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ABSTRACT
Detecting and understanding anomalies in IP networks is an open
and ill-defined problem. Toward this end, we have recently pro-
posed the subspace method for anomaly diagnosis. In this paper
we present the first large-scale exploration of the power of the sub-
space method when applied to flow traffic. An important aspect of
this approach is that it fuses information from flow measurements
taken throughout a network. We apply the subspace method to three
different types of sampled flow traffic in a large academic network:
multivariate timeseries of byte counts, packet counts, and IP-flow
counts. We show that each traffic type brings into focus a different
set of anomalies via the subspace method. We illustrate and clas-
sify the set of anomalies detected. We find that almost all of the
anomalies detected represent events of interest to network opera-
tors. Furthermore, the anomalies span a remarkably wide spectrum
of event types, including denial of service attacks (single-source
and distributed), flash crowds, port scanning, downstream traffic
engineering, high-rate flows, worm propagation, and network out-
age.
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1. INTRODUCTION
A general method for detecting anomalies in network traffic is an

important, unsolved problem. In principal, it should be possible to
observe most anomaly types by inspecting traffic flows. However,
to date, there has been little progress on extracting the range of in-
formation present in the complete set of traffic flows in a network.
There are many good reasons for this: traffic flows present many
possible types of network traffic; the set of all flows occupies a
very high-dimensional space; and collecting all traffic flows is very
resource-intensive. Nonetheless, the increasingly widespread use
of tools such as NetFlow [4] by ISPs make it realistic to contem-
plate methods for efficiently collecting and effectively analyzing
traffic flows.

We make three contributions in this paper. First, we show
that when traffic flows are aggregated at the Origin-Destination
(OD) level, they can provide a wealth of insight into network-wide
anomalies. This suggests a strategy for data reduction that can
make flow collection for anomaly detection easier. Second, we ap-
ply the subspace method [16] to multivariate timeseries of OD flow
traffic defined as # bytes, # packets, and # of IP-level flows. We
show that each of these traffic types reveals a different (sometimes
overlapping) class of anomalies and so all three types together are
important for anomaly detection. Finally, we analyze the anoma-
lous events detected in these high-dimensional timeseries. We show
that nearly all the anomalies detected by the subspace method are
of interest to network operators. The range of anomalies detected is
remarkably broad. For example, by analyzing four weeks of flow
traffic from the Abilene network, we have been able to identify
occurrences of flash crowds, changes in routing policy, worms, De-
nial of Service attacks, and massive data transfers. We describe the
anomalies found and show the features that they tend to exhibit.

This paper represents a first step toward a broadly applicable sys-
tem for anomaly diagnosis in networks, one which provides detec-
tion (stating that an anomaly is present) and identification (stat-
ing the type of the anomaly). The paper illustrates the power of
the subspace method for detection when applied to traffic flow
data. The paper does not propose an anomaly identification method
(all our anomalies were identified through manual inspection) but
we believe that, given accurate detection, automated methods for
anomaly identification will follow.

This paper builds in part on investigations begun by papers [17]
and [16]. In [17] we showed basic characteristics of the byte counts
in OD flows, without examining packet or flow counts, and with-
out concentrating on anomalies per se. In [16] we introduced the
subspace method, but applied it to a different problem (link data).
The current paper represents the next step, and goes well beyond
the previous two. It shows that OD flow data is a very rich source
of information (much richer than the link data examined in [16]).



Furthermore, this paper shows that the subspace method can easily
extend to a larger and more diverse set of data than [17] and can
reveal a surprisingly wide range of anomalies.

This paper is organized as follows. In Section 2, we describe the
Abilene flow data we use. A brief review and necessary extensions
to the subspace method are also presented in this section. In Sec-
tion 3, we demonstrate that the subspace method can successfully
extract anomalies from traffic timeseries of bytes, packets and IP-
flows collected on the Abilene backbone network. We characterize
and classify these anomalies Section 4. In Section 5, we discuss
related work. Finally, concluding remarks and future work are pre-
sented in Section 6.

2. METHODOLOGY
We first introduce the raw traffic data that we collected. Then,

we outline the procedure to aggregate this raw data at the level of
Origin-Destination flows. We also review the main ideas of the
subspace method and show how to extend it to diagnose anomalies
in OD flow traffic.

2.1 Network-Wide Traffic Flow Data
Our source of data is IP-level traffic flow measurements collected

from every point of presence (PoP) in the Abilene Internet2 back-
bone network. Abilene is a major academic network, connecting
over 200 US universities and peering with research networks in
Europe and Asia. Abilene has 11 PoPs and spans the continental
US. The academic and experimental nature of the traffic on Abilene
makes it an attractive candidate for developing methods to under-
stand anomalies.

We processed sampled flow data from every router of Abilene
for a period of four weeks, the week of April 7 to 13, 2003 and the
three weeks from December 8 to 28, 2003. Sampling is random,
capturing 1% of all packets entering every router. Sampled packets
are then aggregated at the 5-tuple IP-flow level (IP address and port
number for both source and destination, along with protocol type),
every minute using Juniper’s Traffic Sampling [13]. The number
of bytes and packets in each sampled IP flow are also recorded.
This allows us examine three distinct representations of sampled
flow traffic, as timeseries of the # of bytes, # of packets and #
of IP-flows, all indexed by the 5-tuple headers. Finally, to avoid
synchronization issues that could have arisen in the data collection
procedure, we aggregated these measurements into 5 minute bins.

The traffic exchanged between an origin-destination pair consists
of IP-level flows that enter the network at a given ingress PoP and
exit at another egress PoP. We aggregated the IP-level traffic into
OD flows. An important advantage of this aggregation is that it
dramatically reduces the data volume involved. In order to con-
struct OD flows from the raw traffic collected on all network links,
we have to identify the ingress and egress PoPs of each flow. The
ingress PoP can be identified by inspecting the router configuration
files for interfaces connecting Abilene’s customers and peers. For
egress PoP resolution, we use BGP and ISIS routing tables as de-
tailed in [8]. We augmented the routing tables with configuration
files in order to resolve customer IP addresses that do not appear in
the BGP tables. For privacy reasons, Abilene anonymizes the last
11 bits of the destination IP address. This is not a significant con-
cern for egress PoP resolution because there are few prefixes less
than 11 bits in the Abilene routing tables. In fact, using this pro-
cedure, we were able to successfully obtain the ingress and egress
PoPs for more than 93% of all IP flows measured (accounting for
more than 90% of the total byte traffic).

Note that our routing tables are computed once a day and stay
unchanged for that day. We believe that this does not significantly

impact our results since previous studies have found that the im-
pact of routing events on the traffic inside an AS is limited [2, 23].
However, one potential impact is that it becomes more difficult to
explain the cause of an anomaly if it is caused by an internal routing
change.

To summarize: the data on which we apply the subspace method
is OD flow traffic timeseries, defined as the # of bytes, # of packets
and # of IP-flows, aggregated at 5 minute intervals for a period of
4 weeks.

In order to faciliate subsequent discussion of this data, we intro-
duce the relevant notation now. We let X denote the n × p OD
flow traffic multivariate timeseries where p = 121 is the number of
OD pairs and n is the number of 5-minute bins in the time period
being studied. Typically we will study periods of one week and so
n > p. Thus column i of X corresponds to the timeseries of OD
flow i traffic. Note that we will use X to refer to either of the three
types of traffic (i.e. # bytes, # packets and # IP-flows) and clarify
the actual traffic type wherever needed.

2.2 The Subspace Method and Extensions
The central ideas behind the subspace method are drawn from the

literature on multivariate statistical process control [7, 12]. In [16],
we applied the subspace method to detect anomalies in link traf-
fic byte counts. However, anomaly diagnosis using the subspace
method is not limited to link traffic alone and can be extended to
other multivariate traffic data, such as the three OD flow traffic
types. In this section, we briefly review the subspace method and
show how to extend it to diagnose anomalies in OD flow traffic.

The subspace method works by examining the timeseries of traf-
fic in all OD flows (i.e., X) simultaneously. It then separates this
multivariate timerseries into normal and anomalous attributes. Nor-
mal traffic behavior is determined directly from the data, as the
temporal patterns that are most common to the ensemble of OD
flows. This extraction of common trends is achieved by Principal
Component Analysis (PCA). As shown in [17], PCA can be used
to decompose the set of OD flows into their constituent eigenflows,
or common temporal patterns. A useful property of this decom-
position is that the set of eigenflows, {u}p

i=1, are ordered by the
amount of variance they capture in the original data. Thus the first
eigenflow, u1, captures the temporal trend common to all the OD
flows, u2 is the next strongest temporal trend, and so on.

A key result of [17] was that only a handful of eigenflows are suf-
ficient to capture the dominant temporal patterns that are common
to the hundreds of OD flows. The subspace method exploits this
result by designating the trends in these top k eigenflows, {u}k

1 ,
as normal, and the temporal patterns in the remaining eigenflows
as anomalous (we use k = 4 throughout). We can then use this
separation to reconstruct each OD flow as a sum of normal and
anomalous components. In particular, we can write, x = x̂ + x̃,
where x denotes the traffic of all the OD flows at a specific point in
time, x̂ is the reconstruction of x using only the top 4 eigenflows
and x̃ contains the residual traffic.

While the methods in [16] used the squared prediction error
(‖x − x̂‖2) to detect the time of an anomaly, we find that for this
more diverse set of data, an additional test is also needed. Squared
prediction error detects anomalies in the residual vector; we also
need to detect anomalies occuring in the normal subspace. For
this, we employ the t2 statistic as used in multivariate process con-
trol [11]. This statistic also has an associated threshold for detect-
ing anomaly times, based on a chosen confidence level. Due to
space limitations and because it is not central to the message of this
paper, we do not provide details of the t2 statistic applied on traffic
data here; a complete discussion can be found in [15].
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(a) # of Bytes (b) # of Packets (c) # of IP-Flows

Figure 1: An illustration of the subspace method on the three types of OD flow traffic. Top row: timeseries of state vector squared
magnitude (‖x‖2); middle row: timeseries of the residual vector squared magnitude (‖x̃‖2); bottom row: t2 vector.

3. APPLYING THE SUBSPACE METHOD
In this section, we illustrate how the subspace method detects

anomalies in each of the three types of OD flow timeseries.
Figure 1 shows examples results for the three different views

of OD flow traffic over a common 3.5 day period. The top row
of Figure 1 presents timeseries of total traffic (‖x‖2). The mid-
dle row shows the timeseries of the residual traffic vector, ‖x̃‖2,
along with the corresponding threshold line. Finally, in the bottom
row, we present timeseries of the t2 metric, along with the statistic
threshold. The threshold for both the statistics were computed at
the 99.9% confidence level.

Figure 1 illustrates a number of properties of whole-network traf-
fic flow data. The top row of the figure shows that the three types
of OD flow traffic can differ substantially. This suggests that the
three data types present complementary information about the na-
ture of traffic across the network. Furthermore, each of these views
is noisy and appears to be nonstationary, showing noticeable diur-
nal cycles.

The lower two rows of the figure show how effective the sub-
space method is at isolating and highlighting anomalies (values
above the threshold represent anomaly detection). The periodicity
in the original traffic is largely removed, and anomalies appear as
distinct “spikes” against a background of noise. The power of the
method is also seen in the fact that the t2 metric for bytes and pack-
ets extracts some similar features from the data (e.g.,the anomaly
(2) occuring on 4/10) despite the fact that the original traffic time-
series (top row) in each case is very different.

The figure also shows that the set of anomalies detected in each
traffic type (# bytes, # packets, and # IP-flows) is noticeably dif-
ferent. This shows that each traffic type is important for detecting
anomalies, a point which we substantiate quantitively in the next
section.

To illustrate the diverse set of anomalies detected in a com-
mon 3.5 day period across the traffic types, we have marked se-
lected anomalies from each type along with their likely explana-
tions. Anomaly labeled (1) is a byte anomaly and corresponds to
a bandwidth measurement experiment, (2) corresponds to a similar
bandwidth measurement experiment but appears in both byte and
packet traffic types, (3) is packet anomaly corresponding to a DoS
attack on port 110 (pop), (4) appears in packet and IP-flow traffic
types and is a DoS attack on port 113 (identd), and (5) is an IP-flow
anomaly that appears to be caused by a port scan. In the next sec-
tion, we describe how we identified these and all of other detected
anomalies.

Traffic B F P BF BP FP BFP
# Found: 74 142 102 0 27 28 10

Table 1: Number of anomalies found in each traffic type.

4. CHARACTERIZING ANOMALIES
Having detected anomalies in each of the three traffic types,

we now characterize these anomalies. We seek to understand the
type of information that can be extracted from network-wide traf-
fic flows, and the utility of the subspace method in performing the
extraction.

The subspace method designates a time instant during which
traffic is anomalous. Thus the first step in identifying the nature of
the anomaly is to pinpoint the set of OD flows involved. We used
a straightforward method: since each anomaly results in a value of
the ‖x̃‖2 or t2 that exceeds the threshold statistic, we determine the
smallest set of OD flows, which if removed from the corresponding
statistic, would bring it under threshold. More sophisticated iden-
tification methods are possible if one adopts a hypothesis-testing
view (as was used in [16]); however since a goal of our study is to
characterize anomalies, by definition we do not have an a priori set
of hypothesized anomalies ready for testing.

The next step is to aggregate anomalies in space and time. We
start with the set of anomalies cast as triples of (traffic type, time,
OD flow) where “traffic type” is one of Bytes (B), Packets (P), or
IP-Flows (F). We first aggregate all triples with the same time value,
placing some triples into the new categories BP, BF, FP, and BFP.
Thus a BP anomaly is one that is detected in both byte and packet
timeseries at the same time. Then we group triples to form anoma-
lies in space (all OD flows corresponding to the same traffic type
and time) and time (all triples with consecutive time values, having
the same traffic type). This results in our final set of anomalies, in
which each anomaly has an associated set of OD flows and poten-
tially spans consecutive time bins.

The number of such anomalies found in our four weeks of data
is shown in Table 1. This table shows a number of interesting fea-
tures. First of all, each traffic type (B, F, and P) is important for
detecting anomalies, allowing detection of anomalies that are not
systematically detected in the other types. Secondly, a relatively
small set of anomalies are detected in more than one traffic type.
Indeed, there are no anomalies that are detected in just the bytes
and flows simultaneously.
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Figure 2: Quantifying the scope of network-wide anomalies by duration and by the number of OD flows involved.

Histograms of anomaly duration and size (measured in number
of participating OD flows) are shown in Figure 2. The figure shows
that most anomalies are small, both in time and space; however a
non-negligible number of anomalies can be quite large.

We inspected each of the anomalies identified to determine their
root causes. To aid our inspection, we developed a semi-automated
procedure that encoded common patterns found in the data, and
output a tentative classification for each anomaly. However each
classification was checked by hand to ensure its correctness.

In classifying anomalies, an important distiguishing tool is the
notion of a dominantIP address range and/or port. An address
range or port is dominant in a particular OD flow and timebin if it is
unusually prevalent. We used a simple threshold test: if the address
range or port accounted for more than a fraction p of the total traffic
(defined over either of the three types) in the timebin, it was consid-
ered dominant. We found that a value of p = 0.2 worked well. We
used this threshold test to determine, for each anomaly, whether
any source address range, destination address range, source port,
or destination port was dominant. We emphasize that this heuris-
tic is simply one way to identify and classify anomalies, and other
heuristics may also work well.

After inspecting each anomaly, and taking into account the pres-
ence of dominant features in the anomaly, we were able to group
all anomalies into the categories shown in Table 2. About 10%
of the anomalies could not be placed in any category. In addition,
about 8% of anomalies after inspection turned out to be false alarms
(meaning that visual inspection of traffic timeseries showed no dis-
tinctly unusual changes in volume).

Most of the entries in Table 2 are fairly easy to distinguish by in-
specting the dominant attributes of the raw flows. Alpha flows are
high-rate flows from a single source to a single destination which
account for a dominant fraction of byte traffic. These can be dis-
tinguished from DoS and DDoS attacks, which feature a dominant
fraction of packet or flow traffic, all to a single destination. The
distinction between flash crowd and DoS anomalies can be diffi-
cult. We adopted a heuristic based on the findings of [10], which
showed that DoS requests came from clients widely distributed
across the Internet (perhaps because DoS attacks are more likely to
be spoofed). In that light, traffic emerging from topologically clus-
tered hosts and directed to well known destination ports (e.g. port
53 (dns) or 80 (web)) are classified as flash crowd events. However,
this heuristic may not always hold and as a result, some of the flash
crowds we detect may be DoS attacks in reality.

We relied on port information to manually verify a large set of
our anomaly classifications. For example, we found that most al-
pha traffic was exchanged between dominant ports that ranged from
5000-5050 (used by bandwidth experiments conducted at [22]),
port 56117 (used by pathdiag [20]), and port 1412 (used by file-
sharing applications such as kazaa/morpheus). Most of the DoS
anomalies targetted port 0, although we found instances of a large
numer of packets targetting a single destination at port 110 (pop)
and in another case, port 113 (identd). Moreover, we uncovered
instances of flow traffic that used a dominant port 445 in our April
data, which perhaps was caused by the March outbreak of the De-
loader worm [5]. Other suspicious worm anomalies featured large
spikes in flow traffic with the dominant attribute as port 1433 (sql
server); we conjecture that these could be lingering remnants of the
MS SQL-Snake worm, which spread using this port.

We also found instances of anomalies with no dominant attribute.
Many of these anomalies had sharp dips in traffic volume. By cor-
relating these dips with the Abilene Operations weekly reports [1],
we were able to find explanations for most of the traffic dips. One
interesting consequence of an outage event that we detected was a
surge in traffic that lasted the same duration and occurred elsewhere
in the network. Closer inspection revealed that this was an example
of a multihomed customer routing traffic around the outage.

What is most striking about Table 2 is the extremely wide range
of anomaly types detected. They range from unusual end-user be-
havior (alpha, flash crowds, point/multipoint), to malicious end-
user behavior, (either actual DoS, DDoS, worms or potentially ma-
licious scans), to operational events such as equipment outage (out-
age) and downstream traffic engineering (ingress shift). The fact
that all of these events can be detected in a straightforward manner
from whole-network traffic data is one of the principal contribu-
tions of our work.

The count of each type of anomaly found is shown in Table 3.
The most prevalent anomaly type is the alpha flow, which is primar-
ily detected in byte and packet traffic. The high prevalence of Alpha
flows is due to the bandwidth-measurement experiments routinely
run over Abilene; thus, a commercial network would probably not
show a similar pattern. We detected a large amount of network and
port scanning, and a similarly large number of flash-crowd events.
Operational events (equipment outages and customer traffic shifts)
are less frequent.

Table 3 also illustrates the different kind of information that is
present in each type of traffic. Alpha flows tend to be detected as



Anomaly Definition Features Examples
ALPHA Unusually high rate point to

point byte transfer [21].
Spike in B, P and BP traffic, attributable to a sin-
gle dominant pair (source and destination). Short
duration (less than 10mins), and limited to single
OD flow.

Bandwidth measurement experiments
by [22] and [20].

DOS,
DDOS

(Distributed) Denial of ser-
vice attack against a single
victim.

Spike in P, F or FP traffic, the dominant fraction
of which is destined to a single destination IP, with
no dominant source IP. Can involve multiple OD
flows and typically last less than 20mins.

Multiple instances where a large number
of packets are sent to a single destina-
tion IP at ports that are frequent targets
of DOS attacks (e.g.,port 0)

FLASH
CROWD

Unusually large demand for a
resource/service [10].

Spike in F or FP traffic towards a dominant desti-
nation IP and dominant destination port. Typically
short-lived and limited to a single OD flow.

Multiple instances of large number of
web requests to single IP (port 80).

SCAN Scanning a host for a vulner-
able port (port scan) or scan-
ning the network for a target
port (network scan)

Spike in F traffic, with similar number of pack-
ets as flows from a dominant source; no domi-
nant combination of destination IP and port. Can
involve multiple OD flows and typically last less
than 10mins.

Network scans for port 139 (NetBIOS).

WORM Self-propogating code that
spreads across a network by
exploiting security flaws.

Spike in F traffic with no dominant destination,
and only a dominant port.

Found flows with dominant port 1433
(known to be used by the MS SQL-
Snake worm).

POINT TO
MULTI-
POINT

Distribution of content from
one server to many users.

Spike in P, B or BP traffic from a dominant source
to numerous destinations, all at the same (well
known) port.

Single server broadcasts at port 119
(news nntp service) to large destination
set.

OUTAGE Events that cause decrease in
traffic exchanged between an
OD pair.

Decrease in BFP traffic, usually to zero. Can last
for long duration (hours) and in all instances, af-
fected multiple OD flows.

Instances of scheduled maintanance
downtime (verified by [1]) at LOSA PoP
on 4/17, and a measurement failure from
CHIN PoP on 12/21.

INGRESS-
SHIFT

Customer shifts traffic from
one ingress point to another
ingress point.

Decrease in F traffic for one OD flow and a spike
in F traffic for another. No dominant attribute. In-
volves multiple OD flows.

Multihomed Abilene customer CAL-
REN shifted its traffic from LOSA to
SNVA during LOSA outage.

Table 2: Types of anomalies, with their attributes as seen in sampled network-wide flow measurements. The examples are actual
anomalies detected by the subspace method and identified from manual inspection.

byte or packet anomalies; this makes sense since the root cause of
these events is an attempt to move a large amount of data over the
network. DoS events tend to be detected as flow or packet anoma-
lies, but not as byte anomalies; this makes sense since the purpose
of the attack is to generate interrupts and other per-packet effects
on the target, but not to move a large amount of payload data. Scan
events are naturally flow anomalies; each new combination of port
and target IP generates a new flow, without trasmitting an unusually
large number of packets or bytes. Finally, flash events are also nat-
urally flow anomalies because each source IP generates a distinct
flow.

Finally, we note that the table illustrates the remarkably low false
alarm rate of the subspace method. Only about 8% of the anomalies
detected turned out to be false alarms. Thus almost any anomaly
detected by this method appears to be of interest to network opera-
tors, whether as a case of unusual user behavior, or malicious user
activity, or significant operational events. Note however that about
10% of the anomalies detected could not be classified; we believe
that this is largely an effect of our less-than-perfect (i.e., manual)
anomaly classification methods and that further study would prob-
ably uncover the causes of these anomalies as well.

5. RELATED WORK
To the best of our knowledge, this is the first work to expose and

characterize the breadth of network-wide traffic anomalies that can
be detected from sampled flow measurements in an IP network.

The general area of classifying network anomalies (not neces-

sarily traffic anomalies) has received much attention recently. Re-
searchers have characterized Internet intrusion activity [25], failure
events in IP networks [18], and also constructed taxonomies for In-
ternet worms [24], denial of service attacks [9] and defenses [19].

Earlier related work has focused on detecting and classifying
anomalies from flow measurements taken at a single router or link.
Barford et alemployed a wavelet-based signal analysis of flow traf-
fic to characterize single-link byte anomalies [3]. In [6], Duffield
et al proposed techniques to infer the population of worm infec-
tions from sampled traffic measurements. The authors of [10] pro-
vided topological clustering heuristics for a web server to distin-
guish denial of service attacks from flash crowd behavior. We use a
simplified version of their heuristic to distinguish these two anoma-
lies. The authors in [14] devised a number of heuristics to detect
specific attack patterns from flow header data, although no evalu-
ation on real data is given. The principal distinguishing feature of
our work is that we characterize a wide range of network-wide (as
opposed to single-link) traffic anomalies, by aggregating sampled
flow measurements at the origin-destination level.

6. CONCLUSION AND FUTURE WORK
In this paper, we showed how to harness the wealth of informa-

tion that is present in sampled traffic flows to detect and understand
network-wide anomalies. We showed that whole network anoma-
lies can be accurately detected from aggregating traffic flows at the
level of Origin-Destination flows, and by employing the three read-
ily available traffic types: # of bytes, # of packets and # of IP-flows.



Type ALPHA DOS SCAN FLASH POINT MU- WORM OUTAGE INGRESS- Unknown False
LTIPOINT SHIFT Alarm

B 59 4 1 1 0 0 0 0 4 5
F 5 19 44 50 0 2 1 0 8 13
P 54 18 2 2 2 0 0 1 13 10
BP 19 0 0 0 0 0 0 1 6 1
FP 0 3 8 10 0 0 0 1 5 1
BFP 0 0 1 1 1 0 2 1 3 1

Total 137 44 56 64 3 2 3 4 39 31

Table 3: Range of anomalies found for each traffic type.

We illustrated that a remarkable breadth of anomalies, ranging from
unusual customer behavior to malicious activity to network fail-
ures, can be detected by applying the subspace method to such data.
Our work thus forms the first characterization of traffic anomalies
that span an IP network.

Our ongoing work is centered on further validating the subspace
method and developing extensions for automatic anomaly classi-
fication. Thus this paper constitutes a first but promising step to-
wards our broader goal of practical, online diagnosis of network-
wide anomalies.
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