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A b s t r a c t  

Intrusion detection is an essential component of 
computer security mechanisms. It requires accurate 
and efficient analysis of a large amount of system and 
network audit data. It can thus be an application 
area of data mining. There are several characteris- 
tics of audit data: abundant raw data, rich system 
and network semantics, and ever "streaming". Ac- 
cordingly, when developing data mining approaches, 
we need to focus on: feature extraction and con- 
struction, customization of (general) algorithms ac- 
cording to semantic information, and optimization 
of execution efficiency of the output models. In this 
paper, we describe a data mining framework for min- 
ing audit data for intrusion detection models. We 
discuss its advantages and limitations, and outline 
the open research problems. 

1 In troduc t ion  

As the Internet plays an increasingly important 
role in our society, e.g., the infrastructure for E- 
Commerce and Digital Government, criminals and 
enemies have begun devising and launching sophis- 
ticated attacks motivated by financial, political, and 
even military objectives. We must ensure the se- 
curity, i.e., confidentiality, integrity, and availabil- 
ity, of our network infrastructures. Intrusion detec- 
tion is the process of identifying and responding to 
malicious activity aimed at compromising computer 
and network security [2]. It is a critical component 
of the defense-in-depth security mechanisms, which 
also include: security policy, vulnerability scanning 
and patching, authentication and access control, en- 
cryption, program wrappers, firewalls, and intrusion 
tolerance. 

Intrusion detection is a very hard problem. There 
are always "security holes" due to design flaws, im- 
plementation errors, and operation oversights in to- 
day's complex network systems. Research in soft- 
ware engiiieering has shown that it is hard to pre- 

vent, discover, and remove all software "bugs". It 
is even harder to prevent and detect intrusions be- 
cause intelligent adversaries, with malicious intents, 
can exploit the security holes (and their combina- 
tions) to devise potentially a very large number of 
intrusion methods. 

Most intrusion detection approaches rely on anal- 
ysis of system and network audit data. Network traf- 
fic can be recorded using "packet capturing" utilities 
(e.g., l ibpcap [16]), and operating system activi- 
ties can be recorded at the system call level (e.g., 
BSM [19]). A basic premise here is that when audit 
mechanisms are enabled, distinct evidence of legiti- 
mate activities and intrusions will be manifested in 
the audit data. Thus, instead of (statically) analyz- 
ing (all source codes of) complex software, intrusion 
detection uses a more practical approach of analyz- 
ing the audit records of run-time activities of net- 
works and systems (and users). 

At an abstract level, an intrusion detection system 
(IDS) extracts ]eatures, i.e., the individual pieces of 
evidence, from the system event-level or network 
packet-level audit data, and uses some modeling 
and analysis algorithms to reason about the avail- 
able evidence. Traditionally, IDSs are developed 
by knowledge-engineering. Expert knowledge or in- 
tuition of networks, operating systems, and attack 
methods are used to select the features, and hand- 
craft the detection rules. Given the complexities 
of today's network environments and the sophisti- 
cation of the increasingly hostile attackers, the so- 
called expert knowledge is often very limited and 
unreliable. 

On the other hand, data mining approaches can 
be used to extract features and compute detection 
models from the vast amount of audit data. The 
features computed from data can be more "objec- 
tive" than the ones hand-picked by experts. The 
inductively learned detection models can be more 
"generalizable" than hand-coded rules (that is, they 
can have better performance against new variants 
of known normal behavior or intrusions). There- 
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fore, data mining approaches can play an impor- 
tant role in the process of developing an IDS. We 
need to point out that data mining should comple- 
ment rather than exclude the use of expert knowl- 
edge. Our objective should be to provide the tools, 
grounded on sound statistics and machine learning 
principles, for IDS developers to construct better ID 
models quickly and easily. For example, experts can 
view and edit the patterns and rules produced by 
data mining approaches, and translate them into ef- 
ficient detection modules. 

The rest of the paper is organized as follows. 
We first give an brief overview of research in intru- 
sion detection, particularly data mining-based ap- 
proaches. We then describe the characteristics of 
audit data. We next present a data mining frame- 
work for extracting features and computing detec- 
tion models, and describe our experiments and re- 
sults. We then discuss the benefits of as well as 
research challenges in applying data mining ap- 
proaches to intrusion detection. 

1 .1  R e l a t e d  W o r k  

Several influential research IDSs were developed 
from mid-S0's to mid-90's. STAT [6] and IDIOT [8] 
are misuse detection systems that use the "signa- 
tures" of known attacks, i.e., the patterns of attack 
behavior or effects, to identify a matched activity as 
an attack instance. By definition, misuse detection 
is not effective against new attacks, i.e., those that 
do not have known signatures. NIDES [3] has an 
anomaly detection subsystem that uses established 
normal profiles, i.e., the expected behavior, to iden- 
tify any unacceptable deviation as the result of an 
attack. Anomaly detection is capable of catching 
new attacks. However, new legitimate behavior can 
also be falsely identified as an attack, resulting in a 
false alarm. These systems and most of the later re- 
search and commercial systems are developed using 
a pure knowledge-engineering process. 

In recent years, there have been several learning- 
based or data mining-based research efforts in in- 
trusion detection. Warrender et al. [20] showed that 
a number of machine-learning approaches, e.g., rule 
induction, can be used to learn the normal execu- 
tion profile of a program, which is the short se- 
quences of its run-time system calls made. These 
learned models were shown to be able to accurately 
detect anomalies caused by exploits on the pro- 
grams. Lane and Brodley developed machine learn- 
ing algorithms for analyzing user shell commands 
and detecting anomalies of user activities [9]. A 
team of researchers at Columbia University have 

been working on data mining-based intrusion de- 
tection since 1996 (see Stolfo et al. [18] for an 
overview). The main capabilities developed in this 
research include: pattern mining and feature con- 
struction, cost-sensitive modeling for efficient run- 
time model execution, anomaly detection, learning 
over noisy data, and correlation analysis over multi- 
ple of data streams. The ADAM project at George 
Mason University is developing anomaly detection 
algorithms based on automated audit data analysis. 
(see http://ise. Emu. edu/'dbarbara/adam, html) 

2 A u d i t  D a t a  

The first step in applying or developing data min- 
ing approaches for an application is to have a basic 
understanding of the problem domain. We briefly 
discuss the main characteristics of audit data. 

First, system audit data is "raw", i.e., in binary 
format, unstructured, and time dependent. For data 
mining, we need to first preprocess audit data to 
a suitable form, i.e., ASCII tabular data with at- 
tributes (or features). For example, data output by 
l ibpcap  contains binary records describing network 
packets. The records are ordered by the timestamps 
(i.e., packet arrival time). In order to analyze a 
network connection, we need to first "summarize" 
all packet data that belong to the same connec- 
tion. The connection data, in ASCII format, can 
contain for each connection its source and destina- 
tion hosts, service (e.g., t e l n e t ,  f t p ,  etc.), and the 
number of bytes transfered, etc., that  describe the 
connection activities. The key objective of audit 
data preprocessing is to extract and construct ap- 
propriate features so that  effective detection models 
can be constructed. The challenge for data mining 
is to develop techniques to automate some of the 
knowledge-intensive data preprocessing and feature 
extraction tasks. 

Second, audit data contains rich network and sys- 
tem semantics. For example, network connections 
that originate from the same host, destine for the 
same host, or request the same service may be "re- 
lated" to a specific user or program activity. Such 
semantics or context information is very useful in in- 
trusion detection. The challenge for data mining is 
to customize the general algorithms to incorporate 
domain knowledge so that only the relevant patterns 
are computed from audit data. 

Third, audit data is high-speed and high-volume 
streaming data. Auditing mechanisms are designed 
to record all network and system activities in great 
details. While this can ensure that no intrusion 
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evidence will be missed, the high-speed and high- 
volume data stream requires the run-time execution 
of detection models be very efficient. Otherwise, the 
long delay in data analysis simply presents a time 
window for attacks to succeed. The challenge for 
data mining is to develop techniques to compute de- 
tection models that are not only accurate but also 
efficient in run-time execution. 

2.1  D a t a  M i n i n g  A l g o r i t h m s  

Several types of algorithms are particularly useful 
for mining audit data. 

Classif icat ion An ideal application in intrusion 
detection will be to gather sufficient "normal" and 
"abnormal" audit data for a user or a program, then 
apply a classification algorithm to learn a classifier 
that can label or predict new unseen audit data as 
belonging to the normal class or the abnormal class. 

Assoc ia t ion  analysis  Associations of system 
features in audit data, for example, the correlation 
between command and argument in the shell com- 
mand history data of a user, can serve as the basis 
for constructing normal usage profiles. 

Sequence  analysis  Frequent patterns of time- 
based network and system activities provide guide- 
lines for incorporating temporal statistical measures 
into intrusion detection models. For example, fi'e- 
quent patterns of network-based denial-of-service 
(DOS) attacks suggest that several per-host and per- 
service measures should be included. 

3 A F r a m e w o r k  

We have developed a data mining framework for 
constructing features and intrusion detection mod- 
els from audit data [10]. Using this framework, raw 
(binary) audit data is first processed and summa- 
rized into network connection records (or host ses- 
sion records) containing a number of basic features: 
timestamp, duration, source and destination IP ad- 
dresses and port numbers, protocol type, and an 
error condition flag. Specialized data mining pro- 
grams [12, 10] are applied to compute frequent pat- 
terns, i.e., the association rules [1] describing the 
correlations among the features, and the frequent 
episodes [15] describing the frequently co-occurring 
events across the records. The consistent patterns of 
normal activities and the "unique" patterns associ- 
ated with intrusions are then identified and analyzed 
to construct additional features for the records [13]. 
Machine learning algorithms (e.g., the RIPPER [4] 
classification rule learner) are then used to learn 

the detection models. For (run-time) execution ef- 
ficiency, multiple models each with different com- 
putation cost and detection accuracy are produced. 
The idea is to execute the lighter weight detection 
model(s) first; and if the desired prediction accu- 
racy is not attained, the more time-consuming mod- 
els will then be activated [5]. 

We next describe the key components of this 
framework in more details. 

3 .1  P a t t e r n  M i n i n g  a n d  C o m p a r i s o n  

We compute the association rules and frequent 
episodes from audit data, which capture the intra- 
and inter- audit record patterns. These frequent pat- 
terns can be regarded as the statistical summaries of 
network and system activities captured in the audit 
data, because they measure the correlations among 
system features and the sequential (i.e., temporal) 
co-occurrences of events. 

The basic association rules and frequent episodes 
algorithms do not consider any domain knowledge. 
That is, assume I is the interestingness measure of a 
pattern p, then I(p) =/(support (p) ,  confidence(p)), 
where f is some ranking function. As a result, 
the basic algorithms can generate many rules that 
are "irrelevant" (i.e., uninteresting) to the appli- 
cation. When customizing these algorithms for 
audit data, we incorporate schema-level knowl- 
edge into the interestingness measures. Assume 
IA is a measure of whether a pattern 19 contains 
the specified important (i.e. "interesting") at- 
tributes, our extended interestingness measure is 
Ie (/9) = /e ( I A (p),/(support(/9), confidence(p))) = 
f~(Ia(p) , I (p) ) ,  where A is a ranking function that 
first considers the attributes in the pattern, then the 
support and confidence values. 

We discuss two kinds of important schema-level 
knowledge about audit data here. First, there is a 
partial "order of importance" among the attributes 
of an audit record. Some attributes are essential in 
describing the data, while others only provide aux- 
iliary information. For example, a network connec- 
tion can be uniquely identified by the combination 
of its start time, source host, source port, desti- 
nation host, and service (destination port). These 
are the essential attributes when describing network 
data. We argue that the "relevant" association rules 
should describe patterns related to the essential at- 
tributes. We call the essential attribute(s) axis at- 
tribute(s) when they are used as a form of i tem 
constraints in the association rules algorithm. Dur- 
ing candidate generation, an item set must contain 
value(s) of the axis attribute(s). We consider the 
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correlations among non-axis attributes as not in- 
teresting. In other words, if p contains axis at- 
tribute(s), then IA(p) = 1, else IA(p) = O. To avoid 
having a huge amount of "useless" episode rules, we 
extended the basic frequent episodes algorithm to 
compute frequent sequential patterns in two phases: 
compute the frequent associations using the axis at- 
tribute(s); then generate the frequent serial patterns 
from these associations. 

Another interesting schema-level information is 
that  some attributes can be the references of other 
attributes. A group of events are related if they 
have the santo reference attribute value. For ex- 
ample, connections to the same destination host 
can be related. When mining for patterns of such 
related events, we need to use reference attribute 
as an item constraint. That  is, when forming an 
episode, an additional condition is that, within its 
minimal occurrences, the records covered by its con- 
stituent itemsets have the same value(s) of the ref- 
erence attribute(s). In other words, if the itemsets 
of p refer to the same reference attribute value, then 
IA (p) = 1, else IA (p) = O. 

We carl compare the patterns, i.e., frequent 
episodes computed using our extended algorithms, 
from an intrusion dataset and the patterns from 
the normal dataset to identify those that  exhibit 
only in the intrusion dataset. These patterns are 
then used for feature construction. The details 
of the pattern comparison algorithm is described 
in [13]. The idea is to first convert patterns into 
numbers in such a way that  "similar" patterns are 
mapped to "closer" numbers. Then pattern compar- 
ison and intrusion pattern identification are accom- 
plished through comparing the numbers and rank 
ordering the results. We devised an encoding pro- 
cedure that converts each pattern into a numerical 
number~ where t he  order of digit significance cor- 
responds to the order of importance of the features. 
Each unique feature value is mapped to a digit value 
in the encoding process. The "distance" of two pat- 
terns is then simply a number where each digit value 
is the digit-wise absolute difference between the two 
encodings. A comparison procedure computes the 
"intrusion score" for each pattern from the intrusion 
dataset, which is its lowest distance score against all 
patterns from the normal dataset, and outputs the 
user-specified top percentage patterns that  have the 
highest intrusion scores as the "intrusion only" pat- 
terns. 

As an example, consider the "SYN flood" attack 
where the attacker uses many spoofed source ad- 
dresses to send a lot of SO connections (only the 
first SYN packet, the connection request, is sent) to 

a port (e.g., http) of the victim host in a very short 
time span (the victim's connection buffer is filled up, 
hence Denial-of-Service). Table 1 shows one of the 
top intrusion only patterns, produced using service 
as the axis and dst_host as the feature. 

3 . 2  F e a t u r e  C o n s t r u c t i o n  

Each of the intrusion patterns is used as a guideline 
for adding additional features into the connection 
records to build better  classification models. We 
use the following automatic procedure for parsing 
a frequent episode and constructing features: 

• Assume Fo (e.g., dst_host) is used as the refer- 
ence feature, and the width of the episode is w 
seconds. 

• Add the following features that  examine only 
the connections in the past w seconds that  share 
the same value in Fo as the current connection: 

- A feature that  computes "the count of 
these connections"; 

- Let F1 be service, src_dst or dst_host 
other than Fo (i.e., F1 is an essential fea- 
ture). If  the same F1 value (e.g., "http") 
is in all the item sets of the episode, add a 
feature that  computes "the percentage of 
connections that  share the same F1 value 
as the current connection"; otherwise, add 
a feature that  computes "the percentage of 
different values of Fi" .  

- Let V2 be a value (e.g., "SO") of a feature 
F2 (e.g., f lag) other than Fo and F1 (i.e., 
V2 is a value of a non-essential feature). If 
V2 is in all the item sets of the episode, add 
a feature that  computes "the percentage of 
connections that  have the same V2"; oth- 
erwise, if F2 is a numerical feature, add a 
feature that  computes "the average of the 
F2 values". 

This procedure parses a frequent episode and uses 
three operators, count, percent, and average, to con- 
struct statistical features. These features are also 
temporal since they measure only the connections 
that  are within a time window w and share the 
same reference feature value. The intuition behind 
the feature construction algorithm comes from the 
straightforward interpretation of a frequent episode. 
For example, if the same feature value appears in 
all the itemsets of an episode, then there is a large 
percentage of records that  have the same value. We 
treat  the essential and non-essential features differ- 
ently. The essential features describe the anatomy 
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Table 1: Example Intrusion Pattern 
Frequent Episode Meaning 
(flag = SO, service = http, dst_host = victim), 
(flag = SO, service = http, dst_host = victim) 

(flag = SO, service = http, dst_host = victim) 
[0.93, 0.03, 21 

93% of the time, after two http connections 
with SO flag are made to host ~ctim, within 2 
seconds from the first of these two, the third 
similar connection is made, and this pattern 
occurs in 3% of the data 

of an intrusion, for example, "the same service (i.e., 
port) is targeted". The actual values, e.g., "http", is 
often not important because the same attack method 
can be applied to different targets, e.g., "ftp". On 
the other hand, the actual non-essential feature val- 
ues, e.g., flag = SO, often indicate the invariant of 
an intrusion because they summarize the connection 
behavior according to the network protocols. The 
"SYN flood" pattern shown in Table 1 results in 
the following additional features: a count of connec- 
tions to the same dst_host in the past 2 seconds, and 
among these connections, the percentage of those 
that have the same service, and the percentage of 
those that have the "S0" flag. 

3.3 Cons t ruc t ing  Efficient Models  

A detection model is deemed efficient if its (analysis 
and ) detection delay, or computational cost, is small 
enough for the model to keep up with the run-time 
data streams (i.e., it can detect and respond to an 
intrusion before much damage is done). The com- 
putational cost of a model is derived mainly from 
the costs of computing the required features. The 
feature cost includes not only the time required for 
computing its value, but also the time delay of its 
readiness (i.e., when it can be computed). 

We partition features into three relative cost lev- 
els. Level 1 features, e.g., service, are computed 
using at most the first three packets (or events) of 
a connection (or host session). They normally re- 
quire only simple recording. Level 2 features are 
computed in the middle or near the end of a con- 
nection using information of the current connection 
only. They usually require just simple book keep- 
ing. Level 3 features are computed using informa- 
tion from all connections within a given time window 
of the current connection. They are often computed 
as some aggregates of the level 1 and 2 features. We 
assign qualitative values to these cost levels, based on 
our run-time measurements with a prototype system 
we have developed using Network Flight Recorder 
(NFR) [17]: level 1 cost is 1 or 5; level 2 cost is 10; 
and level 3 cost is 100. It is important to note that 
level 1 and level 2 features must be computed indi- 

vidually. However, because all level 3 features re- 
quire iteration through the entire set of connections 
in a given time window, they can all be computed 
at the same time, in a single iteration. This saves 
computational cost when multiple level 3 features 
are computed for analysis of a given connection. 

3.3.1 A Multiple Model Approach 

In order to reduce the computational cost of a de- 
tection model, the low cost features should be used 
whenever possible while maintaining a desired accu- 
racy level. Our approach is to build multiple models, 
each using features from different cost levels. Low 
cost models are always evaluated first by the IDS, 
and high cost models are used only when the low cost 
models can not predict with sufficient accuracy. We 
use a multiple ruleset approach based on RIPPER. 

Before discussing the details of our approach, it 
is necessary to outline the advantages and disadvan- 
tages of the different forms of rulesets that RIPPER 
can generate: ordered or un-ordered. 

O r d e r e d  Ru le se t s  An ordered ruleset has the 
form "if r l  t h e n  il e l se i f r2  t h e n  i2, . . . ,  else de- 
faulf'. Before learning rules from a dataset, RIP- 
PER first heuristically orders the classes by one 
of the following methods: +freq, increasing fre- 
quency; - f r eq ,  decreasing frequency; given, a user- 
defined ordering; mdl, minimal description length 
heuristics to guess an optimal ordering. After ar- 
ranging the classes, RIPPER finds rules to separate 
class1 from classes class2, . . . ,  classn, then rules to 
separate class2 from classes class3,...  ,class,e, and 
so on. The final class classn will become the de- 
fault class. The end result is that rules for a sin- 
gle class will always be grouped together, but rules 
for classi are possibly simplified, because they can 
assume that the class of the example is one of 
classy,.. . ,  classn. If an example is covered by rules 
from two or more classes, this conflict is resolved in 
favor of the class that comes first in the ordering. 

An ordered ruleset is usually succinct and effi- 
cient. Evaluation of an entire ordered ruleset does 
not require each rule to be tested, but proceeds from 
the top of the ruleset to the bottom until any rule 
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evaluates to true. The features used by each rule 
can be computed one by one as evaluation proceeds. 
The computational cost to evaluate an ordered rule- 
set for a given connection is the total cost of com- 
puting unique features until a prediction is made. 
In any reasonable network environment, most con- 
nections are normal. A - f req  ruleset is most likely 
lowest in computational cost and accurate in identi- 
fying normal connections since the top of the ruleset 
classifies normal. On the contrary, a +freq rule- 
set would most likely be higher in computational 
cost but more accurate in classifying intrusions than 
- f req  since the ruleset identifies intrusions from 
normal connections and normal is the bot tom de- 
fault rule. Depending on the class order, the perfor- 
mances of given and mdl will be in between those 
of - freq and +freq. 

U n - o r d e r e d  l : tulesets  An un-ordered ruleset 
has at least one rule for each class and there are 
usually many rules for frequently occurring classes. 
There is also a default class which is used for predic- 
tion when none of these rules are satisfied. Unlike 
ordered rulesets, all rules are evaluated during pre- 
diction and conflicts are broken by using the most 
accurate rule. Un-ordered rulesets, in general, con- 
tain more rules and are less efficient in execution 
than - f req  and +freq ordered rulesets, but there 
are usually several rules of high precision for the 
most frequent class, normal. 

With the advantages and disadvantages of ordered 
and un-ordered rulesets in mind, we propose the fol- 
lowing multiple ruleset approach: 

• We first generate multiple training sets 
T1 , . . . ,T4  using different feature subsets. T1 
uses only cost 1 features. T2 uses features of 
costs 1 and 5, and so forth, up to T4, which 
uses all available features. 

• R.ulesets R 1 , . . . , R 4  are learned using their re- 
spective training sets. R4 is learned as either 
+freq or - f req  ruleset for efficiency, as it may 
contain the most costly features. R 1 , . . . ,  R3 are 
learned as either - f req  or un-ordered rulesets, 
as they will contain accurate rules for classify- 
ing normal connections, and we filter normal as 
early as possible to reduce computational cost. 

• A precision measurement pr 1 is computed for 
every rule, r, except for the rules in R4. 

• A threshold value r~ is obtained for every sin- 
gle class. It  determines the tolerable precision 

1Precision describes how accurate a prediction is. If P is 
the  set of predict ions with label i and W is the  set of instances  
with label i in the  da t a  set, by definition, p = l _ _ ~ J .  

required in order for a classification to be made 
by any ruleset except for R4. 

In real-time execution, the feature computation and 
rule evaluation proceed as follows: 

• R1 is evaluated and a prediction i is made. 
• If Pr >_ r~, the prediction i will be fired. In this 

case, no more features will be computed and 
the system will examine the next connection. 
Otherwise, additional features required by R~ 
are computed and R2 will be evaluated. 

• Evaluation will continue with Rs, followed by 
R4, until a prediction is made. The evaluation 
of R4 does not require any firing condition and 
will always generate a prediction. 

The computational cost for a single connection is the 
total computational cost of all unique features used 
before a prediction is made. If  any level 3 features 
(of cost 100) are used at all, the cost is counted only 
once since all level 3 features are calculated in one 
function call. 

The precision and threshold values can be ob- 
tained during model training from either the train- 
ing set or a separate hold-out validation set. Thresh- 
old values are set to the precisions of R4 for each 
class on that  dataset since we want to reach the same 
accuracy as R4. Precision of a rule can be obtained 
easily from the positive, p, and negative, n, counts 
of a rule, p+~. The threshold value will, on average, 
ensure that  the predictions emitted by the first three 
rulesets are not less accurate than using R4 alone. 

4 Experiments  and Results  

In this section, we describe our experiments in build- 
ing intrusion detection models on the dataset from 
the 1998 DAR.PA Intrusion Detection Evaluation 
Program, prepared by MIT Lincoln Lab [14]. 

4 .1  T h e  D A B . P A  D a t a  

We were provided with about  4 gigabytes of com- 
pressed tcpdump [7] data  of 7 weeks of network traf- 
fic. The data can be processed into about 5 million 
connection records of about 100 bytes each. The 
data contains the content (i.e., the data portion) of 
every packet transmitted between hosts inside and 
outside a simulated military base 2. The data con- 

2Disclaimer: We are in no posi t ion to endorse any  claim 
that  th is  DAR,PA dataset  reflects a "typical" real-world en- 
vi ronment .  We used it in our  s tudy  because it is the  only 
available comprehensive da tase t  wi th  various normal  back- 
ground traffic conditions and  a large number  of at tacks.  
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tains four main categories of attacks: DoS, denial- 
of-service, e.g., $YN flood; R2L, unauthorized ac- 
cess from a remote machine, e.g., guessing password; 
U2R, unauthorized access to local root privileges 
by a local unprivileged user, e.g., buffer-overflow 
attacks; and PROBING, surveillance and probing, 
e.g., port-scan. 

We preprocessed the binary tcpdump packet data 
into ASCII connection records each with a set of 
intrinsic features, i.e., duration, source and destina- 
tion hosts, service, number of bytes transferred, and 
a flag that signifies normal or error conditions (e.g., 
"SO") of connection. This set of features are com- 
monly used in many different network analysis tasks 
(other than intrusion detection). 

4 . 2  F e a t u r e  a n d  M o d e l  C o n s t r u c t i o n  

We participated in the official 1998 DARPA Intru- 
sion Detection Evaluation. The 7 weeks of connec- 
tion data is training data, and can be labeled us- 
ing the provided "truth files". Due to constraints 
in time and data storage space, we did not include 
all connection records in pattern mining and model 
learning. We instead extracted all the connection 
records that fall within a surrounding time window 
of plus and minus 5 minutes of the whole duration of 
each attack to create a dataset for each attack type, 
e.g., SYN flood and port-scan. We also extracted 
sequences of normal records to create an aggregate 
normal dataset that has the same distribution as the 
original dataset. 

For each attack type, we performed pattern min- 
ing and comparison using its intrusion dataset and 
the normal dataset. We constructed features accord- 
ing to the top 20% intrusion-only patterns of each 
attack type. Here we summarize the automatically 
constructed temporal and statistical features: 

* The "same host" feature that examine only the 
connections in the past 2 seconds that have the 
same destination host as the current connec- 
tion: the count of such connections, the per- 
centage of connections that have the same ser- 
vice as the current one, the percentage of dif- 
ferent services, the percentage of SYN errors, 
and the percentage of REJ (i.e., rejected con- 
nection) errors; 

• The "same service" features that examine only 
the connections in the past 2 seconds that have 
the same service as the current connection: the 
count of such connections, the percentage of dif- 
ferent destination hosts, the percentage of SYN 
errors, and the percentage of REJ errors. 
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Figure 1: The Overall Detection Performance 

We call these the "time-based traffic" features 
for connection records. In order to detect "slow" 
PROBING attacks, we sorted the connection records 
by destination hosts, then mined patterns and con- 
structed the "host-based traffic" features that mirror 
the "time-based traffic" features. 

We discovered that unlike most of the DoS and 
PROBING attacks, the R2L and U2R attacks do 
not have any intrusion-only frequent patterns. This 
is because most of the DoS and PROBING attacks 
involve sending a lot of connections to some host(s) 
in a very short period of time, and therefore can have 
frequent sequential patterns that  are different from 
the normal traffic. The R2L and U2R attacks are 
embedded in the data portions of the packets and 
normally involve only a single connection. There- 
fore, it is unlikely that they can have any unique 
frequent traffic patterns. We instead used domain 
knowledge to construct a set of "content" features 
to indicate whether the connection contents suggest 
suspicious behavior (see [11] for details). 

4 .2 .1  R e s u l t s  

We briefly report the performance of our detec- 
tion models as evaluated by MIT Lincoln Lab [14] 
(see [11] for more detailed results). We trained our 
intrusion detection models, using the 7 weeks of la- 
beled data, and used them to make predictions on 
the 2 weeks of unlabeled test data (i.e., we were not 
told which connection is an attack). The test data 
contains a total of 38 attack types, with 14 types 
in test data only (i.e., our models were not trained 
with instances of these attack types, hence these are 
considered as "new" attack types). 

Figure 1 shows the ROC curves of the detection 
models on all intrusions. We compare here our 
models with other participants (denoted as Group 1 
through 3, group 2 did not cover all intrusions) in the 
DARPA evaluation program 3. These participating 

3The tested systems produced binary output, hence, the 
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Table 2: Average CompCost Per Connection 

H - ±:k:k . . . . .  

CompCo.t 104.30 4.91~ 3.59~ 
~,do n a  95.23% 96.56% 

c o r n , c o . ,  190.93 4.93 ~ 4.85 
U,do n a  97.42% 97.46% 

~:  significantly reduced 

groups used pure knowledge engineering approaches. 
We can see from the figure that  our detection model 
has the best overall performance, under the "accept- 
able" false alarm rate (under 0.02%). However, an 
overall detection rate of below 70% is hardly satis- 
factory in a mission critical environment. 

4 . 3  C o m p u t a t i o n a l  C o s t  R e d u c t i o n  

We compute both a single model and multiple mod- 
els oil the same DARPA dataset and compare their 
computational cost and accuracy. We measure the 
expected computational costs, denoted as Com- 
pCost, in our experiments. The expected com- 
putational cost over all occurrences of each con- 
nection class and the average computational cost 
per connection over the entire test set are defined 
as E,es~ CompCost(c) ~o~s CompCost(c) 

ISd and ISl , respec- 
tively, where S is the entire test set, i is a connec- 
tion class, and S~ represents all occurrences of i  in S. 
In all of our reported results, CompCost(c) is com- 
puted as the sum of the feature computation costs of 
all unique features used by all rules evaluated until 
a prediction is made for connection c. 

4.3.1 Results 

In presenting our results, we use +, - and ::t= to 
represent +freq, - f req and un-ordered rulesets, re- 
spectively. A multiple model approach is denoted as 
a sequence of these symbols. For example, - - - -  
indicates that  all 4 rulesets are -freq. 

Table 2 shows the average computational cost per 
connection for a single classifier approach R4 ( -  or 
+)  and the respective multiple model approaches 
(=E::E:k , or =EL=E+, - - - + ) .  The 
first row below each method is the average Com- 
pCost per connection and the second row is the re- 

R O C ' s  a re  not  cont inuous .  In  fact ,  t h e y  shou ld  j u s t  be  d a t a  
points ,  one for each  g roup .  L ines  ave connec t ed  for d i sp lay  
and  c o m p a r i s o n  purposes .  

Table 3: Precision/Recall for Each Connection Class 

CompCost Accuracy 
+ ±±±+ + d: d: :k+ 

normal 190.99 4.18 T F  0.99 0.99 
p 0,99 0.99 

back 75 7 T P  1,0 1.0 
p 1.0 1.0 
T P  1.0 1.0 buffer.overflow 175 75 
p 1.0 1.0 
TP 1.0 0.88 ftp_write 146 60.5 
p 1.0 1.0 
T P  0.91 0.91 guess.passwd 191 37 
p 1.0 1,0 

imap 181 95.3 T P  1.0 0.83 
p 1.0 1.0 

ipsweep 191 I TP 0.99 0.99 
p 1.0 1.0 

land 191 I TP 1.0 1.0 
p 1.0 1.0 

load_module 168.78 67 TP 1.0 1.0 
p 0.9 1.0 

mul t ihop  182.43 88.42 T P  1.0 1,0 
p 0.88 0.88 

neptune 191 1 TP 1.0 1.0 
p 1.0 1.0 

n m a p  191 1 T P  1.0 1.0 
p 1.0 1.0 

pcrl 151 77 TP 1.0 1.0 
p 1.0 1.0 
T P  1.0 1.0 phf  191 1 
p 1.0 1.0 

pod 191 1 TP 1.0 1.0 
p 0.98 0.98 

portsweep 191 I T P  0.99 0.99 
p 1.0 1.0 

rootkit 155 54.2 T P  1.0 0.6 
p 0.77 1.0 

satan 191 1 T P  1.0 0.98 
p 0.99 0.99 

smurf  191 1 T P  1.0 1.0 
p 1.0 1.0 

spy 191 21.5 T P  1.0 1.0 
p 1.0 1.0 

teardrop 191 1 T P  1.0 1.0 
p 1.0 1.0 
TP 0.99 0.99 warezclient 191 82.9 
p 1.0 1,0 

warezmaster 191 87 TP 0.6 0.6 
p 1.0 1,0 

duction (%rdc) by the multiple model over the re- 
Single- Mult iple  spective single model, Sinal e X I00%.  As 

clearly shown in the table, there is always a signifi- 
cant reduction by the multiple model approach. In 
all configurations, the reduction is more than 95%. 
An average CompCost of no greater than 5 means 
that in practice we can classify most connections by 
examining the first three packets of the connection 
at most 5 times. This significant reduction is due to 
the fact that  Rz, R2 and Rs are very accurate in fil- 
tering normal connections (including intrusions not 
worthy of response and re-labeled as normal), and 
a majority of connections in real network environ- 
ments are normal. Our multiple model approach 
thus computes more costly features only when they 
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are needed. This is shown in the first two columns of 
Table 3, which lists the detailed average CompCost 
for each connection class for + and :t: :t: =l:+. 

Detailed precision and TP  4 rates of four sample 
models are shown in last two columns of Table 3 for 
different connection classes. The values for the sin- 
gle classifier and multiple classifier methods are very 
close to each other. This shows that the coverage of 
the multiple classifier method is similar to those of 
the corresponding single classifier method. 

5 Discussion 

We have presented how data mining approaches can 
be applied to system audit data to construct features 
and models for intrusion detection. The main ben- 
efit is that, instead of using the unreliable expert 
knowledge to manually construct detection mod- 
els, we can semi-automatically compute (or mine), 
from a large amount of data, more accurate models. 
An official evaluation showed that our mined mod- 
els performed very well when compared with purely 
knowledge-engineered models. Our experiments also 
showed that our multiple-model approach can be 
used to construct models with less computational 
cost while maintaining accuracy. We are developing 
a real-time system to verify that this approach can 
indeed reduce run-time detection delay. 

There are limitations in our current approaches, 
which present research opportunities and challenges. 

Our data mining approaches compute only the 
"frequent" patterns of connection records. Many in- 
trusions, e.g., those that embed all activities within 
a single connection, do not have frequent patterns 
in connection data. Some of these intrusions have 
frequent patterns in packet data. However, there is 
no fixed format of packet data contents, and hence 
we cannot use our (attribute-based) data mining 
programs. Free text mining algorithms are needed 
for packet data. Still, some of these intrusions in- 
volve only a single event (e.g., one command), and 
hence leave no frequent patterns even in packet data. 
Thus, we need algorithms capable of mining rare and 
unexpected patterns for these intrusions. 

We had hoped that the features we constructed 
would be general enough so that new variations of 
known intrusions can also be detected by our misuse 
detection models. The results from the 1998 DARPA 
evaluation showed that our models were able to de- 

4Unlike precision, T P  rate descr ibes  the  fraction of oc-  
currences  of a connection class tha t  were correctly labeled. 
Using the  same notat ion as in the  definition of precision, 
T . P =  1 ~ 1 .  

tect a large percentage of new PROBING and U2R 
attacks because these attacks have relatively lim- 
ited variances. However, our models were not as 
effective for new DoS and R2L attacks because they 
exploit the weaknesses of a large number of differ- 
ent services (hence a wide variety of behavior) [11]. 
We need anomaly detection models to detect new 
attacks. Anomaly detection is much more challeng- 
ing than misuse detection. False alarm may not be 
avoided because a new (or previously not observed) 
normal activity can trigger an alarm. In the real- 
world, the false alarm rate has to be extremely low 
(given the huge number of connections) for the sys- 
tem to be acceptable to human operators 5 

There is an increasing trend of distributed and co- 
ordinated attacks. Merging audit data from differ- 
ent sites is not efficient, and may not be possible due 
to legal constraints. We need correlation algorithms 
capable of merging alarms (i.e., detection outcomes) 
from different sources. 

6 Conclusion 

Intrusion detection is a real-world application area 
critical to the well-being of our society. Based on 
the characteristics of system audit data, we devel- 
oped specialized data mining algorithms to con- 
struct features and detection models. Our experi- 
ments showed that the mined models are accurate 
(compared with expert system) and efficient. 

There are still many open problems. We as re- 
searchers must take up these opportunities and chal- 
lenges, and make contributions to both data mining 
and intrusion detection. 
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