previously in that connection�

Because certain TCP implementations may reject non�SYN segments con�
taining options not previously seen� it�s important that the IDS not blindly
accept such a packet� On the other hand� some end�systems may simply ig�
nore the bad options� but continue to process the packet� if the IDS doesn�t
correctly determine what the end�system has done� it will either be vulnerable
to an insertion attack or another trivial packet evasion attack�

Another concept de�ned by RFC���� is PAWS� or �protection against wrap�
ped sequence numbers�� Systems implementing PAWS track timestamps on
segments� if a segment is received that contains a timestamp echo that is older
than some threshold time� it is dropped� An attacker can trivially create a TCP
segment with an arti�cially low timestamp� which will cause PAWS�compliant
TCP stacks to drop the packet without further processing�

Not only does the IDS need to know whether the end�system supports PAWS�
but it also needs to know what the end�system�s threshold value for timestamps
is� Without this information� an IDS may erroneously process invalid TCP
segments� or� even worse� make an incorrect guess as to the validity of a segment
and enable evasion attacks�

��� TCB Creation

The �rst point at which TCP session monitoring can be subverted is in TCB
creation� The TCB creation policies of an IDS determine the point at which it
begins recording data for a given connection� as well as the initial state 	sequence
numbers� etc
 used to synchronize the monitoring with the actual session�

TCB creation is a troublesome issue� There are many di�erent methods that
can be employed to determine when to open a TCB� and none of the straight�
forward methods is without problems� Some techniques are obviously inferior to
others� however� and it�s important to indicate which these are� TCB creation
establishes the initial state of a connection� including its sequence numbers� the
ability to forge fake TCBs on the IDS can allow an attacker to desynchronize
future connections that use the same parameters as the forged connection�

TCB creation as a concept revolves around the TCP three�way handshake
	or ��WH�
� which is an exchange of TCP packets between a client 	the �active
opener� of a connection
 and server 	the �passive opener�
� The �WH estab�
lishes the initial sequence numbers used for that connection� along with any
other parameters 	the use of running timestamps� for instance
 that may be
important�

There are very few options available to an end�system in implementing TCB
creation� a TCB cannot be completely opened until a three�way handshake is
completed successfully� Without the �WH� the two ends of a connection have
no agreed�upon sequence numbers to use� and will be unable to exchange data�

��

An IDS� on the other hand� has many options� ID systems can attempt to
determine the sequence numbers being used simply by looking at the sequence
numbers appearing in TCP data packets 	we refer to this as �synching on data�
�
or it can rely entirely on the �WH� Compromises can be made to either approach�
information from a �WH can be used� but not relied upon� by the IDS� and the
IDS does not necessarily need to wait for an entire �WH before opening a TCB�

We attempt to outline all the straightforward mechanisms for establishing
TCBs on an IDS here� This is by no means a complete list of all the ways this
task can be accomplished� but these are the techniques that we expect to see
utilized in typical ID systems�

����� Requiring Three�Way Handshake

The �rst decision for IDS designers to make is whether or not to rely completely
on the three�way handshake for TCB initiation� An IDS that relies on the �WH
will not record data in a connection for which it did not observe a handshake�

This has a few distinct disadvantages� The �rst and most obvious is the fact
that the IDS will miss entirely any TCP connection for which it does not see the
�WH� This obviously presents problems at program initialization time 	the IDS
will only be able to see connections that start after it does
� but also presents a
serious opportunity for connection evasion by an attacker who can prevent the
IDS from seeing the �WH�

Another problem occurs in combination with TCP reassembly� If an IDS
uses the �WH to determine the initial sequence numbers of a connection� and
then validates data against those sequence numbers� it can potentially be tricked
into desynchronization by an attacker who forges a realistic�looking 	but fake

handshake� If the IDS records the sequence numbers from the handshake� a real
connection� using di�erent sequence numbers but the same parameters� will be
undetectable as long as the attacker�created TCB is open�

TCP options compound this problem� In order to correctly deal with TCP
extensions such as PAWS� the IDS must see the three�way handshake 	the hand�
shake determines whether the use of certain options is legitimate with the con�
nection
� If the IDS fails to detect this� it will be vulnerable to insertion attacks
against some operating systems 	notably ���BSD
�

The E�ects of Filtering on Handshake Detection Many security�con�
scious networks have network �ltering in place that makes it di�cult for a remote
attacker to send packets to the network that have source addresses of machines
behind the �lter� This technique� which is referred to as �inside�outside� �ltering
or �spoof�protection�� makes some attacks against TCB creation harder� the
attacker� trying to trick the IDS into opening or desynchronizing a TCB� cannot
easily forge server response packets�

An IDS can take advantage of this by trusting packets that appear to orig�
inate from machines behind such �lters 	the IDS assumes that the presence of
these �lters makes forging such packets impossible
� Trusted packets can be
used as a reliable indicator of connection state�

��

It�s important to base the decision on whether to �trust� a packet o� the
source address on the packet� and not on the type of TCP message it contains�
An IDS that �trusts� SYN�ACK packets� assuming that they are server re�
sponse messages and thus protected by packet �lters� cannot accurately detect
attacks against network clients 	in which the �ltered addresses are the clients�
not the servers
�

Of course� the IDS must be con�gured to know which addresses are trust�
worthy and which aren�t� An IDS which blindly relies on the fact that addresses
on its own LAN are spoof�protected will be completely vulnerable if no actual
spoof protection exists� The con�guration of the IDS must be consistent with
that of the actual packet �lters�

Requiring Full Handshake An IDS that requires a full �WH will not record
data for a connection until it sees and accepts all � packets in the three�way
handshake� Two of these packets are sent by the client 	and thus� for server
attacks� can be considered under the complete control of an attacker
� and �
of them is sent by the server� In TCP terminology� this means that the IDS
doesn�t start recording until the connection enters ESTABLISHED state�

As mentioned previously� requiring a complete handshake makes it danger�
ously easy to miss connections 	due to packet evasion techniques� simple per�
formance problems on the TCP monitor that cause it to miss packets� or even
attacker�induced performance problems
�

Allowing Partial Handshake An IDS that requires at least a partial �WH
will not record data for a connection until it sees some portion of the hand�
shake occur� Evidence of a three�way handshake validates TCB initiation 	we�ll
see that there are problems with blindly creating TCBs to synch up to data
streams
� and potentially reduces the ability of an attacker to trick the system
into creating false TCBs� Requiring only partial handshakes also decreases the
probability that a connection will be missed due to packet drops under load�

The question that then arises is �what portion of the three�way handshake
needs to be seen by the IDS before a TCB is created��� An IDS can create a
TCB when it sees the initial connection solicitation 	the client SYN
� or when
it sees the server return a positive response 	the server SYN�ACK
� In the
presence of inside�outside �ltering� it can be di�cult for an attacker to spoof the
server response� server SYN�ACK responses are thus a more reliable indication
that a connection is occurring� If an attacker cannot spoof the server response�
the SYN�ACK also contains the valid sequence numbers for the connection�
allowing the IDS to more accurately initialize the TCB�

In either case� it�s important to note that until the handshake is completed�
a connection doesn�t actually exist� The only indication an IDS has that a
connection isn�t being spoofed is when then the client responds to the server
SYN�ACK with an ACK con�rming the server�s initial sequence number� If
an IDS uses partial handshakes to open TCBs� it can be tricked into opening
TCBs for nonexistent connections�

��

����� Data Synchronization

The alternative to requiring a three�way handshake to open a TCB is to deduce
the initial state of a connection by looking at data packets� presumably after
a connection has been opened� Since the IDS is not an active participant in
the connection� it doesn�t necessarily even have to consider �WH packets� it is
entirely feasible to track normal connections simply by looking at ACK packets
	packets containing data
�

The primary advantage of this technique� which we refer to as �synching on
data�� is that the sni�er picks up more data than systems that require hand�
shakes� The system can recover from the loss of an important �WH packet� and
can detect connection that began before the program was started� Unfortu�
nately� synching on data creates the possibility that the sni�er will accept data
that doesn�t correspond to any open connection�

Worse still� ID systems that synch on data and are strict about sequence
number checking can be desynchronized by an attacker who pollutes the ob�
servable connection state with forged data before initiating her attack�

Using SYN Packets A potential antidote to this problem is to allow the
IDS to synch on data� but have it pay attention to �WH packets that occur
sometime after it starts recording data� These systems will initialize connection
state from the �rst observed data packets� but will re�initialize themselves if they
see evidence that a real �WH is being performed 	the �WH is then presumed
to set the real state� and previous state and data recorded should be regarded
as intentionally faked
�

It is important that this technique be implemented reliably� Because the pro�
cess of combining data synchronization with handshake synchronization neces�
sarily allows the monitor to resynchronize the connection based on some packet
input� poor implementations can result in TCP session monitors that can be
desynchronized 	due to falsely injected �WH packets
 at will by an attacker�

One poor implementation strategy relies solely on client SYN packets to
resynchronize the connection� If a SYN packet is received sometime after the
TCB is opened� the IDS resets the appropriate sequence number to match that
of the newly received SYN packet� An attacker can inject fake SYN packets at
will� all she needs to do is send a SYN packet with a completely invalid sequence
number� and the IDS will be desynchronized� Legitimate data being exchanged
on the connection will no longer 	as far as the IDS is concerned
 have valid
sequence numbers� and the IDS� discarding the valid data� will be blinded�

One simple way to address this problem is to only accept the �rst SYN
packet seen on a connection� Presumably� this will be the legitimate three�way
handshake packet� and not a forged desynch attempt�

This does not work� There are three major problems with this approach�
the IDS remains vulnerable to desynch attacks on connections that start before
the program does 	it never examines the original �WH� so no legitimate SYN
will ever appear on the connection
� the IDS has no reliable way to determine
whether any given SYN is in fact the �rst SYN to appear on the connection

��

	packet drops complicate this
� and� most importantly� an attacker can perma�
nently desynchronize the connection by inserting an invalid SYN packet before
the legitimate connection starts�

A better approach is to rely on SYN�ACK packets to resynchronize� As
long as the attacker can�t forge a valid looking SYN�ACK packet from the
server� the IDS can make the assumption that SYN�ACKs from the server are
legitimate and represent real connection handshakes�

There are problems associated with this too� If the IDS is observing a
stream of data� for which it has not yet detected a three�way handshake� it
does not necessarily know which host is the client and which is the server� The
observation of a �WH determines which end is the client and which is the server�
An attacker can forge a SYN�ACK packet that makes it appear like her end
of the connection is the server� if the IDS cannot determine correctly whether
that is the case� it will be desynchronized�

Ignoring SYN Packets A TCP monitor need not resynchronize on �WH
packets� SYN packets can be ignored entirely� and data be used as the basis for
sequence number initialization� If this is implemented in a naive fashion� any
forged data packet can potentially desynchronize the connection� A smarter
implementation might only consider 	for synchronization purposes
 data packets
that originate from local hosts� assuming that the attacker cannot forge packets
appearing to come from these hosts�

��� TCP Stream Reassembly

The most di�cult task for a network intrusion detection system to accomplish
is the accurate reconstruction of the actual data being exchanged over a TCP
connection� TCP provides enough information for an end�system to determine
whether any piece of data is valid� and where that data belongs in the context
of the connection� Even so� the ���BSD code to manage this process is over
���� lines long� and is some of the most involved in the entire TCP�IP protocol
implementation�

The end�points of a connection have a distinct advantage over an observing
monitor � if they miss data� the other side of the connection will automatically
retransmit it after some period of time� Both participants of the connection can
actively manipulate the other� to ensure that their data is exchanged correctly�

The TCP session monitor does not have this luxury� If it misses a packet� it
cannot 	practically
 request retransmission � moreover� it cannot easily detect
whether a missing piece of data is due to out�of�order packet arrival or a dropped
packet� Because the IDS is strictly a passive participant in the connection� it is
quite easy for it to miss data�

This problem is made even more acute by the fact that proper reassembly of
a stream of TCP packets requires accurate sequence number tracking� If an IDS
misses enough packets� it can potentially lose track of the sequence numbers�
Without some recovery mechanism� this can permanently desynchronize the

��

connection� The techniques used by an IDS to recover from packet loss 	and
resynchronize with the connection
 can also be attacked�

����� Basic Reassembly Problems

Some ID systems do not use sequence numbers at all� Instead� they insert data
into the �reassembled� stream in the order it is received� These systems do
not work� An attacker can blind such a system simply by accompanying her
connection with a constant stream of garbage data� the output of the monitor�s
TCP driver will be meaningless�

These systems do not work even on normal TCP streams� The arrival of TCP
segments out of order is a normal occurrence 	happening whenever the route
between TCP endpoints changes and reduces the latency of the path between
them
���� Unfortunately� when this happens� the ID system does not correctly
re�order the packets� The output of the system is again inaccurate� Of course�
an attacker could also send her stream of data out of order� the end�system will
correctly reassemble� and the e�ectively crippled IDS will see meaningless data�

����� Challenges To Reassembly

Even if the system does check sequence numbers� there is no assurance that a
given segment 	even with correct sequence numbers
 will be accepted by the end�
system to which it is addressed� Several issues can cause a TCP implementation
to drop properly sequenced data� The simplest of these are the IP and TCP
insertion problems� but other� higher�level issues present problems as well�

One major problem the IDS must cope with is each end�system�s advertised
window� The �window� of a connection represents the number of bytes of data
it will accept� preventing the other end of the connection from sending too much
data for it to bu�er� Data sent past the window is discarded� In addition� the
time at which the IDS detects the change in the window is di�erent from the
time at which the end�system detects the change and reacts to it� Packets that
arrive within the period of time that the IDS and the end�system are inconsistent
can cause problems� An IDS that does not account for this in some manner is
potentially vulnerable to an insertion attack�

The information available to the IDS from captured packets provides one use�
ful indication of end�system state � the acknowledgment sequence number� The
acknowledgment number represents the next sequence number an end�system
expects to see� Presumably 	end�system TCP bugs can break this assumption
�
any valid piece of data will eventually be acknowledged by an ACK message�

It may be apparent at this point that an IDS can reliably monitor a stream
simply by waiting for acknowledgment before acting on a piece of data� This
is not as easy at it may seem� The acknowledgment number is cumulative�
it represents the next expected piece of data within the context of the entire
connection� Every segment sent is not necessarily directly acknowledged � even
though an acknowledgment is generated in response to it� Several segments

��

Operating System TCP Overlap Behavior

Irix ��� Favors New Data for Forward Overlap
HP�UX ���� Favors New Data for Forward Overlap
Linux Favors New Data for Forward Overlap
AIX ���� Favors New Data for Forward Overlap
Solaris ��� Favors New Data for Forward Overlap
FreeBSD ��� Favors New Data for Forward Overlap
Windows NT ��� Always Favors Old Data

Figure ��� TCP Overlap Behavior in Various Operating Systems

worth of data can be acknowledged by one ACK� an IDS cannot simply wait for
an acknowledgement to each individual packet it sees�

Another great problem in IDS stream reassembly is the fact that an attacker
can send several identically sequenced packets with varying data� The header
information will not change from packet�to�packet 	except the checksum
� and
each packet will alter end�system state in exactly the same manner� but only one
of the packets will actually be processed by the destination host� Unfortunately�
only the end�system knows which one was actually processed� There is not
enough information exchanged on the wire for a IDS to determine which packet
was valid�

Worse still� an insertion attack against an IDS coupled with this ambiguity
can allow an attacker to determine which packets will be accepted by the IDS�
by sending segments that the end�system will reject without acknowledging� and
then sending valid packets after some brief delay� The IDS will most likely accept
the bad data and move the sequence space forward� causing it to ignore the valid
data and potentially desynchronizing the IDS from the actual connection� This
is very similar to the TCP hijacking attack described by Laurent Joncheray����

����� Overlap

Like IP fragments� TCP segments can arrive out of order and in varying sizes�
As in IP fragmentation� this can cause new data to overlap old data� As always�
if the IDS does not resolve this problem in a manner consistent with the hosts
it�s watching� it will not accurately reassemble the stream of data�

The rules for handling TCP segment overlap are quite similar to those of
reassembling fragmented IP datagrams� In some cases� end�systems will resolve
the con�ict in favor of the old data� in others� the con�ict is resolved in favor
of the new data� There is� again� a great potential for bugs here� and� as in
IP reassembly� a bug on either the end�system or the IDS is exploitable by the
attacker� Figure �� details the overlap resolution behavior of various operating
systems�

Using overlapping TCP segments� it is possible for an attacker to create a
stream of packets that will assemble to a completely innocuous string if sent

��

alone� or to an attack signature if it�s accompanied by a single overlapping
segment� Playing with segment overlap allows the attacker to literally rewrite
the packet stream on the destination host� and� unless the IDS resolves overlap
in exactly the same manner as the end�system� it will not see the attack�

����� Endpoint TCP Overlap Bugs

As in IP fragmentation overlap resolution� there is a large potential for incon�
sistency of implementation between vendors in TCP reassembly code� As an
example� Windows NT resolves con�icts in out�of�order TCP segments consis�
tently in favor of the old data� and ���BSD resolves con�icts as indicated in the
RFC� occasionally in favor of the new data� As with fragmentation reassem�
bly� unless the IDS knows how each system on the network reassembles streams
containing con�icting segments� it will be unable to accurately monitor certain
types of end�systems�

����� Summary of Reassembly Issues

These issues do not present a great problem for most connections� most of the
TCP segments in a normal connection arrive in�order� and there aren�t any fake
TCP segments injected into the stream speci�cally to confuse the IDS� However�
in the real world� an attacker trying to evade an IDS will attempt to make the
TCP stream as hard to monitor as possible� and will stretch the limits of the
protocol to do this�

Vulnerabilities in IDS TCP reassembly code are insidious because they are
not immediately obvious� a speci�c problem may manifest itself only when the
IDS is given some pathological sequence of inputs� The majority of the time�
the IDS may appear to be reassembling TCP streams perfectly� Testing IDS
TCP implementations for problems is time consuming and expensive� it�s easy
for a vendor to skip this testing almost entirely�

��� TCB Teardown

The TCB teardown policies of an IDS determine the point at which the system
ceases recording data from a connection� TCB teardown is necessary because
the state information required to track a connection consumes resources� when
a connection ceases to exist� it no longer makes sense to dedicate resources to
tracking it� A system that did not destroy old TCBs at some point would be
trivially defeatable� simply by �ooding it with meaningless connections until it
ran out of resources to track future connections�

In TCP� connections close after they�re explicitly requested to do so� Two
TCP messages 	RST and FIN
 exist speci�cally to terminate a connection� Bar�
ring sudden crashes on both endpoints� TCP connections are only terminated
by the exchange of these messages� Because TCP explicitly provides noti�cation
of terminated connections� it may be logical to design an IDS that uses these
messages to decide when to close a connection TCB�

��

This is not enough to adequately manage the per�connection resource prob�
lem� TCP connections do not implicitly �time out�� A connection can be alive
without the exchange of any data inde�nitely� TCP provides a mechanism to
ensure that both hosts are alive� by periodically exchanging messages� but this
mechanism is not commonly used and takes far too long to recognize dormant
connections to be of practical use� Without some method to time out arbitrary
dormant connections� the IDS remains attackable simply by �ooding it with
connections that do not explicitly terminate�

The problem with TCB teardown is that an IDS can be tricked into tearing
down a connection that is still active� and thereby force the system to lose state�
Within the context of a pattern matching engine� this means that the stream
of input abruptly terminates� An attacker that can induce the incorrect termi�
nation of the TCB tracking her can prevent pattern matching from working by
abruptly halting pattern matching before the complete attack signature passes
across the network�

On the other hand� an IDS that fails to tear down a TCB for a connection
that really has closed is also vulnerable� as soon as the connection is legitimately
closed� its parameters can be re�used for a new connection with completely
di�erent sequence numbers 	technically� the systems must wait for a period of
time before reusing connection parameters ��� � not all operating systems
enforce this
� In the absence of synchronization recovery techniques� this can
completely blind the IDS to entire connections�

Because an ID system�s TCB teardown policies can be attacked� their design
is relevant to our discussion� We�ve identi�ed a few options that can contribute
to how an IDS ceases to track connections� and will discuss their rami�cations
here� This is by no means an exhaustive summary of all the possible options�

����� Using TCP Connection Teardown Messages

One possible way for an IDS to determine when to stop tracking a connec�
tion is to listen for TCP control messages that indicate the connection is being
shut down� Doing so allows an IDS to quickly recover resources for connections
that have actually terminated� and also prevents desynchronization for new con�
nections using the same parameters� Unfortunately� because some connection
termination request messages may be under the control of an attacker� there is
signi�cant risk involved in trusting these messages�

TCP provides two connection teardown messages� The �rst message allows
for �orderly� connection teardown� where both sides of the connection acknowl�
edge the end of the connection and ensure that their data is completely sent
before the connection closes� The second message abruptly terminates a con�
nection due to error�

FIN Processing TCP provides orderly teardown via the FIN message� A
system sending a FIN message is indicating that it has �nished sending data�
and is ready to close the connection� FIN messages are acknowledged� and each
side of the connection sends a message to shut it down�

��

In the presence of inside�outside �ltering� FIN messages are reliable indica�
tors of terminated connections� A connection is not completely terminated until
both sides send a FIN message� and acknowledge the other side�s message� An
attacker cannot fake the FIN shutdown of a connection without forging packets
that appear to come from the server�

RST Processing It�s not enough for an IDS to rely on FIN messages to
terminate connection TCBs� TCP provides a method to abruptly notify the
other end of a connection that the connection has been closed� using the Reset
	RST
 message� RST segments are not acknowledged� the only way to know if
an RST message has been accepted by an end�system is to see if it continues
sending data on the connection� The only way to do this practically within an
IDS is to time the connection out after seeing an RST� however� this means
that an IDS can potentially mistakenly shut down a connection that is alive but
dormant�

The RST problem is more severe due to end�system TCP bugs� Technically�
an RST message is only valid if it is correctly sequenced � RST messages with
spurious sequence numbers 	which can be created by an attacker in an e�ort
to illicitly tear down connections
 should be ignored� Not all operating systems
check the sequence number on RST messages�

����� Relying on Timeouts for TCB Teardown

An alternative to using TCP connection teardown messages is to simply time
connections out when they become dormant for some threshold time period�
This prevents the IDS from being fooled by false TCP teardown messages� and
potentially simpli�es the IDS TCP code�

There is a cost to this simplicity � systems that rely on timeouts for TCB
teardown can easily be circumvented� In what has been termed the �Sneakers�
attack 	after the famous suspense movie� where Robert Redford evades a sophis�
ticated alarm system by employing a similar technique
� the attacker renders
the sum of her movements undetectable to the IDS by waiting for the IDS to
time out between packets�

The Sneakers attack is particularly troublesome because� as we noted previ�
ously� the IDS must employ some form of connection timeout TCB teardown�
as dormant TCP connections can remain established for far longer than the
IDS can devote resources to track them� If an attacker can induce this timeout�
either by waiting long enough or by �lling the IDS with enough interesting 	but
meaningless
 connections that it is forced to garbage�collect older connections�
she can potentially evade the IDS by causing it to lose state�

Additionally� systems which completely ignore TCP teardown messages can
be desynchronized when the connection is legitimately closed� Even though
the connection has ceased to exist� the IDS maintains a TCB for it until it
times out� If a new connection occurs using the same parameters before the
connection times out on the IDS� the system will be desynchronized� due to the
use of di�erent sequence numbers on the new connection�

��

This attack can be carried out without any specialized code� an attacker
simply uses �telnet� to create a connection� closes the connection� and re�opens
it� If the sequence numbers on her machine change enough between the two
connections� a vulnerable IDS will not be able to track the second connection�

��

� Denial of Service Attacks

Denial of service attacks against ID systems are severe because� by their very
nature� passive ID systems �fail open� � unlike a good �rewall� access to the
network isn�t cut when a monitor system becomes unresponsive� A basic goal�
then� for an attacker is to cause the IDS to fail without losing access to the
machines being attacked�

Some denial of service attacks exist due to buggy software� An IDS that
crashes when it receives a certain bad packet� or a series of bad control mes�
sages� or anything else that can be cued by a remote attacker� can be defeated
instantly� Fortunately� these kinds of bugs are quickly and easily �xed by ven�
dors� Unfortunately� �nding all such bugs requires painstaking software audits�

It is also interesting that some ID systems can themselves be used to launch
denial of service attacks on other systems� An ID system that includes a coun�
termeasure capability� such as the ability to set packet �lters in reaction to
an attack� can be fooled via false positives 	due to forged attacks
 to react to
attacks that haven�t actually occurred�

��� Resource Exhaustion

There are many di�erent types of denial of service attacks that are valid against
ID systems� The attacks we�ll discuss here all involve resource exhaustion � the
attacker identi�es some point of network processing that requires the allocation
of some sort of resource� and causes a condition to occur that consumes all of
that resource� Resources that can be exhausted by an attacker include CPU
cycles� memory� disk space� and network bandwidth�

The CPU processing capabilities of an IDS can be exhausted because the IDS
spends CPU cycles reading packets� determining what they are� and matching
them to some location in saved network state 	for example� an IP fragment
needs to be matched to the other fragments of the datagram it represents
�
An attacker can determine what the most computationally expensive network
processing operations are� and force the IDS to spend all its time doing useless
work�

ID systems require memory for a variety of things� TCP connection state
needs to be saved� reassembly queues need to be maintained� and bu�ers of data
need to be created for pattern matching� The system requires memory simply
to read packets in the �rst place� As the system runs� it allocates memory as
needed to perform network processing operations 	for example� the receipt of
an IP fragment means that the ID system will need to obtain memory to create
and maintain an IP fragment queue for that packet
� An attacker can determine
which processing operations require the ID system to allocate memory� and force
the IDS to allocate all its memory for meaningless information�

At some point� most ID systems will need to store logs of activity on disk�
Each event stored consumes some amount of disk space� and all computers have
a �nite amount of disk space available� An attacker can create a stream of

��

meaningless events and� by having them continually stored� eventually exhaust
all disk space on the IDS� which will then be unable to store real events�

Finally� network ID systems track activity on the networks they monitor�
For the most part� they are capable of doing this only because networks are
very rarely used to their full capacity� few monitor systems can keep up with
an extremely busy network� The ID system� unlike the end�systems� must read
everyone�s packets� not just those sent speci�cally to it� An attacker can over�
load the network with meaningless information and prevent the ID system from
keeping up with what�s actually happening on the network�

Other resources exist as well� depending on the design of the system� For
instance� in systems that set router �lters in response to attacks� we must con�
sider the fact that the router has a limited capacity for storing �lter entries�
at some point� the router�s �lter storage will be completely consumed� and the
system will be unable to add new entries� An ID system that doesn�t take this
into account can be defeated by forcing it to spend the router�s �lter storage on
reactions to fake attacks�

The basic problem with resource consumption on an IDS is that the system
must simulate the operation of all the machines it�s watching� in order to track
what�s actually occurring on them� The end�systems themselves only need to
concern themselves with network tra�c that directly involves them� The IDS�
which is spending more resources coping with the network than any other system
on the network� is thus inherently more prone to resource starvation attacks than
the end�systems�

This problem is exacerbated by the fact that most network ID systems op�
erate in �promiscuous� mode� reading all tra�c o� the wire� regardless of its
destination� Resources can be consumed on the IDS by the processing of tra�c
that isn�t even destined for a real machine� apart from the network bandwidth
consumed by this tra�c� no other system on the network will be a�ected by
this� Again� performance on the IDS is degraded to an greater extent than on
the end�systems it�s trying to track� making it more di�cult for the IDS to keep
up and giving the attacker an edge�

	���� Exhausting CPU Resources

An attacker�s goal in exhausting an ID system�s computational capability is to
prevent it from keeping up the network� A CPU�starved IDS will not process
captured packets quickly enough and� as these packets �ll the bu�ering capacity
of the operating system� captured data starts being dropped�

An example of why this occurs is useful� On ���BSD Unix� packet capture
is accomplished through the �Berkeley Packet Filter� 	BPF
 device� BPF in�
teracts directly with low level network drivers 	such as the Ethernet interface
driver
� taking snapshots of packets before they�re handed up to the IP layer for
processing� As packets are captured by BPF� they are stored in a kernel bu�er�
where they stay until an application reads them out�

If an application doesn�t read data out of the bu�er faster than the bu�er
is �lled up by newly captured packets� space for queuing up captured packets

��

runs out� When this happens� captured packets are necessarily dropped before
the application ever has a chance to examine them�

An attacker can prevent an ID system from keeping up with packet capture
by forcing it to spend too much time doing useless work� In order to do this�
the attacker must identify operations that she can force the IDS to perform that
consume large amounts of processing time�

In many ID systems� this is easy� ine�cient algorithms are used to process�
save� and look up state about network tra�c� The attacker can cause the system
to process information that forces these algorithms to work in their worst�case
conditions�

A concrete example of this is IP fragmentation� As IP fragments arrive� they
must be stored� until all the related fragments arrive� To facilitate reassembly�
most systems store fragments in the order that their data will appear in the
�nal packet� This means that� as each fragment arrives� the system needs to
locate the correct fragment storage area� and then �nd the right place in that
area to store that speci�c fragment�

Many systems use a simple ordered list to store incoming fragments� As new
fragments arrive� the system must locate the correct list for that packet� and
then do a full linear lookup to determine whether the new fragment was already
received and� if not� where in the list the fragment should go� As new fragments
arrive� this list gets longer� and the time required to look up fragments in the
list increases� An attacker can force this process to operate in its worst case by
sending large amounts of tra�c using the smallest possible fragments � large
amounts of CPU cycles will be consumed tracking tiny IP fragments�

Some protocol parsing can be expensive by itself� An IDS that needs to
somehow analyze encrypted tra�c may spend a large amount of time simply
decrypting packets 	encryption and decryption can be extremely expensive op�
erations
� While the demand for this kind of processing is not now very great�
it will increase as technologies such as IP�sec��� are deployed�

	���� Exhausting Memory

ID systems require memory to operate� Di�erent types of protocol processing
have di�ering memory requirements� An attacker that can force an IDS to
consume all available memory resources can render the system nonfunctional�
the system may simply quit abruptly when it runs out of memory� or it may
thrash trying to squeeze more space out of slow virtual memory systems� causing
the same e�ects as CPU exhaustion�

An attacker trying to exhaust memory on an IDS examines the system�
trying to determine the points at which the system allocates memory� The
attacker attempts to isolate network processing events that cause the system
to allocate memory for a long duration of time� the attacker then induces this
processing by sending packets that the IDS will be forced to process in that
manner� After being �ooded with such packets for some time� the IDS will run
out of memory to process the incoming packets�

��

Some ID systems employ �garbage collection� to automatically reclaim mem�
ory that is not being actively used� Unfortunately� used incorrectly� garbage
collection can present its own problems� A garbage collection system that isn�t
aggressive enough in reclaiming memory will not be able to keep up with de�
mand� and will only slow down memory exhaustion attacks� A garbage collec�
tion system that is too aggressive will consume memory that is needed for real
processing� causing the system to incorrectly process network tra�c�

Examples of attackable memory allocations include TCP TCB creation 	the
attacker creates a �urry of connections to various hosts on the ID system�s
network� or� using packet forgery� creates a �ood of entirely fake connection

and TCP reassembly 	the attacker sends large amounts of tra�c in streams
of out�of�order data that will need to be reassembled� forcing the system to
consume memory not only for the data but also for reassembly queues
�

	���� Exhausting Network Bandwidth

Perhaps the simplest way to starve an IDS of resources is simply to create too
much raw network tra�c for the system�s low�level network interface to keep up
with� As each packet arrives� the interface must copy the packet o� the wire and
into a bu�er� interrupt the system� and cause the system to copy the packet into
the kernel� The interface is capable of handling only a limited amount of tra�c
before it is overwhelmed by the load and starts dropping incoming packets�

Although modern network interfaces operate e�ciently enough to keep up
with drastically high network loads� older hardware cannot do so� The point
at which old ISA�bus based network interfaces become saturated is drastically
lower than the point at which the network media itself becomes saturated� If
an attacker creates enough tra�c� she can prevent such interfaces from keeping
up without saturating the network itself�

Targeted packet �oods can also work in some circumstances� On switched
networks� it�s possible to create large amounts of tra�c that will only be seen
by certain systems� If an attacker can create a �ood of packets that will only
be switched to the IDS� she can �ood the IDS while maintaining the ability to
communicate with the machines she�s attacking�

This type of attack is closely related to CPU exhaustion� and� indeed� many
times the system will run out of CPU cycles long before the network interface is
saturated� Regardless of which component of the system fails �rst� the e�ect is
the same for the attacker� the IDS cannot keep up with the network� and misses
signi�cant packets�

��� Abusing Reactive ID Systems

In some circumstances� the IDS itself can become an instrument of denial of
service attacks� If the IDS has a �reactive� countermeasure capability� and
is vulnerable to attacks that create false positives� it can be forced to react
to attacks that don�t actually exist� The countermeasures employed can be
subverted to completely block access for legitimate tra�c� or to shut down valid

��

connections� In these cases� the reactive capabilities of network ID systems are
actually doing more harm than good�

The most basic problem with reacting to attacks discovered by monitoring
IP tra�c is that the IP addresses are not always trustworthy� An attacker
can forge tra�c appearing to come from almost any IP address� and� if this
tra�c appears to contain an attack� the ID system may react to it� In some
circumstances� this is very easy to do�

For example� many attacks occur over �connectionless� protocols� for which
the attacker doesn�t need to see the responses to her packets� Instead� she simply
creates and blindly sends forged packets� and the IDS is fooled into believing
that the attack is coming from somewhere that it isn�t� Good examples of this
include ICMP ping �oods� SYN �oods� �death� packets 	such as the ping�of�
death attack involving large ICMP echo requests
� and UDP packet storms�

Even attacks that involve TCP connections can be faked if the IDS doesn�t
correctly identify the three�way handshake� If the IDS doesn�t require a hand�
shake at all before recording data� TCP attacks can be faked as easily as ping
�oods� even if it does� the speci�c manner in which it tracks handshakes can be
attacked for the same e�ect�

The essential issue here is that the attacker can trigger alarms about events
occurring from fake addresses� The IDS� which has no idea what the �real�
source of the attack was� reacts falsely to the forged events by restricting con�
nectivity to the faked addresses� The addresses used by the attacker can be
speci�cally chosen to maximally a�ect overall connectivity 	for example� the
attacker can cut o� access to all the network�s DNS servers
�

The amount of damage that can be caused by such attacks depends on the
manner in which the IDS reacts to attacks in general� Some ID systems limit
themselves to shutting down TCP connections that appear to be vehicles of
attack� these systems can be abused to shut down legitimate connections 	by
forging tra�c that makes it appear that an attack is being performed using
those connections
� but cannot easily be abused to impact overall connectivity�
unless speci�c TCP connections are vital for the network�s connectivity 	for
instance� BGP� routing
�

Other systems have more e�ective ways to react to attacks� they modify
router �lters on the �y to cut all tra�c from sites that appear to be originating
attacks� These systems pay for that extra power by being vulnerable to more
damaging denial�of�service subversions� an attacker that can cause the IDS to
recognize false attacks can cut all access of to critical network resources by
strategically forging addresses�

Regardless of what countermeasures are actually employed� it is important
to realize that such facilities are dangerous as long as an attacker can forge
attacks� Some types of attacks may never be a legitimate basis for deployment
of countermeasures� simply due to the fact that they can be performed blindly
using forged addresses� Other attacks can only be safely reacted to if the IDS
has a rock�solid network processing implementation�

��

� Methodology

We support our assertions regarding vulnerabilities in ID systems with the re�
sults of extensive tests against actual� commercially available intrusion detection
systems� The purposes of these tests were to ascertain characteristics of each
subject� s TCP�IP implementation� and to provide concrete examples of actual
attacks that could be performed against them� Our tests were designed to be
easily repeatable� and to illustrate in the most obvious possible manner the
de�ciencies of each tested system�

	�� Overview

Each of our tests involve injecting packets onto a test network� on which the
subject ID system was running� By tracking the subject�s administrative console
output� we were able to observe many characteristics of the system�s underlying
TCP�IP implementation� To this extent� all of our tests involved consideration
of the subject as a �black box�� All our tests involved the TCP protocol�

In most cases� the tests involved interactions between our injected packets
and a third host� representing a hypothetical �target� of attack� In each test�
this target host was the explicit addressee of all of our packets� The presence
of the target host allowed us to easily create �real� TCP connections for the
subject IDS to monitor�

In addition� the target host also acted as a �control� for our experiments�
The target�s reactions to our injected packets allowed us to observe empirically
the behavior of a �real� TCP�IP implementation� and contrast that behavior
to the deduced behavior of the subject IDS�

All of our tests involved mimicking a �PHF� webserver attack� The PHF
attack exploits a speci�c Unix CGI script 	�phf�
 to attempt to gain access to
a webserver� We used PHF because the attack is detected by all our subject
ID systems� and because the attack is easily reproduced using standard TCP
network tools 	like �telnet�
� In order to reproduce a PHF attack� we sent the
string �GET �cgi�bin�phf�� to the target host�

In each test� we created network conditions that could make it appear as if
a PHF attack was being attempted� In each test� the speci�c packets injected
into the network di�ered subtly� The subject ID system reacted to each test by
either reporting or not reporting a PHF attack� By considering the ID system�s
output and the speci�c types of packets used for the test� we were able to deduce
signi�cant characteristics of the subject IDS�

Before conducting complicated or subtle tests against the subject� we con�
ducted a series of �baseline� tests� The purpose of these tests was to ensure that
the subject IDS was con�gured properly and was functioning at the time our
tests were conducted� and that the IDS did in fact detect a PHF attack based
on our PHF reproduction string�

In almost all test cases� a process on the target host ran which accepted
incoming TCP connections on the HTTP port and printed any input obtained
from the machine�s TCP stack� By examining the output of this process� we

��

were able to deduce whether the subject IDS should have detected the attack
based on the network conditions we created�

	�� Tools Used

The primary tool we employed in our tests was CASL� a specialized scripting
language developed at Secure Networks� Inc� that allows for programmable
generation and capture of raw packets� Each of our tests used a CASL script
to inject packets onto the network� and� in most cases� read and parse the
responses� A more detailed overview of CASL is provided in ����

Our target host ran FreeBSD ���� an implementation of ���BSD� The ���BSD
TCP�IP stack is one of the best documented and most easily obtainable IP
implementations available� and FreeBSD is by far the most popular BSD im�
plementation� FreeBSD ��� was� at the time of our testing� the most recent
�stable� release of the operating system�

For each test� we used Hobbit�s �netcat� tool��� to listen on TCP port
�� and print the input from the target host�s TCP stack� Hobbit�s tool is an
all�purpose� bare�bones diagnostic program that is widely available� popular�
and documented� in its �listening� mode� the tool simply accepts an incoming
connection� and prints each character of data the TCP driver presents to it�

As we ran each test� we observed the speci�c packets being transmitted
on the network using LBL �tcpdump����� Tcpdump is a low�level network
diagnostic tool that passively monitors networks in promiscuous mode� and
prints summaries of each captured packet� We ran the �tcpdump� tool from
the test platform on the �rst execution of each speci�c test script� Tcpdump
provided us with IP�level packet traces to accompany our test results� which
made it easier to discern exactly what was happening on the network during
each of our tests�

Our test network was non�switched ��BaseT Ethernet� The hosts on the
network included the IDS� the target host� and the test platform� The network
was dormant at the time we conducted our tests�

	�� Test Execution

Each of our tests involved a CASL script� run from an interpreter on the test
platform� which generated and injected packets addressed to the target host�
We de�ne each of these tests in terms of the script�s name� its speci�c network
interactions� the IDS characteristic it attempts to ascertain� and its validity to
the ���BSD TCP�IP driver 	that is� whether our target host completely and
accurately reconstructed the PHF string our test attempted to send
�

A test that was not �valid� to ���BSD should not have resulted in the de�
tection of a PHF attack by the subject IDS� We suggest that the subject IDS
should not detect attacks in �invalid� tests� and should reliably detect attacks
within the valid ones�

In cases where the IDS failed to detect an attack in either type of test� we
re�initialized the IDS and re�ran the test multiple times� Before concluding that

��

a subject IDS was not detecting our attack signatures� we re�ran the baseline
test to con�rm its operational integrity� and immediately ran the considered
test�

	�� Test De�nitions

Name baseline��

Operation Complete a TCP handshake� send the test string in
a single TCP data segment�

Behavior Tested Is the IDS con�gured properly� and does our test
string adequately reproduce a PHF attack to the sub�
ject�

Target Validity Valid

Name baseline��

Operation Complete a TCP handshake� send the test string in
a series of ordered� ��character TCP data segments�

Behavior Tested Is the IDS con�gured properly� and does our test
string adequately reproduce a PHF attack to the sub�
ject�

Target Validity Valid

Name frag��

Operation Complete a TCP handshake� send the test string in a
single TCP data segment which is broken into ��byte
IP fragments and sent in order�

Behavior Tested Does the subject IDS perform IP fragment reassem�
bly at all�

Target Validity Valid

Name frag��

Operation Complete a TCP handshake� send the test string in
a single TCP data segment which is broken into ���
byte IP fragments and sent in order�

Behavior Tested Does the subject IDS perform IP fragment reassem�
bly at all�

Target Validity Valid

Name frag��

Operation Complete a TCP handshake� send the test string in
a single TCP data segment which is broken into ��
byte fragments� with one of those fragments sent out
of order�

Behavior Tested Can the subject IDS handle basic out�of�order IP
fragmentation reassembly�

Target Validity Valid

��

Name frag��

Operation Complete a TCP handshake� send the test string in a
single TCP data segment which is broken into ��byte
fragments� with one of those fragments sent twice�

Behavior Tested Can the subject IDS handle reassembly when frag�
ments are completely duplicated�

Target Validity Valid

Name frag��

Operation Complete a TCP handshake� send the test string in
a single TCP data segment broken into ��byte frag�
ments� sent completely out of order and with an ar�
bitrary duplicated fragment�

Behavior Tested Can the subject IDS handle reassembly in patholog�
ical 	but correct
 cases�

Target Validity Valid

Name frag�	

Operation Complete a TCP handshake� send the test string in a
single TCP data segment which is broken into ��byte
fragments� sending the marked last fragment before
any of the others�

Behavior Tested Does the subject IDS correctly wait for all fragments
to arrive before attempting reassembly�

Target Validity Valid

Name frag�

Operation Complete a TCP handshake� send a stream of frag�
ments containing the signature string with the word
�GET� replaced with the string �SNI�� Send a
forward�overlapping fragment rewriting the �SNI�
back to �GET� on the target host�

Behavior Tested Does the subject IDS correctly handle forward over�
lap in IP fragments�

Target Validity Valid

Name tcp��

Operation Complete a TCP handshake� simulate the disconnec�
tion of the target host from the network� and send
the target string in a series of ��byte TCP data seg�
ments�

Behavior Tested Does the subject IDS wait for TCP acknowledgment
from the target before acting on data from captured
packets�

Target Validity Inapplicable

��

Name tcp��

Operation Complete a TCP handshake� send the test string in
a stream of ��byte TCP data segments where the
sequence number wraps back to zero�

Behavior Tested Does the IDS correctly deal with wrapped sequence
numbers�

Target Validity Valid

Name tcp��

Operation Complete a TCP handshake� send the test string in
a stream of ��byte TCP data segments� duplicating
entirely one of those segments�

Behavior Tested Does the IDS correctly handle completely duplicate
TCP segments�

Target Validity Valid

Name tcp��

Operation Complete a TCP handshake� send the test string
in a stream of ��byte TCP data segments� sending
an additional ��byte TCP segment which overlaps a
previous segment completely but contains a di�erent
character�

Behavior Tested Does the subject IDS correctly handle duplicate TCP
segments�

Target Validity Valid

Name tcp��

Operation Complete a TCP handshake� send the test string�
with the letter �c� replaced with the letter �X�� in a
series of ��byte TCP data segments� Immediately
send a ��byte TCP data segment that overlaps 	for�
ward
 the modi�ed letter� rewriting it back to �c� on
the target host�

Behavior Tested Can the subject IDS handle overlap in out�of�order
TCP streams�

Target Validity Valid

Name tcp�	

Operation Complete a TCP handshake� send the test string in
a series of ��byte TCP data segments� and increase
the sequence number by ���� midway through the
stream�

Behavior Tested Does the IDS �recover� from sudden changes in the
sequence number�

Target Validity Invalid

��

Name tcp�

Operation Complete a TCP handshake� send the test string in a
series of ��byte TCP data segments� interleaved with
a stream of ��byte data segments for the same con�
nection but with drastically di�erent sequence num�
bers�

Behavior Tested Does the subject IDS check sequence numbers during
reassembly�

Target Validity Valid

Name tcp��

Operation Complete a TCP handshake� send the test string in
a series of ��byte TCP data segments� with one of
those segments sent out of order�

Behavior Tested Can the subject IDS handle basic out�of�order TCP
reassembly�

Target Validity Valid

Name tcp��

Operation Complete a TCP handshake� send the test string in a
series of ��byte TCP data segments� sent in random
order�

Behavior Tested Can the IDS handle pathological out�of�order TCP
reassembly�

Target Validity Valid

Name tcbc��

Operation Do not complete a TCP handshake� but send the test
string in a series of ��byte TCP data segments as if a
handshake had occurred for some arbitrary sequence
number�

Behavior Tested Does the IDS require a handshake before it will start
recording data from a connection�

Target Validity Invalid

Name tcbc��

Operation Complete a TCP handshake� send the test string in a
series of ��byte TCP segments� interleaved with SYN
packets for the same connection parameters�

Behavior Tested Does the IDS resynchronize on a SYN packet re�
ceived after a complete TCP handshake�

Target Validity Valid

��

Name tcbc��

Operation Do not complete a TCP handshake� but send a
stream of arbitrary data at a random sequence num�
ber as if one had occurred� Use the same connection
parameters to connect with �netcat� and type the
test string in manually�

Behavior Tested Can the IDS be desynchronized due to badly se�
quenced fake data prior to a real connection initi�
ation�

Target Validity Valid

Name tcbt��

Operation Complete a TCP handshake and immediately shut
the connection down with an RST� Re�connect over
the same parameters� with drastically di�erent se�
quence numbers� and send the test string in a series
of ��byte TCP data segments�

Behavior Tested Does the IDS correctly resynchronize after a connec�
tion is legitimately torn down with an RST�

Target Validity Valid

Name tcbt��

Operation Complete a TCP handshake and send the test string
in a series of ��byte TCP data segments� Midway
through the stream� tear the connection down with
an RST 	but continue to send the rest of the data
segments
�

Behavior Tested Does the IDS stop recording data when it sees an
RST�

Target Validity Invalid

Name insert��

Operation Complete a TCP handshake and send the test string
in a series of ��byte TCP data segments� each with
a bad IP checksum�

Behavior Tested Does the IDS verify the IP checksum on received
packets�

Target Validity Invalid

Name insert��

Operation Complete a TCP handshake and send the test string
in a series of ��byte TCP data segments� each with
a bad TCP checksum�

Behavior Tested Does the IDS verify the TCP checksum on received
segments�

Target Validity Invalid

��

Name insert��

Operation Complete a TCP handshake and send the test string
in a series of ��byte TCP data segments� none of
which have the ACK bit set�

Behavior Tested Does the IDS accept TCP data in segments without
the ACK bit�

Target Validity Invalid

Name evade��

Operation Complete a TCP handshake� include the test string
in the initial SYN packet�

Behavior Tested Does the IDS accept data in a SYN packet�
Target Validity Valid

	�� Summary

Because our tests are scripted� they are well�de�ned� easily repeated� and fast�
After de�ning and perfecting the test suite� we were able to completely test
new ID systems in a matter of minutes� The majority of our testing time was
spent de�ning new tests� Running the individual tests against ID systems took
negligible time�

We are in the process of releasing the scripting tool that we used for the
tests to the public� When this process has completed� we intend to make the
suite of IDS test scripts we�ve developed available to the public as well� It is
our hope that our work can de�ne a framework within which arbitrary network
ID systems can quickly be evaluated�

Our test suite is by no means complete� we provide these test results to
support the points in our paper� not to de�ne a complete evaluation process
for ID systems� With the tools to conduct these tests in the hands of the
community� we hope that our tests can be extended to de�ne a more complete
test suite�

� Results

We applied our tests to four of the most popular network intrusion detection
systems on the market� In each case� our tests identi�ed serious� exploitable
problems in the manner that the IDS reconstructed data transmitted on the
network� The results of our tests are not surprising� and we believe that they
support the basic points we make in this paper�

In many cases� the ID systems we tested had general problems that precluded
them from passing entire collections of speci�c tests� For example� none of
the systems we tested correctly handled IP fragmentation� thus� the systems
incorrectly handled all the speci�c fragmentation tests� We ran every test we
could against each ID system�

One of the systems we tested� WheelGroup�s NetRanger system� is avail�
able only with its associated hardware� We were unable to test this system on

��

our own network� but rather had to obtain the cooperation of an organization
already using the product� This prevented us from running many of our tests
against this product� NetRanger was the second system we tested� and we added
many tests after our �rst 	and only
 exposure to the system� One of our tests
	�tcp���
 also required us to have access to the local network the test machine
was on � we did not have this access for NetRanger�

Another system we test� Network Flight Recorder�s NFR system� is not an
intrusion detection system per se� but rather a network monitoring engine that
can be used to build an intrusion detection system 	among many other things
�
Our results are signi�cant to the usage of NFR as an automated network IDS�
but not necessarily to the product as a whole�

It�s important to note that the number of �failed� tests each product has is
not necessarily an indication of the relative quality of the product� The number
of tests each IDS passes is biased heavily based on the presence of speci�c bugs�
Our test suite was not designed to provide a �score� for each product� but rather
to highlight speci�c characteristics about them�

�� Speci�c Results

The systems we tested were Internet Security Systems� �RealSecure� 	version
���������� for Windows NT
� WheelGroup Corporation�s �NetRanger� 	version
�����
� AbirNet�s �SessionWall��� 	version �� release �� build v�������� for Win�
dows NT
� and Network Flight Recorder�s �NFR� 	version beta��
�

We present the overall results from our tests for every IDS in Figure ���
Each individual IDS is described after the table� along with an interpretation
of the results�

For each test� a plus sign 	���
 indicates that the IDS saw a PHF attack as
a result of the packets our test injected� A minus sign 	���
 indicates that the
IDS reported no attack after we ran our test� A question�mark 	���
 indicates
that we were unable to perform the test on that product�

�� Overviews of Speci�c ID Systems

����� ISS RealSecure

ISS RealSecure is an automated network intrusion detection system� We per�
formed our tests on the Windows NT version of the product� although it is
available for Unix platforms as well�

RealSecure appears to have two independent network monitor components�
The �rst of these handles signature recognition within captured packets� the
second provides a �realtime playback� capability that allows administrators to
watch the information being exchanged in a TCP connection in real�time�

We found signi�cant di�erences between the playback facility and the signa�
ture recognition facility� Unlike RealSecure�s signature recognition engine� the

��

Test Name Expected Result RealSecure NetRanger SessionWall NFR
baseline�� � � � � �
baseline�� � � � � �
frag�� � � � � �
frag�� � � � � �
frag�� � � � � �
frag�� � � � � �
frag�� � � � � �
frag�� � � � � �
frag�� � � � � �
tcp�� � � � � �
tcp�� � � � � �
tcp�� � � � � �
tcp�� � � � � �
tcp�� � � � � �
tcp�� � � � � �
tcp�� � � � � �
tcp�� � � � � �
tcp�� � � � � �
tcbc�� � � � � �
tcbc�� � � � � �
tcbc�� � � � � �
tcbt�� � � � � �
tcbt�� � � � � �
insert�� � � � � �
insert�� � � � � �
insert�� � � � � �
evade�� � � � � �

Figure ��� IDS Test Suite Results

��

playback system does not appear to sanity check TCP packets before present�
ing their contents to the user� No sequence number checking was performed
in session playback� and out�of�order packets were displayed out of order� An
attacker can trivially obscure her actions in RealSecure session playback simply
by accompanying her connection with a stream of meaningless� unsequenced
TCP packets for the connection� she can also confuse administrators by sending
all her packets out of order�

The most signi�cant problem with RealSecure� as with all the other systems
we tested� was that it did not handle IP fragmentation reassembly at all� An
attacker can completely evade RealSecure by fragmenting every packet she sends
across the network�

RealSecure also appeared to have serious problems with TCP reassembly
when duplicate segments appeared on the network� RealSecure never detected
an attack in any of the tests we ran that involved sending multiple TCP seg�
ments with the same sequence number� even though those tests resulted in valid
reassembly of the test string on the target host�

RealSecure does not appear to pay attention to TCP RST messages� We
were able to desynchronize RealSecure by closing a connection with a client
RST message� and then immediately reconnecting using the same parameters�
RealSecure recognized attacks in streams even after their connection was reset�
RealSecure also does not appear to pay attention to TCP SYN messages� we
were able to desynchronize RealSecure from our connections by preceding them
with arbitrary data segments with random sequence numbers�

Finally� RealSecure was vulnerable to all of our insertion attacks� It did not
appear to check IP or TCP checksums� nor did it verify that the ACK bit was
set on TCP data segments�

����� WheelGroup NetRanger

NetRanger is an automated network intrusion detection system by WheelGroup
Corporation� NetRanger interfaces a passive network monitor with a packet
�ltering router� creating a �reactive� IDS� the ability to respond in realtime to
attacks by �shunning� addresses 	�ltering them at the router
 is a major feature
of the system�

We had very limited access to the NetRanger system� The hardware require�
ment 	and price
 of this system made it impractical for us to obtain our own
copy for testing� rather� we relied on the cooperation of an organization already
using the product� Because of this� our tests were performed over the global
Internet� and we were only able to perform certain tests 	due to timing issues
�
Our test results for NetRanger still showed major problems�

Like all the systems we reviewed� NetRanger 	in the version we tested
 is
completely unable to handle fragmented IP packets� An attacker can evade
NetRanger completely by fragmenting all her packets�

We were able to evade NetRanger by injecting duplicate sequenced segments
with di�erent data into our connection stream 	the �tcp��� test
� NetRanger did

��

not detect data in a SYN packet� so an attacker can evade many of NetRanger�s
checks by putting crucial data in her initial SYN packet�

We were able to desynchronize NetRanger from our connections by preceding
the connection with fake� randomly sequenced data� NetRanger failed to detect
attacks in a connection� using the same parameters� that followed this�

Finally� NetRanger was vulnerable to one of our insertion attacks 	it doesn�t
appear to validate TCP checksums
� NetRanger did appear to reliably verify
IP checksums�

Many of our tests were not performed against NetRanger� We can�t conjec�
ture as to whether NetRanger is vulnerable to the attacks those tests measure�
Hopefully� these tests can be run against NetRanger in the future�

����� AbirNet SessionWall��

SessionWall is an automated network intrusion detection system by AbirNet�
We tested the Windows NT version of AbirNet SessionWall��� Although Abir�
Net appears to have realtime connection playback capabilities� we were unable
to get it working in the evaluation copy we used for our tests�

Of all the ID systems we tested� AbirNet appeared have the most strict
network monitoring system� SessionWall�� did not record data for connections
that weren�t marked by a three�way handshake� It stopped recording when
a connection was torn down with an RST packet� This prevented our TCB
desynchronization tests from disrupting the system� however� the strictness of
SessionWall�s implementation may be attackable as well 	insertion of RST pack�
ets� for instance� could be used for evasion attacks
�

SessionWall validated IP and TCP checksums� and did not accept data with�
out the ACK bit set� It did not appear to wait for acknowledgment before
accepting data� however�

We were able to desynchronize SessionWall�� from our connections by inject�
ing fake SYN packets into our stream� the SYNs were ignored by the endpoint�
but SessionWall apparently resynchronized to them and lost pattern matching
state� Like NetRanger� SessionWall�� also failed to detect data in SYN pack�
ets� SessionWall did not reassemble overlapping TCP segments in a manner
consistant with ���BSD� and is thus vulnerable to an evasion attack�

Like all the systems we reviewed� SessionWall�� is completely unable to han�
dle fragmented IP packets� An attacker can evade SessionWall�� by fragmenting
all her packets�

����� Network Flight Recorder

NFR is a network monitoring engine by Network Flight Recorder� Unlike the
other systems we tested� NFR is not an automated network intrusion detection
system� rather� NFR provides a network monitoring component that can be
used in a variety of applications� NFR is user�programmable and extensible�
and available in source code�

��

We reviewed NFR because its engine could be used as an automated network
intrusion detection system� This is not the intent of the product� and our
results do not have signi�cant bearing on NFR�s non�security uses� Additionally�
because NFR is completely programmable 	the product is really an interpreter
for a network programming language
� it is possible for users of the product to
address many of the concerns we bring up in our paper without modifying the
underlying engine�

NFR was able to handle IP fragmentation� we veri�ed this in an independent
testing process that con�rmed NFR�s ability to reassemble a fragmented UDP
packet 	we were able to perform this test because of NFR�s available source
code
� Unfortunately� NFR was unable to handle pattern matching in a TCP
stream that was sent in fragmented IP packets� it therefore �failed� all of our
fragmentation tests�

NFR� in version beta��� was vulnerable to all our insertion attack tests� It
did not verify IP or TCP checksums� and accepted data without the ACK bit
set� NFR detects data in SYN packets�

NFR does not immediately tear down a connection TCB when an RST is
seen� We were able to desynchronize NFR by sending spurious SYN packets in
our connections� but were unable to successfully desynchronize it with any of
our other tests� NFR did not reassemble overlapping TCP segments consistantly
with ���BSD� and is thus vulnerable to an evasion attack�

��

	 Discussion

Our tests revealed serious �aws in each system we examined� Every IDS we
examined could be completely eluded by a savvy attacker� We have no reason
to believe that skilled attackers on the Internet don�t already know and aren�t
already exploiting this fact� Many of the problems we tested for were minor�
and easily �xed� The very presence of such vulnerabilities leads us to believe
that ID systems have not adequately been tested�

The ability to forge packets� and the ability to �insert� packets into ID
systems� makes it fairly trivial for an attacker to forge �attacks� from arbitrary
addresses� The ability to react to attacks by recon�guring packet �lters was a
major advertised feature of many of the systems we tested� Our work shows that
this capability can be leveraged against the system operators by an attacker�
these facilities may do more harm than good�

Several of the problems we outline in this paper have no obvious solution�
Without adding a secondary source of information for the IDS� allowing it to
conclusively identify which packets have been accepted by an end�system� there
appear to be ways to create connections that cannot be tracked by passive ID
systems� Since the network conditions an attacker needs to induce to elude an
IDS are abnormal� an IDS may be able to detect that an attack is occurring�
unfortunately� this will be all that an IDS will be able to say�

Regardless of whether a problem is obviously solvable or not� its presence is
signi�cant to both IDS users and designers� Users need to understand that the
manner they con�gure the IDS 	and their network
 has a very real impact on
the security of the system� and on the availability of their network� Designers
need to understand the basic problems we identify with packet capture� and
must begin testing their systems more rigorously�

Finally� the security community 	buyers of network ID systems� designers
of such systems� as well as interested third parties like us
 as a whole can do
much to enhance the reliability and security of intrusion detection systems�
Additional� independent third�party analysis and testing of ID systems will� to
a large extent� de�ne how secure these systems will be in the future�

��� Implications to Operators

There are several things that can be done by IDS operators to enhance the
overall security of the system as a whole� Additionally� IDS operators need to
understand that the outputs of their systems must be read critically� �session
playback� data may not represent what�s actually occurring in a session� and
the source addresses of attacks may not be valid at all�

One critically important step that must be taken before an IDS can be
e�ectively used is to set up �spoof protection� �lters� which prevent attackers on
the Internet from injecting packets with addresses forged to look like �internal�
systems into the network� Bidirectional packet forgery can completely confuse
network intrusion detection systems�

��

It�s important to understand that an attacker that successfully breaks into an
IDS�protected network probably controls the IDS� An attacker with direct access
to the network she�s attacking can forge valid�looking responses from systems
she�s attacking� These forged packets can prevent the IDS from obtaining any
coherent picture of what�s happening on the network� As soon as an IDS records
a �successful� attack on the network� administrators should assume that all bets
are o�� and further attacks are occurring without the knowledge of the IDS�

An attacker can fool �session playback� facilities into playing arbitrary data
back to the operators� Session playback may not accurately represent what�s
happening inside of a connection� Real�time connection monitoring 	when based
on an ID system�s reconstruction of what�s happening in a TCP stream� rather
than on printing and recording every packet on the wire
 should not be trusted�

Finally� it�s of critical importance that ID system operators do not con�gure
their system to �react� to arbitrary attacks� An attacker can easily deny ser�
vice to the entire network by triggering these reactions with faked packets� ID
systems that recon�gure router �lters are particularly vulnerable to this� as an
attacker can forge attacks that appear to come from important sites 	like DNS
servers
� and cause the IDS to cut o� connectivity to these sites�

One possible step that can be taken to mitigate the risk of countermeasure
subversion is to allow the system to be con�gured never to react to certain hosts�
None of the systems we tested appeared to allow this type of con�guration� Of
course� if an attacker can spoof connections from the �untouchable� hosts� she
can exploit this to evade countermeasures entirely�

Attacks that can be trivially forged 	ping �oods� UDP�based attacks� etc�

should not be reacted to� an attacker can� simply by forging packets� cause
countermeasures to be deployed that might disrupt the network� Systems that
aren�t strict about reconstructing TCP sessions 	ie� that don�t wait for three�
way handshakes before recording data
 present the same vulnerability for TCP
connections as well�

��� Implications to Designers

This paper has particularly great relevance to designers of intrusion detection
systems� as it outlines in detail many attacks that such systems need to be
resistant to� In that sense� this entire paper presents conclusions relevant to
IDS designers� However� there are some overall issues that need to be addressed
by IDS vendors�

Most of the problems we outline in this paper occur only when very abnor�
mal series of packets are injected onto the network� Overlapping IP fragments
or TCP segments are not common� connections consisting entirely of overlap�
ping segments are almost certainly attacks� Even if it�s not possible to reliably
reconstruct information contained in such streams� it is possible to alert admin�
istrators to the presence of the abnormal packets�

Of course� this doesn�t work as a design strategy� the value of an IDS is
drastically reduced when all it can tell an administrator is �I�ve detected an

��

attack against this host� but can�t tell you speci�cally what it is�� Nevertheless�
some information is better than the complete lack of information available now�

The most important issue that vendors need to address is testing� Some
of the problems we discovered were so basic 	the conditions leading to these
problems occur frequently even in normal tra�c
 that it appeared as if no in�
depth testing had been performed at all� We found severe �aws in systems that
attempted to address problems � for instance� a program that reassembled
fragments� but could not perform signature recognition in packets that had
been fragmented�

Testing network intrusion detection systems is not simple� In order to test a
network IDS� carefully coordinated streams of forged packets need to be injected
onto a network� tools that are capable of doing this in a manner �exible enough
to test ID systems are products in and of themselves� Our work de�nes the
beginning of a framework within which ID systems can be tested� and� hopefully�
the availability of our tools will increase the ability of vendors to test their
systems�

��� Implications to the Community

The number of attacks against network ID systems� and the relative simplicity
of the problems that were actually demonstrated to be exploitable on the com�
mercial systems we tested� indicates to us that network intrusion detection is
not a mature technology� More research and testing needs to occur before net�
work intrusion detection can be looked to as a reliable component in a security
system�

Much of this research must be done independently of the vendors� No cred�
ible public evaluations of network intrusion detection systems currently exist�
The trade press evaluates security products by their features and ease of use�
not by their security� Because network intrusion detection is so fragile� it�s
important that they receive more scrutiny from the community�

Our paper de�nes methods by which network intrusion detection systems
can be tested� It is obvious that our tests can be extended� and that our
methodology can be improved� Everyone stands to bene�t from such work� and
it is hoped that our work can serve as a catalyst for it�

One issue that drastically impacted our ability to test ID systems was the
availability of source code� Only one product we reviewed made source code
available� Because intrusion detection is so susceptible to attack� we think it�s
wise to demand source code from all vendors� Products with freely available
source code will obtain more peer review than products with secret source code�
If our work makes anything clear� it�s that marketing claims cannot be a trusted
source of information about ID systems�

��

References

�� S� Staniford�Chen� �Common Intrusion Detection Framework��
http���seclab�cs�ucdavis�edu�cidf�

�� H� S� Javits and A� Valdes �The SRI Statistical Anomaly Detector�� In
Proceedings of the ��th National Computer Security Conference� October
�����

�� S� Staniford�Chen� S� Cheung� R� Crawford� M� Dilger� J� Frank� J�
Hoagland� K� Levitt� C� Wee� R� Yip and D� Zerkle� �GrIDS � A Graph�
Based Intrusion Detection System for Large Networks�� In The ��th National
Information Systems Security Conference� �����

�� K� L� Fox� R� R� Henning� J� H� Reed and R� P� Simonian� �A Neural Network
Approach towards Intrusion Detection�� In Proceedings of the ��th National
Computer Security Conference� October �����

�� P� A� Porras and A� Valdes� �Live Tra�c Analysis of TCP�IP Gateways��
To appear in Internet Society�s Networks and Distributed Systems Security
Symposium� March �����

�� N� F� Puketza� K� Zhang� M� Chung� B� Mukherjee and R� A� Olsson � �A
Methodology for Testing Intrusion Detection Systems�� IEEE Transactions
on Software Engineering� vol� ��� pp� �������� October �����

�� M� StJohns� �Authentication Server�� RFC ���� TPSC� January �����

�� W� R� Stevens� TCP�IP Illustrated� Vol �� Addison�Wesley� Reading� MA�
�����

�� J� Postel� �Internet Protocol � DARPA Internet Program Protocol Speci��
cation�� RFC ���� USC�Information Sciences Institute� September �����

��� J� Postel� �Internet Protocol � DARPA Internet Program Protocol Spec�
i�cation�� RFC ���� USC�Information Sciences Institute� Section ���� line
����� September �����

��� R� Atkinson� �Security Architecture for the Internet Protocol�� RFC �����
Naval Research Laboratory� August �����

��� J� Postel� �Transmission Control Protocol � DARPA Internet Program Pro�
tocol Speci�cation�� RFC ���� USC�Information Sciences Institute� Septem�
ber �����

��� V� Jacobson� R� Braden and D� Borman� �TCP Extensions for High Per�
formance�� RFC ����� LBL� ISI� Cray Research� May �����

��� L� Joncheray� �A Simple Attack Against TCP�� In �th USENIX UNIX
Security Symposium� June �����

��

��� Secure Networks� Inc�� Custom Attack Simulation Language �CASL	� User
manual� �����

��� Avian Research� netcat� Available for download at
ftp���avian�org�src�hacks�nc����tgz

��� V� Paxson� �Bro� A System for Detecting Network Intruders in Real�Time��
In
th Annual USENIX Security Symposium� January �����

��� V� Paxson� �End�to�End Internet Packet Dynamics�� In ACM SIGCOMM
��
� September ����� Cannes� France�

��� Lawrence Berkeley National Laboratory� tcpdump� Available for download
at ftp���ftp�ee�lbl�gov�tcpdump�tar�Z

��

Thanks

This work would not have been possible without the assistance of many peo�
ple� Several people gave us valuable input and criticism� and some of our tests
would not have been possible without the cooperation of companies running ID
systems� We�d like to express our sincere appreciation for this help�

This work was made possible by Secure Networks� Inc� We�d like to thank
Alfred Huger� Oliver Friedrichs� and Jon Wilkins for their assistance with this
project�

We obtained valuable comments from several of the vendors we reviewed�
We�d speci�cally like to thank Marcus Ranum of Network Flight Recorder� Mike
Neumann of EnGarde� and Elliot Turner of MimeStar for their comments and
critiques of our technical work�

Vern Paxson of LBL published� as this document was being �nished� a pa�
per regarding the design of his real�time network intrusion detection system�
�Bro����� His paper details several attacks against network ID systems 	many
of which we did not catch ourselves
� We�d like to thank Mr� Paxson for his
extremely valuable input on our own work�

Of course� we appreciate greatly the fact that Network Flight Recorder made
their source code available to the public for review� This was a courageous and
honorable thing to do 	especially in a market as competitive as this
� and NFR�s
approach to source code release is a model that should be followed by other
vendors�

Finally� this paper would not have been possible without the assistance of
Jennifer Myers at EnterAct� L�L�C�� who e�ectively rewrote our technical results
into a coherant document�

About CASL

Our tests were made possible by the development of a security tool called CASL�
CASL is a network protocol exploration tool designed to allow security auditors
to quickly and easily simulate network events at a very low level� With a
minimal amount of e�ort� CASL can e�ectively be used to forge any kind of
IP packet� With slight programming ability� CASL can be used to perform
complex protocol interactions with other networked hosts�

CASL was inspired by tools like Darren Reed�s well�known �ipsend� utility�
which allowed experimenters to forge a large number of IP packets� However�
CASL expands signi�cantly on these types of tools� Some of the bene�ts of
CASL over its predecessors include�

� A complete programming language� with most typical high�level language
control constructs 	e�g�� �if�� �while�� and �for� statements
� and designed
to be as easy to learn and use as shell�script languages� but with network
programming functionality rivaling that of �C� code�

��

� The ability to create arbitrary packets � not just the ones we thought up
as we designed the program Unlike some tools� which allow users to to
create arbitrary packets by including �raw� data 	presumably built with
some other tool
� CASL allows users to lay out the format of new packet
types with an expressive and simple �record� syntax� allowing protocol
header �elds to be laid out bit�by�bit and byte�by�byte�

� The ability to input packets� reading promiscuously o� the wire� and
quickly extract information from them� Network reads use familiar �tcp�
dump� expressions to select packets� and any number of packets can be
read in and examined simultaneously�

CASL is a self�contained� free�standing program that doesn�t depend on
other network or programming tools to operate� It can be installed quickly� and
a CASL script will work on any supported platform� The tool is small� and
consumes a fairly low amount of resources� CASL programs can easily share a
system with other large applications� and don�t consume the large amounts of
memory and CPU that general�purpose languages 	like Perl and Tcl
 tend to�

We designed this tool to meet the needs of two very di�erent audiences�
on one hand� CASL is expressive and powerful enough to be a useful tool for
experienced� �uent �C� programmers� on the other� it�s simple enough to be
picked up by a nonprogrammer as quickly as Bourne shell scripting� A CASL
script can be little more than a � line packet template for users who simply
want to forge packets� or it can be tens or hundreds of lines of functional code�
with loops� variables� conditionals� subroutines� and other high�level�language
capabilities�

We are making CASL available for free for noncommercial use� in the hopes
that it can be used to further the state of the art in security research� For more
information about CASL� contact Secure Networks Inc�

About Secure Networks
 Inc�

Secure Networks� Inc� is a security research and development company located
in Calgary� Alberta� Canada� In addition to extensive publically available secu�
rity research results� Secure Networks also sells security assessment tools� You
can �nd out more about our work at http���www�secnet�com� Secure Networks
is reachable via email at �info!secnet�com�� and via telephone at �������������

��

