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A b s t r a c t  

Intrusion detection systems have traditionally been based on the characterization of an attack and the tracking 
of the activity on the system to see if it matches that  characterization. Recently, new intrusion detection systems 
based on data mining are making their appearance in the field. This paper describes the design and experiences 
with the ADAM ( Audit Data Analysis and Mining) system, which we use as a testbed to study how useful data 
mining techniques can be in intrusion detection. 
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1 I n t r o d u c t i o n  

The widespread use of Internet and computer networks experienced in the past years has brought, with all 
its benefits, another kind of threat: that of people using illicit means to access, invade and attack computers. 
To understand that the threat is real it is enough to look at the statistics. Ten major government agencies, 
accounting for 98 % of the Federal budget had been compromised in the past [11]. Recently, a massive, 
coordinated attack directed at the major e-commerce sites was staged [23]. Since, as a society, we have 
become extremely dependent of the use of information services, the danger of serious disruption of crucial 
operations is frightening. What is worse, it is estimated than less than 4 % of these attacks will be detected or 
reported. The issue is so pressing that has prompted the administration to propose a new Federal Intrusion 
Detection Network and a plan to put resources into what is called Defensive Information Warfare. 

In the recent past, several Intrusion Detection Systems (IDS) have been developed by different organizations 
and research groups. Lately, systems have been trying to use data mining techniques to meet the intrusion 
detection challenge. Data mining can be defined as a set of tasks that enable users to look for patterns in the 
data (good introductions to the topic can be found [10, 27]). 

Our system, ADAM (Audit Data Analysis and Mining), has successfully tailored some of the known data 
mining techniques to put them at the service of intrusion detection. This paper describes the design and 
experiences with ADAM. 

2 O t h e r  I D S  

Let us start by briefly describing some of the available IDS. There are two kinds of IDS: those which use 
"signatures" to detect attacks whose behavior is well understood and those which use some kind of statistical 
or data mining analysis to do the job. Of course, many tools have both kinds of engines present to maximize 
the likelihood of capturing the attacks. 
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2,1 Signature-based  IDS 

2.1.1 P-Bes t  

P-Best [17] is a rule-based, forward-chaining expert system that has been applied to signature-based intrusion 
detection for many years. The main idea is to specify the characteristics of a malicious behavior and then 
monitor the stream of events generated by system activity, hoping to recognize one intrusion "signature". Using 
a traditional expert system is shown to yield good performance results in real-time detection. Also, it is easy 
to use and it integrates well into existing OS environments, thanks to its programmability at the C language 
level. In general, an expert system production rule consists of a predicate expression (rule antecedent) over a 
well-defined set of facts, and a consequent, which specifies which other facts are derived when the antecedent 
is true. When any facts are asserted that match the arguments of a rule antecedent, the predicate expression 
is evaluated. If it evaluates to true (the rule "fires"), then the consequent is executed, potentially resulting 
in other facts being asserted. This process may create a chain of rule firings that yield new deductions about 
the state of the system. In the context of intrusion detection, facts are generally system events, with a type 
such as "login attempt" and additional context attributes, e.g. "return-code" with value "bad-p~sword". 
These attribute values can be used as arguments in the rules antecedents. P-BEST was developed at SRI 
International and it was first deployed in the MIDAS ID system at the National Computer Security Center. 
Later, P-BEST was chosen as the rule-based inference engine of NIDES, a successor to the IDES prototype 
[18]. The P-BEST expert system shell is also used in EMERALD's eXpert [22], a generic signature-analysis 
engine. 

2.1.2 USTAT and NSTAT 

USTAT [12], a real-time intrusion detection system for UNIX was developed in the Computer Science Depart- 
ment of the University of California, Santa Barbara, and the name stands for State Transition Analysis Tool 
for UNIX. The original design was first developed by P. A. Porras and presented in [21] as STAT, State Tran- 
sition Analysis Tool. STAT employs rule-based analysis of the audit trails of multi-user computer systems. In 
STAT, an intrusion is identified as a sequence of state changes that lead the computer system from some initial 
state to a target compromised state. USTAT makes use of the audit trails that are collected by the C2 Basic 
Security Module of SunOS and it keeps track of only those critical actions that must occur for the successful 
completion of the penetration. This approach differs from other rule-based penetration identification tools 
that pattern match sequences of audit records. 

NetSTAT [26] performs real-time network-based intrusion detection by extending the state transition anal- 
ysis technique, first introduced in STAT [21], to the networked environment. The system works on complex 
networks composed of several sub-networks. Using state transition diagrams to represent network attacks 
entails a number of advantages, including the ability to automatically determine the data to be collected to 
support intrusion analysis, resulting in a lightweight and scalable implementation of the network probes. 

2.2 Statistic and Data Mining-Based IDS 

2.2.1 IDES, NIDES and E M E R A L D  

These three systems [18, 9, 2, 22] share a common background and are built with a traditional signature- 
based component that coexists with a statistical profiling unit. The statistical profiling unit has as its guiding 
principle finding behavior that looks anomalous with respect to a profile (in data mining this is known as 
finding "outliers"). 

The statistical unit of these IDS maintains a knowledge base of profiles, i.e., descriptions of normal behavior 
with respect to a set of selected measures. (Full details about the unit can be found in [13, 3].) The idea 
is to describe the audited activity as a vector of intrusion-detection variables and compare this vector to 
another one defined by the expected values stored in the profiles. If the audited activity vector proves to be 
sufficiently far from the expected behavior, an anomaly is flagged. This vector, or summary  test statistic (in 
the terminology of IDES) is formed from many individual measures, such as CPU usage and file access. Each 
measure reflects the extent to which a particular type of behavior is similar to the historical profile built for 
it. The way that this is computed is by associating each measure to a corresponding random variable. The 
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frequency distribution of is built (and updated) over time, as more audit records are analyzed. Examples of 
measures are the rate of audit record activity every 60 seconds and the user CPU time. 

The frequency distribution is computed as an exponential weighted sum with a half-life of 30 days. The 
half-life value makes audit records that were gathered 30 days in the past to contribute with half as much weight 
as recent records; those gathered 60 days in the past contribute one-quarter as much weight, and so on. This 
is, in effect, a way to control the number of audit records that play a role in the distribution. The frequency 
distribution of Qi can be computed in this manner for both continuous (numerical) and categorical measures. 
(For details see [13, 3].) The frequency distribution is kept in the form of a histogram with probabilities 
associated with each one of the possible ranges, or bins, that the measure can take. The cumulative frequency 
distribution is then built by using the ordered set of bin probabilities. Using this frequency distribution, and 
the value of the corresponding measure for the current audit record, it is possible to compute a value that 
reflects how far away from the "normal" value of the measure the current value is. The actual computation 
whose details can be found in [13, 3], renders a value that is correlated with how abnormal this measure 
is. Combining the values obtained for each measure, and taking into consideration the correlation between 
measures, the unit computes an index of how far the current audit record is from the normal state. Records 
beyond a threshold are flagged as possible intrusions. 

In [20], the authors propose the usage of several feature reduction and selection techniques commonly 
used in data mining applications to reduce the computational and storage requirements of statistical intrusion 
detection methods such as the one used in NIDES. These techniques exploit the fact that typically several of 
the user behavioral parameters are correlated. 

2.2.2 Haystack 

Haystack [24] also uses a statistical component similar to the one described in 2.2.1. However, in Haystack, 
the assessment of measures compared to the historical behavior takes place at the conclusion of a session, 
rather than in real time. Haystack seems to use only counting measures such as amount of I/O and CPU time. 
Haystack contains a set of six generic types of computer intrusion. For each type, it keeps a set of weights 
(from 0 to 9) which indicate to which extent each measure is related to this type of intrusion. When analyzing 
a session, each session feature outside of the predefined range of normality causes a weight for that feature to 
be added to the session's score. Then it is possible to compute the probability distribution of the computer 
intrusion score and if needed, alert the security officer. 

2.2.3 J A M  

The main idea in JAM [14, 15, 16] is to generate classifiers using a rule learning program on training data sets 
of system usage. The output from the classifier, a set of classification rules, is used to recognize anomalies 
and detect known intrusions. Specifically, the approach of using classifiers is tested on two sets of data: one 
from attacks that use sendmail, the other from network attacks, using TCPdump. Sendmail data consists of 
two sets of traces, one with normal and one with abnormal data. The training data is fed to RIPPER [8], a 
rule-learning program. RIPPER rules classify the training data into the two classes "normal" and "abnormal". 
Each trace is then post-processed by comparing it with the RIPPER predictions, in order to filter out spurious 
prediction errors. The rationale for the post-processing scheme is that an actual intrusion is characterized 
by a majority of abnormal adjacent call sequences. A second experiment described in this work consists in 
computing classification rules using only the normal traces. In this case, in order to detect intrusions, the 
confidence information associated with the generated rules is used. Each trace is given a score according to 
whether a trace submitted to the classifier at runtime violates one of the generated rules. In this case, the 
trace score is incremented in proportion to the confidence of the violated rule. Given a long trace with many 
sequences, scores are assigned to each sequence, and the average score is used to decide whether the sequence 
represents an intrusion. The TCPdump experiment shows how classifiers can be induced from traffic data. 
Pre-processing is applied to the TCPdump raw data and then RIPPER is applied to the data. The paper 
reports on the results obtained, which are less encouraging than expected. Finally, the authors mention the 
use of a Meta-detection model that describes how multiple base classifiers can be combined in order to exploit 
combined evidence of multiple traffic patterns. 
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3 A D A M  

ADAM is essentially a testbed for using data mining techniques to detect intrusions. ADAM [4] uses a 
combination of association rules mining and classification to discover attacks in a TCPdump audit trail. First, 
ADAM builds a repository of "normal" frequent itemsets that hold during attack-free periods. It does so by 
mining data that is known to be free of attacks. Secondly, ADAM runs a sliding-window, on-line algorithm 
that finds frequent itemsets in the last D connections and compares them with those stored in the normal 
itemset repository, discarding those that are deemed normal. With the rest, ADAM uses a classifier which has 
been previously trained to classify the suspicious connections as a know type of attack, an unknown type or 
a false alarm. 

Association rules are used to gather necessary knowledge about the nature of the audit data, on the 
assumption that discovering patterns within individual records in a trace can improve the classification task. 
The task of mining association rules, first presented in [1] consists in deriving a set of rules in the form of 
X ~ Y w h e r e X a n d Y  are sets of attribute-values, w i t h X  N Y = 0 a n d  ]]Y]] = 1. The s e t X i s  
called the antecedent of the rule while the item Y is called consequent. For example, in a market-basket 
data of supermarket transactions, one may find that customers who buy milk also buy honey in the same 
transaction, generating the rule milk ~ honey. There are two parameters associated with a rule: support 
and confidence. The rule X ~ Y has support s in the transaction set T if s% of transactions in T contain 
X t3 Y. The rule X ---4 Y has confidence c if c% of transactions in T that contain X also contain Y. The 
most difficult and dominating part of an association rules discovery algorithm is to find the itemsets X U Y, 
that have strong support. (Once an itemset is deemed to have strong support, it is an easy task to decide 
which item in the itemset can be the consequent by using the confidence threshold.) 

ADAM uses connections as the basic granule, obtaining the connections from the raw packet data of the 
audit trail. This preprocessing results in a table with the following schema: 

R(T,, Src.I P, Src.P ort, Dst.I P, Dst.Port, FLAG). 
In this schema, T, represents the beginning time of a connection, Src.IP and Src.Port refer to source IP 

and port number respectively, while Dst.IP and Dst.Port, represent the destination IP and port number. 
The attribute FLAG describes the status of a TCP connection. The relation R contains the dataset that is 
subject of the association mining. The number of potential itemsets is large: connections may come from a 
large base of source IP addresses and ports. We focus in itemsets that contain items that indicate the source 
of the connection (like source IP and port), and items that indicate its destination (like destination IP and 
port). We also consider itemsets that are "aggregations" of source IP or Port values, e.g., connections that 
come from a source domain and have the same destination IP. We call these itemsets domain-level itemsets. 
(For instance, we want to discover frequent connections from Source IP X to Destination IP Y, or from Source 
Domain W to Destination IP Y.) 

First, ADAM is trained using a data set in which the attacks and the attack-free periods are correctly 
labeled. In a first step, a database of frequent itemsets (those that have support above a certain threshold) 
for the attack-free portions of the data set is created. This serves as a profile against which frequent itemsets 
found later will be compared. The profile database is populated with frequent itemsets whose format was 
shown before, as well as frequent domain-level itemsets for attack-free portions of the data. The itemsets in 
this profile database can be cataloged according to the time of the day and day of the week, to further refine 
the specificity of these rules to variations of workload during the different time periods. The mining algorithm 
used for this first step of the training phase is an off-line algorithm. Thus, a conventional association rule 
mining algorithm can be used to drive this phase. (Although we use an algorithm tailored specifically for the 
kinds of itemsets we aim to find, and which runs considerably faster than a general-purpose association rules 
algorithm.) 

Next, to complete the training phase, we use an incremental, on-line algorithm to detect itemsets that 
receive strong support within a period of time. This algorithm is driven by a sliding window of tunable size 5. 
The algorithm outputs itemsets (of the same format of those present in the profile database) that have received 
strong support during this window. We compare any itemset that starts receiving support with itemsets in the 
profile database for an analogous time and day of the week. If the itemset is present in the profile database, 
we do not pay attention to it (i.e., we do not devote storage resources to keep track of its support). On the 
other hand, if the itemset is not in the database, we keep a counter that will track the support that the itemset 
receives. If the itemset's support surpasses a threshold, that itemset is reported as suspicious. For a set of 
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suspicious itemset, we provide two services. First the ability to drill down and find the raw data in the audit 
trail that  gives rise to these rules. Secondly, We annotate suspicious itemsets with a vector of parameters 
(based on the raw audit trail data  that  gave rise to the rules). Since we know where the attacks are in the 
training set, the corresponding suspicious itemsets along with their feature vectors are used to train a classifier. 
The trained classifier will be able to, given a suspicious itemset and a vector of features, classify it as a known 
attack (and label it with the name of the attack), as an unknown attack (whose name is not known), or as 
a false alarm. It is important to remark here that  ADAM has the ability of classifying a suspicious event 
(itemset and features) as an unknown attack. Notice that no training set can possibly prepare a classifier for 
an unknown attack (since there can be no examples of such a~ event). In general labeling events as unknown 
attacks (or anomalies) is a very difficult problem. We are able to include such a provision by using an artifact 
present in some classifiers: the inclusion of a "default" label by which the classifier expresses its inability to 
recognize the class of the event as one of the known classes. We take the approach that any event flagged by 
the association rules software that  cannot be classified as a known attack or as a normal event (false alarm) 
by the classifier, ought to be considered, conservatively, as an unknown attack. Using this assumption, we 
change the label in the classifier from "default" to "unknown." Our experiments have shown that this is a 
very efficient way to detect attacks whose nature is not fully understood. 

ADAM is then ready to detect intrusions online. Again, the on-line association rules mining algorithm is 
used to process a window of the current connections. Suspicious connections are flagged and sent along with 
their feature vectors to the trained classifier, where they will be labeled accordingly. 

Figures 1 and 2 show the basic architecture of our system. Our system performs its task in two phases. 
In the training mode , depicted in Figure 1, we use a data stream for which we know where the attacks 
(and their type) are located. The attack-free parts of the stream are fed into a module that  performs off-line 
association rules discovery. The output  of this module is a profile of rules that  we call "normal," i.e., that  
depict the behavior during periods where there are no attacks. The profile along with the training data  set is 
also fed into a module that uses a combination of a dynamic, on-line algorithm for association rules, whose 
output  consists of frequent itemsets that  characterize attacks to the system. These itemsets, along with a 
set of features extracted from the data  stream by a features selection module are used as the training set for 
a classifier (decision tree). This whole phase takes place once (off-line), before we use the system to detect 
intrusions. 

The other phase, i.e., the actual detection of intrusions is implemented as depicted in 2. Here the dynamic 
algorithm is used to produce itemsets that  are considered as suspicious and, along the features extracted 
by the features selection module axe fed to the (already trained) classifier, which labels the events as attacks 
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Figure 2: Discovering intrusions with A D A M .  

(including its presumed type), false alarms, or unknown. When the classifier labels connections as false alarms, 
it is filtering them out of the attacks set, avoiding passing these alarms to the security officer. The last class, 
i.e., unknown, is reserved for events whose exact nature cannot be pinpointed by the classifier (they cannot 
be classified as known attacks). We consider those as attacks and include them in the set of alarms passed to 
the security officer. 

Figures 3 and 4 show the results of the recent 1999 DARPA Intrusion Detection Evaluation, administered 
by MIT Lincoln Labs [19]. ADAM entered the competition and performed extremely well. We aimed to detect 
intrusions of the type Denial of Service (DOS) and Probe attacks (although ADAM can discover other types 
of intrusions as well). In those categories, as shown in Figure 3, ADAM ranked third, after EMERALD and 
the University of California Santa Barbara's STAT system. The attacks detected by those systems and missed 
by ADAM were those that fell below our thresholds, being attacks that involved usually only one connection 
and that can be best identified by signature-based systems. ADAM came very close to EMERALD in overall 
attack identification, as shown in Figure 4. 

4 B r e a k i n g  t h e  d e p e n d e n c y  o n  t r a i n i n g  d a t a  

Training data is difficult to come by for two reasons. First, organizations rarely keep logs of labeled attacks 
and normal connections. Secondly, labeling audit trails is a labor intensive task which will overtax the already 
burdened security officers. 

In [5], we propose an investigate a method based on pseudo-Bayes estimators to enhance the capabilities of 
ADAM. The method aims to effectively detect novel attacks for which no training data is available. Pseudo- 
Bayes estimators is a well used technique in the area of discrete multivariate analysis [7]. It is used to provide 
the estimated cell values of contingency tables which may contain a large number of sampling zeros. All 
too often, the observed table of counts provides an unsatisfactory table of estimated values since there are 
many cells and few observations per cell, and some zeros are "smaller" than others, especially when we are 
computing rates. For instance, it may be misleading to report both 0/5 and 0/500 as being equal to zero, 
since as rates they carry quite different information. In order to distinguish such zero properties from one 
another, the observed counts need to be smoothed since the observed table of counts seems too abrupt. 
The basic problem here is one of simultaneously estimating a large number of parameters ( the expected cell 
frequencies). One way to provide such estimates is to assume an underlying parametric model for the expected 
frequencies, where the number of parameters in the model is typically much smaller than the total number of 
cells, pseudo-Bayes is another approach to solve the problem which does not involve the problem of model 
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selection. Our experimental results show that the method is very effective, in detecting the new attacks whose 
properties are different and distinguishable from the normal instances of training data. 

5 F u t u r e  

As pointed out early, ADAM is a testbed to research which data mining techniques are appropriate for intrusion 
detection. To this effect we continue enhancing the system by adding new methods of detection. In particular 
we are now investigating the following two problems: 

• Breaking the dependency on training data for normal events: Even though the pseudo-Bayes method 
allows us to avoid the dependency on training data for attacks, ADAM still requires some training data 
to build the profile of normal activity. The next step is to take a trail of audit data, and break it into 
chunks of certain duration (e.g., a day), purging from each chunk the outliers, using statistical methods 
(for a good treatment of these methods see [6]), and then merge the results (perhaps by voting) obtained 
on each chunk to form a profile of normal activity. 

• Merging the results from different sensors: In spite of the furious activity in intrusion detection, the 
problem of false alarms and missed attacks (false positives and negatives) is still prevalent. Although we 
believe that no system will ever be built that completely eliminate these problems, we are also convinced 
that the way to minimize their effects is to deploy a network of sensors, each with limited capacity, and to 
fusion their decisions to obtain a more reliable assessment of the alarms. This idea is not new: the usage 
of a set of less-than-perfect components to obtain a more robust system has been a successful strategy 
used in different fields, such as improving the reliability of hardware and software components, improving 
the robustness of a model in machine learning and data mining, and improving the accuracy decision- 
making systems such as those used in air-traffic control, oil exploration and radar and sonar processing 
(see [25]). We propose to borrow some of the successful techniques to fusion intrusion detection sensors, 
thereby improving the diagnosing power of the whole system. 
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