
Mining System Audit Data: Opportunities and Challenges

Wenke Lee
College of C o m p u t i n g

Georgia I n s t i t u t e of Techno logy
At l an t a , G A 30332-0280

Wei Fan
IBM T.J . W a t s o n Research Cen te r

H a w t h o r n e , NY 10532

A b s t r a c t

Intrusion detection is an essential component of
computer security mechanisms. It requires accurate
and efficient analysis of a large amount of system and
network audit data. It can thus be an application
area of data mining. There are several characteris-
tics of audit data: abundant raw data, rich system
and network semantics, and ever "streaming". Ac-
cordingly, when developing data mining approaches,
we need to focus on: feature extraction and con-
struction, customization of (general) algorithms ac-
cording to semantic information, and optimization
of execution efficiency of the output models. In this
paper, we describe a data mining framework for min-
ing audit data for intrusion detection models. We
discuss its advantages and limitations, and outline
the open research problems.

1 In troduc t ion

As the Internet plays an increasingly important
role in our society, e.g., the infrastructure for E-
Commerce and Digital Government, criminals and
enemies have begun devising and launching sophis-
ticated attacks motivated by financial, political, and
even military objectives. We must ensure the se-
curity, i.e., confidentiality, integrity, and availabil-
ity, of our network infrastructures. Intrusion detec-
tion is the process of identifying and responding to
malicious activity aimed at compromising computer
and network security [2]. It is a critical component
of the defense-in-depth security mechanisms, which
also include: security policy, vulnerability scanning
and patching, authentication and access control, en-
cryption, program wrappers, firewalls, and intrusion
tolerance.

Intrusion detection is a very hard problem. There
are always "security holes" due to design flaws, im-
plementation errors, and operation oversights in to-
day's complex network systems. Research in soft-
ware engiiieering has shown that it is hard to pre-

vent, discover, and remove all software "bugs". It
is even harder to prevent and detect intrusions be-
cause intelligent adversaries, with malicious intents,
can exploit the security holes (and their combina-
tions) to devise potentially a very large number of
intrusion methods.

Most intrusion detection approaches rely on anal-
ysis of system and network audit data. Network traf-
fic can be recorded using "packet capturing" utilities
(e.g., l ibpcap [16]), and operating system activi-
ties can be recorded at the system call level (e.g.,
BSM [19]). A basic premise here is that when audit
mechanisms are enabled, distinct evidence of legiti-
mate activities and intrusions will be manifested in
the audit data. Thus, instead of (statically) analyz-
ing (all source codes of) complex software, intrusion
detection uses a more practical approach of analyz-
ing the audit records of run-time activities of net-
works and systems (and users).

At an abstract level, an intrusion detection system
(IDS) extracts]eatures, i.e., the individual pieces of
evidence, from the system event-level or network
packet-level audit data, and uses some modeling
and analysis algorithms to reason about the avail-
able evidence. Traditionally, IDSs are developed
by knowledge-engineering. Expert knowledge or in-
tuition of networks, operating systems, and attack
methods are used to select the features, and hand-
craft the detection rules. Given the complexities
of today's network environments and the sophisti-
cation of the increasingly hostile attackers, the so-
called expert knowledge is often very limited and
unreliable.

On the other hand, data mining approaches can
be used to extract features and compute detection
models from the vast amount of audit data. The
features computed from data can be more "objec-
tive" than the ones hand-picked by experts. The
inductively learned detection models can be more
"generalizable" than hand-coded rules (that is, they
can have better performance against new variants
of known normal behavior or intrusions). There-

S IGMOD Record, Vol. 30, No. 4, December 2001 35

fore, data mining approaches can play an impor-
tant role in the process of developing an IDS. We
need to point out that data mining should comple-
ment rather than exclude the use of expert knowl-
edge. Our objective should be to provide the tools,
grounded on sound statistics and machine learning
principles, for IDS developers to construct better ID
models quickly and easily. For example, experts can
view and edit the patterns and rules produced by
data mining approaches, and translate them into ef-
ficient detection modules.

The rest of the paper is organized as follows.
We first give an brief overview of research in intru-
sion detection, particularly data mining-based ap-
proaches. We then describe the characteristics of
audit data. We next present a data mining frame-
work for extracting features and computing detec-
tion models, and describe our experiments and re-
sults. We then discuss the benefits of as well as
research challenges in applying data mining ap-
proaches to intrusion detection.

1 .1 R e l a t e d W o r k

Several influential research IDSs were developed
from mid-S0's to mid-90's. STAT [6] and IDIOT [8]
are misuse detection systems that use the "signa-
tures" of known attacks, i.e., the patterns of attack
behavior or effects, to identify a matched activity as
an attack instance. By definition, misuse detection
is not effective against new attacks, i.e., those that
do not have known signatures. NIDES [3] has an
anomaly detection subsystem that uses established
normal profiles, i.e., the expected behavior, to iden-
tify any unacceptable deviation as the result of an
attack. Anomaly detection is capable of catching
new attacks. However, new legitimate behavior can
also be falsely identified as an attack, resulting in a
false alarm. These systems and most of the later re-
search and commercial systems are developed using
a pure knowledge-engineering process.

In recent years, there have been several learning-
based or data mining-based research efforts in in-
trusion detection. Warrender et al. [20] showed that
a number of machine-learning approaches, e.g., rule
induction, can be used to learn the normal execu-
tion profile of a program, which is the short se-
quences of its run-time system calls made. These
learned models were shown to be able to accurately
detect anomalies caused by exploits on the pro-
grams. Lane and Brodley developed machine learn-
ing algorithms for analyzing user shell commands
and detecting anomalies of user activities [9]. A
team of researchers at Columbia University have

been working on data mining-based intrusion de-
tection since 1996 (see Stolfo et al. [18] for an
overview). The main capabilities developed in this
research include: pattern mining and feature con-
struction, cost-sensitive modeling for efficient run-
time model execution, anomaly detection, learning
over noisy data, and correlation analysis over multi-
ple of data streams. The ADAM project at George
Mason University is developing anomaly detection
algorithms based on automated audit data analysis.
(see http://ise. Emu. edu/'dbarbara/adam, html)

2 A u d i t D a t a

The first step in applying or developing data min-
ing approaches for an application is to have a basic
understanding of the problem domain. We briefly
discuss the main characteristics of audit data.

First, system audit data is "raw", i.e., in binary
format, unstructured, and time dependent. For data
mining, we need to first preprocess audit data to
a suitable form, i.e., ASCII tabular data with at-
tributes (or features). For example, data output by
l ibpcap contains binary records describing network
packets. The records are ordered by the timestamps
(i.e., packet arrival time). In order to analyze a
network connection, we need to first "summarize"
all packet data that belong to the same connec-
tion. The connection data, in ASCII format, can
contain for each connection its source and destina-
tion hosts, service (e.g., t e l n e t , f t p , etc.), and the
number of bytes transfered, etc., that describe the
connection activities. The key objective of audit
data preprocessing is to extract and construct ap-
propriate features so that effective detection models
can be constructed. The challenge for data mining
is to develop techniques to automate some of the
knowledge-intensive data preprocessing and feature
extraction tasks.

Second, audit data contains rich network and sys-
tem semantics. For example, network connections
that originate from the same host, destine for the
same host, or request the same service may be "re-
lated" to a specific user or program activity. Such
semantics or context information is very useful in in-
trusion detection. The challenge for data mining is
to customize the general algorithms to incorporate
domain knowledge so that only the relevant patterns
are computed from audit data.

Third, audit data is high-speed and high-volume
streaming data. Auditing mechanisms are designed
to record all network and system activities in great
details. While this can ensure that no intrusion

36 S I G M O D Record , Vol. 30, No. 4, D e c e m b e r 2001

evidence will be missed, the high-speed and high-
volume data stream requires the run-time execution
of detection models be very efficient. Otherwise, the
long delay in data analysis simply presents a time
window for attacks to succeed. The challenge for
data mining is to develop techniques to compute de-
tection models that are not only accurate but also
efficient in run-time execution.

2.1 D a t a M i n i n g A l g o r i t h m s

Several types of algorithms are particularly useful
for mining audit data.

Classif icat ion An ideal application in intrusion
detection will be to gather sufficient "normal" and
"abnormal" audit data for a user or a program, then
apply a classification algorithm to learn a classifier
that can label or predict new unseen audit data as
belonging to the normal class or the abnormal class.

Assoc ia t ion analysis Associations of system
features in audit data, for example, the correlation
between command and argument in the shell com-
mand history data of a user, can serve as the basis
for constructing normal usage profiles.

Sequence analysis Frequent patterns of time-
based network and system activities provide guide-
lines for incorporating temporal statistical measures
into intrusion detection models. For example, fi'e-
quent patterns of network-based denial-of-service
(DOS) attacks suggest that several per-host and per-
service measures should be included.

3 A F r a m e w o r k

We have developed a data mining framework for
constructing features and intrusion detection mod-
els from audit data [10]. Using this framework, raw
(binary) audit data is first processed and summa-
rized into network connection records (or host ses-
sion records) containing a number of basic features:
timestamp, duration, source and destination IP ad-
dresses and port numbers, protocol type, and an
error condition flag. Specialized data mining pro-
grams [12, 10] are applied to compute frequent pat-
terns, i.e., the association rules [1] describing the
correlations among the features, and the frequent
episodes [15] describing the frequently co-occurring
events across the records. The consistent patterns of
normal activities and the "unique" patterns associ-
ated with intrusions are then identified and analyzed
to construct additional features for the records [13].
Machine learning algorithms (e.g., the RIPPER [4]
classification rule learner) are then used to learn

the detection models. For (run-time) execution ef-
ficiency, multiple models each with different com-
putation cost and detection accuracy are produced.
The idea is to execute the lighter weight detection
model(s) first; and if the desired prediction accu-
racy is not attained, the more time-consuming mod-
els will then be activated [5].

We next describe the key components of this
framework in more details.

3 .1 P a t t e r n M i n i n g a n d C o m p a r i s o n

We compute the association rules and frequent
episodes from audit data, which capture the intra-
and inter- audit record patterns. These frequent pat-
terns can be regarded as the statistical summaries of
network and system activities captured in the audit
data, because they measure the correlations among
system features and the sequential (i.e., temporal)
co-occurrences of events.

The basic association rules and frequent episodes
algorithms do not consider any domain knowledge.
That is, assume I is the interestingness measure of a
pattern p, then I(p) =/(support (p) , confidence(p)),
where f is some ranking function. As a result,
the basic algorithms can generate many rules that
are "irrelevant" (i.e., uninteresting) to the appli-
cation. When customizing these algorithms for
audit data, we incorporate schema-level knowl-
edge into the interestingness measures. Assume
IA is a measure of whether a pattern 19 contains
the specified important (i.e. "interesting") at-
tributes, our extended interestingness measure is
Ie (/9) = /e (I A (p),/(support(/9), confidence(p))) =
f~(Ia(p) , I (p)) , where A is a ranking function that
first considers the attributes in the pattern, then the
support and confidence values.

We discuss two kinds of important schema-level
knowledge about audit data here. First, there is a
partial "order of importance" among the attributes
of an audit record. Some attributes are essential in
describing the data, while others only provide aux-
iliary information. For example, a network connec-
tion can be uniquely identified by the combination
of its start time, source host, source port, desti-
nation host, and service (destination port). These
are the essential attributes when describing network
data. We argue that the "relevant" association rules
should describe patterns related to the essential at-
tributes. We call the essential attribute(s) axis at-
tribute(s) when they are used as a form of i tem
constraints in the association rules algorithm. Dur-
ing candidate generation, an item set must contain
value(s) of the axis attribute(s). We consider the

S I G M O D Record , Vol. 30, No. 4, D e c e m b e r 2001 37

correlations among non-axis attributes as not in-
teresting. In other words, if p contains axis at-
tribute(s), then IA(p) = 1, else IA(p) = O. To avoid
having a huge amount of "useless" episode rules, we
extended the basic frequent episodes algorithm to
compute frequent sequential patterns in two phases:
compute the frequent associations using the axis at-
tribute(s); then generate the frequent serial patterns
from these associations.

Another interesting schema-level information is
that some attributes can be the references of other
attributes. A group of events are related if they
have the santo reference attribute value. For ex-
ample, connections to the same destination host
can be related. When mining for patterns of such
related events, we need to use reference attribute
as an item constraint. That is, when forming an
episode, an additional condition is that, within its
minimal occurrences, the records covered by its con-
stituent itemsets have the same value(s) of the ref-
erence attribute(s). In other words, if the itemsets
of p refer to the same reference attribute value, then
IA (p) = 1, else IA (p) = O.

We carl compare the patterns, i.e., frequent
episodes computed using our extended algorithms,
from an intrusion dataset and the patterns from
the normal dataset to identify those that exhibit
only in the intrusion dataset. These patterns are
then used for feature construction. The details
of the pattern comparison algorithm is described
in [13]. The idea is to first convert patterns into
numbers in such a way that "similar" patterns are
mapped to "closer" numbers. Then pattern compar-
ison and intrusion pattern identification are accom-
plished through comparing the numbers and rank
ordering the results. We devised an encoding pro-
cedure that converts each pattern into a numerical
number~ where t he order of digit significance cor-
responds to the order of importance of the features.
Each unique feature value is mapped to a digit value
in the encoding process. The "distance" of two pat-
terns is then simply a number where each digit value
is the digit-wise absolute difference between the two
encodings. A comparison procedure computes the
"intrusion score" for each pattern from the intrusion
dataset, which is its lowest distance score against all
patterns from the normal dataset, and outputs the
user-specified top percentage patterns that have the
highest intrusion scores as the "intrusion only" pat-
terns.

As an example, consider the "SYN flood" attack
where the attacker uses many spoofed source ad-
dresses to send a lot of SO connections (only the
first SYN packet, the connection request, is sent) to

a port (e.g., http) of the victim host in a very short
time span (the victim's connection buffer is filled up,
hence Denial-of-Service). Table 1 shows one of the
top intrusion only patterns, produced using service
as the axis and dst_host as the feature.

3 . 2 F e a t u r e C o n s t r u c t i o n

Each of the intrusion patterns is used as a guideline
for adding additional features into the connection
records to build better classification models. We
use the following automatic procedure for parsing
a frequent episode and constructing features:

• Assume Fo (e.g., dst_host) is used as the refer-
ence feature, and the width of the episode is w
seconds.

• Add the following features that examine only
the connections in the past w seconds that share
the same value in Fo as the current connection:

- A feature that computes "the count of
these connections";

- Let F1 be service, src_dst or dst_host
other than Fo (i.e., F1 is an essential fea-
ture). If the same F1 value (e.g., "http")
is in all the item sets of the episode, add a
feature that computes "the percentage of
connections that share the same F1 value
as the current connection"; otherwise, add
a feature that computes "the percentage of
different values of Fi" .

- Let V2 be a value (e.g., "SO") of a feature
F2 (e.g., f lag) other than Fo and F1 (i.e.,
V2 is a value of a non-essential feature). If
V2 is in all the item sets of the episode, add
a feature that computes "the percentage of
connections that have the same V2"; oth-
erwise, if F2 is a numerical feature, add a
feature that computes "the average of the
F2 values".

This procedure parses a frequent episode and uses
three operators, count, percent, and average, to con-
struct statistical features. These features are also
temporal since they measure only the connections
that are within a time window w and share the
same reference feature value. The intuition behind
the feature construction algorithm comes from the
straightforward interpretation of a frequent episode.
For example, if the same feature value appears in
all the itemsets of an episode, then there is a large
percentage of records that have the same value. We
treat the essential and non-essential features differ-
ently. The essential features describe the anatomy

38 S I G M O D Reco rd , Vol. 30, No. 4, D e c e m b e r 2001

Table 1: Example Intrusion Pattern
Frequent Episode Meaning
(flag = SO, service = http, dst_host = victim),
(flag = SO, service = http, dst_host = victim)

(flag = SO, service = http, dst_host = victim)
[0.93, 0.03, 21

93% of the time, after two http connections
with SO flag are made to host ~ctim, within 2
seconds from the first of these two, the third
similar connection is made, and this pattern
occurs in 3% of the data

of an intrusion, for example, "the same service (i.e.,
port) is targeted". The actual values, e.g., "http", is
often not important because the same attack method
can be applied to different targets, e.g., "ftp". On
the other hand, the actual non-essential feature val-
ues, e.g., flag = SO, often indicate the invariant of
an intrusion because they summarize the connection
behavior according to the network protocols. The
"SYN flood" pattern shown in Table 1 results in
the following additional features: a count of connec-
tions to the same dst_host in the past 2 seconds, and
among these connections, the percentage of those
that have the same service, and the percentage of
those that have the "S0" flag.

3.3 Cons t ruc t ing Efficient Models

A detection model is deemed efficient if its (analysis
and) detection delay, or computational cost, is small
enough for the model to keep up with the run-time
data streams (i.e., it can detect and respond to an
intrusion before much damage is done). The com-
putational cost of a model is derived mainly from
the costs of computing the required features. The
feature cost includes not only the time required for
computing its value, but also the time delay of its
readiness (i.e., when it can be computed).

We partition features into three relative cost lev-
els. Level 1 features, e.g., service, are computed
using at most the first three packets (or events) of
a connection (or host session). They normally re-
quire only simple recording. Level 2 features are
computed in the middle or near the end of a con-
nection using information of the current connection
only. They usually require just simple book keep-
ing. Level 3 features are computed using informa-
tion from all connections within a given time window
of the current connection. They are often computed
as some aggregates of the level 1 and 2 features. We
assign qualitative values to these cost levels, based on
our run-time measurements with a prototype system
we have developed using Network Flight Recorder
(NFR) [17]: level 1 cost is 1 or 5; level 2 cost is 10;
and level 3 cost is 100. It is important to note that
level 1 and level 2 features must be computed indi-

vidually. However, because all level 3 features re-
quire iteration through the entire set of connections
in a given time window, they can all be computed
at the same time, in a single iteration. This saves
computational cost when multiple level 3 features
are computed for analysis of a given connection.

3.3.1 A Multiple Model Approach

In order to reduce the computational cost of a de-
tection model, the low cost features should be used
whenever possible while maintaining a desired accu-
racy level. Our approach is to build multiple models,
each using features from different cost levels. Low
cost models are always evaluated first by the IDS,
and high cost models are used only when the low cost
models can not predict with sufficient accuracy. We
use a multiple ruleset approach based on RIPPER.

Before discussing the details of our approach, it
is necessary to outline the advantages and disadvan-
tages of the different forms of rulesets that RIPPER
can generate: ordered or un-ordered.

O r d e r e d Ru le se t s An ordered ruleset has the
form "if r l t h e n il e l se i f r2 t h e n i2, . . . , else de-
faulf'. Before learning rules from a dataset, RIP-
PER first heuristically orders the classes by one
of the following methods: +freq, increasing fre-
quency; - f r eq , decreasing frequency; given, a user-
defined ordering; mdl, minimal description length
heuristics to guess an optimal ordering. After ar-
ranging the classes, RIPPER finds rules to separate
class1 from classes class2, . . . , classn, then rules to
separate class2 from classes class3,... ,class,e, and
so on. The final class classn will become the de-
fault class. The end result is that rules for a sin-
gle class will always be grouped together, but rules
for classi are possibly simplified, because they can
assume that the class of the example is one of
classy,.. . , classn. If an example is covered by rules
from two or more classes, this conflict is resolved in
favor of the class that comes first in the ordering.

An ordered ruleset is usually succinct and effi-
cient. Evaluation of an entire ordered ruleset does
not require each rule to be tested, but proceeds from
the top of the ruleset to the bottom until any rule

SIGMOD Record, Vol. 30, No. 4, December 2001 39

evaluates to true. The features used by each rule
can be computed one by one as evaluation proceeds.
The computational cost to evaluate an ordered rule-
set for a given connection is the total cost of com-
puting unique features until a prediction is made.
In any reasonable network environment, most con-
nections are normal. A - f req ruleset is most likely
lowest in computational cost and accurate in identi-
fying normal connections since the top of the ruleset
classifies normal. On the contrary, a +freq rule-
set would most likely be higher in computational
cost but more accurate in classifying intrusions than
- f req since the ruleset identifies intrusions from
normal connections and normal is the bot tom de-
fault rule. Depending on the class order, the perfor-
mances of given and mdl will be in between those
of - freq and +freq.

U n - o r d e r e d l : tulesets An un-ordered ruleset
has at least one rule for each class and there are
usually many rules for frequently occurring classes.
There is also a default class which is used for predic-
tion when none of these rules are satisfied. Unlike
ordered rulesets, all rules are evaluated during pre-
diction and conflicts are broken by using the most
accurate rule. Un-ordered rulesets, in general, con-
tain more rules and are less efficient in execution
than - f req and +freq ordered rulesets, but there
are usually several rules of high precision for the
most frequent class, normal.

With the advantages and disadvantages of ordered
and un-ordered rulesets in mind, we propose the fol-
lowing multiple ruleset approach:

• We first generate multiple training sets
T1 , . . . ,T4 using different feature subsets. T1
uses only cost 1 features. T2 uses features of
costs 1 and 5, and so forth, up to T4, which
uses all available features.

• R.ulesets R 1 , . . . , R 4 are learned using their re-
spective training sets. R4 is learned as either
+freq or - f req ruleset for efficiency, as it may
contain the most costly features. R 1 , . . . , R3 are
learned as either - f req or un-ordered rulesets,
as they will contain accurate rules for classify-
ing normal connections, and we filter normal as
early as possible to reduce computational cost.

• A precision measurement pr 1 is computed for
every rule, r, except for the rules in R4.

• A threshold value r~ is obtained for every sin-
gle class. It determines the tolerable precision

1Precision describes how accurate a prediction is. If P is
the set of predict ions with label i and W is the set of instances
with label i in the da t a set, by definition, p = l _ _ ~ J .

required in order for a classification to be made
by any ruleset except for R4.

In real-time execution, the feature computation and
rule evaluation proceed as follows:

• R1 is evaluated and a prediction i is made.
• If Pr >_ r~, the prediction i will be fired. In this

case, no more features will be computed and
the system will examine the next connection.
Otherwise, additional features required by R~
are computed and R2 will be evaluated.

• Evaluation will continue with Rs, followed by
R4, until a prediction is made. The evaluation
of R4 does not require any firing condition and
will always generate a prediction.

The computational cost for a single connection is the
total computational cost of all unique features used
before a prediction is made. If any level 3 features
(of cost 100) are used at all, the cost is counted only
once since all level 3 features are calculated in one
function call.

The precision and threshold values can be ob-
tained during model training from either the train-
ing set or a separate hold-out validation set. Thresh-
old values are set to the precisions of R4 for each
class on that dataset since we want to reach the same
accuracy as R4. Precision of a rule can be obtained
easily from the positive, p, and negative, n, counts
of a rule, p+~. The threshold value will, on average,
ensure that the predictions emitted by the first three
rulesets are not less accurate than using R4 alone.

4 Experiments and Results

In this section, we describe our experiments in build-
ing intrusion detection models on the dataset from
the 1998 DAR.PA Intrusion Detection Evaluation
Program, prepared by MIT Lincoln Lab [14].

4 .1 T h e D A B . P A D a t a

We were provided with about 4 gigabytes of com-
pressed tcpdump [7] data of 7 weeks of network traf-
fic. The data can be processed into about 5 million
connection records of about 100 bytes each. The
data contains the content (i.e., the data portion) of
every packet transmitted between hosts inside and
outside a simulated military base 2. The data con-

2Disclaimer: We are in no posi t ion to endorse any claim
that th is DAR,PA dataset reflects a "typical" real-world en-
vi ronment . We used it in our s tudy because it is the only
available comprehensive da tase t wi th various normal back-
ground traffic conditions and a large number of at tacks.

40 S I G M O D Reco rd , Vol. 30, No. 4, D e c e m b e r 2001

tains four main categories of attacks: DoS, denial-
of-service, e.g., $YN flood; R2L, unauthorized ac-
cess from a remote machine, e.g., guessing password;
U2R, unauthorized access to local root privileges
by a local unprivileged user, e.g., buffer-overflow
attacks; and PROBING, surveillance and probing,
e.g., port-scan.

We preprocessed the binary tcpdump packet data
into ASCII connection records each with a set of
intrinsic features, i.e., duration, source and destina-
tion hosts, service, number of bytes transferred, and
a flag that signifies normal or error conditions (e.g.,
"SO") of connection. This set of features are com-
monly used in many different network analysis tasks
(other than intrusion detection).

4 . 2 F e a t u r e a n d M o d e l C o n s t r u c t i o n

We participated in the official 1998 DARPA Intru-
sion Detection Evaluation. The 7 weeks of connec-
tion data is training data, and can be labeled us-
ing the provided "truth files". Due to constraints
in time and data storage space, we did not include
all connection records in pattern mining and model
learning. We instead extracted all the connection
records that fall within a surrounding time window
of plus and minus 5 minutes of the whole duration of
each attack to create a dataset for each attack type,
e.g., SYN flood and port-scan. We also extracted
sequences of normal records to create an aggregate
normal dataset that has the same distribution as the
original dataset.

For each attack type, we performed pattern min-
ing and comparison using its intrusion dataset and
the normal dataset. We constructed features accord-
ing to the top 20% intrusion-only patterns of each
attack type. Here we summarize the automatically
constructed temporal and statistical features:

* The "same host" feature that examine only the
connections in the past 2 seconds that have the
same destination host as the current connec-
tion: the count of such connections, the per-
centage of connections that have the same ser-
vice as the current one, the percentage of dif-
ferent services, the percentage of SYN errors,
and the percentage of REJ (i.e., rejected con-
nection) errors;

• The "same service" features that examine only
the connections in the past 2 seconds that have
the same service as the current connection: the
count of such connections, the percentage of dif-
ferent destination hosts, the percentage of SYN
errors, and the percentage of REJ errors.

7 0

.......... : ... J

..."
30 ..-"" C o l u m b i a -~-

, / Group1 .+--.
/ f G roup3 .s3-.

1

Figure 1: The Overall Detection Performance

We call these the "time-based traffic" features
for connection records. In order to detect "slow"
PROBING attacks, we sorted the connection records
by destination hosts, then mined patterns and con-
structed the "host-based traffic" features that mirror
the "time-based traffic" features.

We discovered that unlike most of the DoS and
PROBING attacks, the R2L and U2R attacks do
not have any intrusion-only frequent patterns. This
is because most of the DoS and PROBING attacks
involve sending a lot of connections to some host(s)
in a very short period of time, and therefore can have
frequent sequential patterns that are different from
the normal traffic. The R2L and U2R attacks are
embedded in the data portions of the packets and
normally involve only a single connection. There-
fore, it is unlikely that they can have any unique
frequent traffic patterns. We instead used domain
knowledge to construct a set of "content" features
to indicate whether the connection contents suggest
suspicious behavior (see [11] for details).

4 .2 .1 R e s u l t s

We briefly report the performance of our detec-
tion models as evaluated by MIT Lincoln Lab [14]
(see [11] for more detailed results). We trained our
intrusion detection models, using the 7 weeks of la-
beled data, and used them to make predictions on
the 2 weeks of unlabeled test data (i.e., we were not
told which connection is an attack). The test data
contains a total of 38 attack types, with 14 types
in test data only (i.e., our models were not trained
with instances of these attack types, hence these are
considered as "new" attack types).

Figure 1 shows the ROC curves of the detection
models on all intrusions. We compare here our
models with other participants (denoted as Group 1
through 3, group 2 did not cover all intrusions) in the
DARPA evaluation program 3. These participating

3The tested systems produced binary output, hence, the

S I G M O D Record , Vol. 30, No. 4, D e c e m b e r 2001 41

Table 2: Average CompCost Per Connection

H - ±:k:k

CompCo.t 104.30 4.91~ 3.59~
~,do n a 95.23% 96.56%

c o r n , c o . , 190.93 4.93 ~ 4.85
U,do n a 97.42% 97.46%

~: significantly reduced

groups used pure knowledge engineering approaches.
We can see from the figure that our detection model
has the best overall performance, under the "accept-
able" false alarm rate (under 0.02%). However, an
overall detection rate of below 70% is hardly satis-
factory in a mission critical environment.

4 . 3 C o m p u t a t i o n a l C o s t R e d u c t i o n

We compute both a single model and multiple mod-
els oil the same DARPA dataset and compare their
computational cost and accuracy. We measure the
expected computational costs, denoted as Com-
pCost, in our experiments. The expected com-
putational cost over all occurrences of each con-
nection class and the average computational cost
per connection over the entire test set are defined
as E,es~ CompCost(c) ~o~s CompCost(c)

ISd and ISl , respec-
tively, where S is the entire test set, i is a connec-
tion class, and S~ represents all occurrences of i in S.
In all of our reported results, CompCost(c) is com-
puted as the sum of the feature computation costs of
all unique features used by all rules evaluated until
a prediction is made for connection c.

4.3.1 Results

In presenting our results, we use +, - and ::t= to
represent +freq, - f req and un-ordered rulesets, re-
spectively. A multiple model approach is denoted as
a sequence of these symbols. For example, - - - -
indicates that all 4 rulesets are -freq.

Table 2 shows the average computational cost per
connection for a single classifier approach R4 (- or
+) and the respective multiple model approaches
(=E::E:k , or =EL=E+, - - - +) . The
first row below each method is the average Com-
pCost per connection and the second row is the re-

R O C ' s a re not cont inuous . In fact , t h e y shou ld j u s t be d a t a
points , one for each g roup . L ines ave connec t ed for d i sp lay
and c o m p a r i s o n purposes .

Table 3: Precision/Recall for Each Connection Class

CompCost Accuracy
+ ±±±+ + d: d: :k+

normal 190.99 4.18 T F 0.99 0.99
p 0,99 0.99

back 75 7 T P 1,0 1.0
p 1.0 1.0
T P 1.0 1.0 buffer.overflow 175 75
p 1.0 1.0
TP 1.0 0.88 ftp_write 146 60.5
p 1.0 1.0
T P 0.91 0.91 guess.passwd 191 37
p 1.0 1,0

imap 181 95.3 T P 1.0 0.83
p 1.0 1.0

ipsweep 191 I TP 0.99 0.99
p 1.0 1.0

land 191 I TP 1.0 1.0
p 1.0 1.0

load_module 168.78 67 TP 1.0 1.0
p 0.9 1.0

mul t ihop 182.43 88.42 T P 1.0 1,0
p 0.88 0.88

neptune 191 1 TP 1.0 1.0
p 1.0 1.0

n m a p 191 1 T P 1.0 1.0
p 1.0 1.0

pcrl 151 77 TP 1.0 1.0
p 1.0 1.0
T P 1.0 1.0 phf 191 1
p 1.0 1.0

pod 191 1 TP 1.0 1.0
p 0.98 0.98

portsweep 191 I T P 0.99 0.99
p 1.0 1.0

rootkit 155 54.2 T P 1.0 0.6
p 0.77 1.0

satan 191 1 T P 1.0 0.98
p 0.99 0.99

smurf 191 1 T P 1.0 1.0
p 1.0 1.0

spy 191 21.5 T P 1.0 1.0
p 1.0 1.0

teardrop 191 1 T P 1.0 1.0
p 1.0 1.0
TP 0.99 0.99 warezclient 191 82.9
p 1.0 1,0

warezmaster 191 87 TP 0.6 0.6
p 1.0 1,0

duction (%rdc) by the multiple model over the re-
Single- Mult iple spective single model, Sinal e X I00%. As

clearly shown in the table, there is always a signifi-
cant reduction by the multiple model approach. In
all configurations, the reduction is more than 95%.
An average CompCost of no greater than 5 means
that in practice we can classify most connections by
examining the first three packets of the connection
at most 5 times. This significant reduction is due to
the fact that Rz, R2 and Rs are very accurate in fil-
tering normal connections (including intrusions not
worthy of response and re-labeled as normal), and
a majority of connections in real network environ-
ments are normal. Our multiple model approach
thus computes more costly features only when they

42 S I G M O D Record , Vol. 30, No. 4, D e c e m b e r 2001

are needed. This is shown in the first two columns of
Table 3, which lists the detailed average CompCost
for each connection class for + and :t: :t: =l:+.

Detailed precision and TP 4 rates of four sample
models are shown in last two columns of Table 3 for
different connection classes. The values for the sin-
gle classifier and multiple classifier methods are very
close to each other. This shows that the coverage of
the multiple classifier method is similar to those of
the corresponding single classifier method.

5 Discussion

We have presented how data mining approaches can
be applied to system audit data to construct features
and models for intrusion detection. The main ben-
efit is that, instead of using the unreliable expert
knowledge to manually construct detection mod-
els, we can semi-automatically compute (or mine),
from a large amount of data, more accurate models.
An official evaluation showed that our mined mod-
els performed very well when compared with purely
knowledge-engineered models. Our experiments also
showed that our multiple-model approach can be
used to construct models with less computational
cost while maintaining accuracy. We are developing
a real-time system to verify that this approach can
indeed reduce run-time detection delay.

There are limitations in our current approaches,
which present research opportunities and challenges.

Our data mining approaches compute only the
"frequent" patterns of connection records. Many in-
trusions, e.g., those that embed all activities within
a single connection, do not have frequent patterns
in connection data. Some of these intrusions have
frequent patterns in packet data. However, there is
no fixed format of packet data contents, and hence
we cannot use our (attribute-based) data mining
programs. Free text mining algorithms are needed
for packet data. Still, some of these intrusions in-
volve only a single event (e.g., one command), and
hence leave no frequent patterns even in packet data.
Thus, we need algorithms capable of mining rare and
unexpected patterns for these intrusions.

We had hoped that the features we constructed
would be general enough so that new variations of
known intrusions can also be detected by our misuse
detection models. The results from the 1998 DARPA
evaluation showed that our models were able to de-

4Unlike precision, T P rate descr ibes the fraction of oc-
currences of a connection class tha t were correctly labeled.
Using the same notat ion as in the definition of precision,
T . P = 1 ~ 1 .

tect a large percentage of new PROBING and U2R
attacks because these attacks have relatively lim-
ited variances. However, our models were not as
effective for new DoS and R2L attacks because they
exploit the weaknesses of a large number of differ-
ent services (hence a wide variety of behavior) [11].
We need anomaly detection models to detect new
attacks. Anomaly detection is much more challeng-
ing than misuse detection. False alarm may not be
avoided because a new (or previously not observed)
normal activity can trigger an alarm. In the real-
world, the false alarm rate has to be extremely low
(given the huge number of connections) for the sys-
tem to be acceptable to human operators 5

There is an increasing trend of distributed and co-
ordinated attacks. Merging audit data from differ-
ent sites is not efficient, and may not be possible due
to legal constraints. We need correlation algorithms
capable of merging alarms (i.e., detection outcomes)
from different sources.

6 Conclusion

Intrusion detection is a real-world application area
critical to the well-being of our society. Based on
the characteristics of system audit data, we devel-
oped specialized data mining algorithms to con-
struct features and detection models. Our experi-
ments showed that the mined models are accurate
(compared with expert system) and efficient.

There are still many open problems. We as re-
searchers must take up these opportunities and chal-
lenges, and make contributions to both data mining
and intrusion detection.

7 Acknowledgments

This research has been supported in part by DARPA
(F30602-96-1-0311 and F30602-00-1-0603).

Many thanks to Sal Stolfo and members of his
Columbia research team for all the guidances and
helps. We also wish to thank all the open-minded
researchers in security and data mining who gave us
encouragements and good suggestions at the early
stage of our research.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Min-
ing association rules between sets of items in

5A recent indus t ry survey found tha t , on average, an op-
erator spends one hour to investigate an alarm

SIGMOD Record, Vol. 30, No. 4, December 2001 43

large databases. In Proceedings of the ACM
SIGMOD Conference on Management of Data,
pages 207-216, 1993.

[2] E. Amoroso. Intrusion Detection: An In-
troduction to Internet Surveillance, Correla-
tion, Traps, Trace Back, and Response. Intru-
sion.Net Books, 1999.

[3] D. Anderson, T. Frivold, and A. Valdes. Next-
generation intrusion detection expert system
(NIDES): A summary. Technical Report SRI-
CSL-95-07, Computer Science Laboratory, SRI
International, Menlo Park, California, May
1995.

[4] W. W. Cohen. Fast effective rule induction. In
Machine Learning: the 12th International Con-
ference, Lake Taho, CA, 1995. Morgan Kauf-
mann.

[5] Wei Fan, Wenke Lee, Sal Stolfo, and Matt
Miller. A multiple model cost-sensitive ap-
proach for intrusion detection. In Proceedings of
The Eleventh European Conference on Machine
Learning (ECML PO00), Lecture Notes in Arti-
ficial Intelligence No. 1810, Barcelona, Spain,
May 2000.

[6] K. Ilgun, l:t. A. Kemmerer, and P. A. Porras.
State transition analysis: A rule-based intru-
sion detection approach. IEEE Transactions
on Software Engineering, 21(3):181-199, March
1995.

[7] V. Jacobson, C. Leres, and S. McCanne.
tcpdump, available via anonymous ftp to
ftp.ee.lbl.gov, June 1989.

[8] S. Kumar and E. H. Spafford. A software archi-
tecture to support misuse intrusion detection.
In Proceedings of the 18th National Information
Security Conference, pages 194-204, 1995.

[9] T. Lane and C. E. Brodley. Temporal sequence
learning and data reduction for anomaly detec-
tion. ACM Transactions on Information and
System Security, 2(3):295-331, August 1999.

[10] W. Lee. A Data Mining l~ramework for Con-
structing Features and Models for Intrusion De-
tection Systems. PhD thesis, Columbia Univer-
sity, June 1999.

[11] W. Lee and S. J. Stolfo. A framework for con-
structing features and models for intrusion de-
tection systems. ACM Transactions on Infor-
mation and System Security, 3(4), November
2000.

[12] W. Lee, S. J. Stolfo, and K. W. Mok. Mining
audit data to build intrusion detection models.
In Proceedings of the ~th International Confer-
ence on Knowledge Discovery and Data Mining,
New York, NY, August 1998. AAAI Press.

[13] W. Lee, S. J. Stolfo, and K. W. Mok. Min-
ing in a data-flow environment: Experience in
network intrusion detection. In Proceedings of
the 5th ACM SIGKDD International Confer-
ence on Knowledge Discovery ~4 Data Mining
(KDD-99), August 1999.

[14] R. Lippmann, D. Fried, I. Graf, J. Haines,
K. Kendall, D. McClung, D. Weber, S. Webster,
D. Wyschogrod, R. Cunninghan, and M. Ziss-
man. Evaluating intrusion detection systems:
The 1998 DARPA off-line intrusion detection
evaluation. In Proceedings of the 2000 DARPA
Information Survivability Conference and Ex-
position, January 2000.

[15] H. Mannila, H. Toivonen, and A. I. Verkamo.
Discovering frequent episodes in sequences. In
Proceedings of the 1st International Conference
on Knowledge Discovery in Databases and Data
Mining, Montreal, Canada, August 1995.

[16] S. McCanne, C. Leres, and V. Jacobson.
libpcap, available via anonymous ftp to
ftp.ee.lbl.gov, 1989.

[17] Network Flight Recorder Inc. Network flight
recorder, http://www.nfr.com, 1997.

[18] S.J. Stolfo, W. Lee, P.K. Chan, W. Fan, and
E. Eskin. Data mining-based intrusion detec-
tors: An overview of the Columbia IDS project.
ACM SIGMOD Record, 30(4), December 2001.

[19] SunSoft. SunSHIELD Basic Security Module
Guide. SunSoft, Mountain View, CA, 1995.

[20] C. Warrender, S. Forrest, and B. Pearlmutter.
Detecting intrusions using system calls: Al-
ternative data models. In Proceedings of the
1999 IEEE Symposium on Security and Pri-
vacy, May 1999.

44 SIGMOD Record, Vol. 30, No. 4, December 2001

