Network Intrusion Detection

Background & History

- Intrusion detection is the new cool systems topic!
 - That started in the early 70s…
- The good olde days…
 - Centralized systems
 - Primary concern was untrusted “insiders” gaining access to unauthorized information
 - Legit users doing inappropriate things
 - Primary source of the problem: too many unforeseen ways people could access memory
 - Invalid assumptions made by programmers
 - Systems designed to aid debugging or add new function (“new paradigm”) could be corrupted
 - Configuration problems (“user error”)

History

- Intrusions detected through audit of logs
 - Develop models of normal usage
 - Instrument system to log “significant events”
 - Events, counts, timestamps, durations, usage, …
 - Detect anomalies
- Problems:
 - False alarms
 - “Normal” a slippery concept
 - What if user covers their tracks?
 - Intrusiveness of the detection system
- Distributed systems and the ability to edit logs led to network-based IDS

IDS Today

- Still grappling with the same fundamental problems
 - System “features” can be exploited for unintended purposes
 - Issue today is largely denial-of-service rather than access to sensitive information
 - Much easier ways to get this…
- IDS still largely network-based
- New(er) issues:
 - Resource usage attacks
 - Scale
 - Time, distance, effect, …
Network Intrusion Detection
Detection basics

- Monitor network traffic…
 - Decentralized end-system monitoring
 - Centralized network-based monitoring
 - Performance problems abound!
- Detect an intrusion — the signal detection problem
 - Signal: An intrusion
 - Noise: Normal traffic
 - Classical approach: Learn distributions of each and classify each new X as it is observed

Network Intrusion Detection
Signature detection basics

- Textual pattern matching
- Protocol field matching
- Packet pattern matching
- Always assumes you know what you are looking for!
- Pros:
 - Low false alarm rate
- Cons:
 - Can only detect yesterday’s intrusions (high “false-negative” rate)
 - Small deviations can defeat (cat & mouse syndrome)

Network Intrusion Detection
Anomaly detection basics

- When is “strange” bad?
- Techniques
 - Component analysis
 - AI techniques
 - Immunology
- Pros:
 - Can recognize new attacks
- Cons:
 - Requires training
 - Can’t classify or name attacks
 - False alarms
 - What if attacks evolve so slowly they appear normal?
 - Is fundamental premise true?
Network Intrusion Detection
Course pseudo-outline

- How to hack a system
 - How to make a machine your slave
 - How to build your own zombie army and take over the world
- What you can do with your army (“How to Own the Internet in Your Spare Time” by Staniford, Paxson, Weaver)
 - Actual attacks
 - Worms, viruses, DoS, DDoS, …
 - Theoretical attacks (“when smart people go bad”)
 - Protocol attacks
 - Congestion control attacks

Network Intrusion Detection
Course pseudo-outline

- Intrusion detection
 - Measurement methods, practices, and limits
 - Direct measurement
 - Indirect measurement (“backscatter,” “Internet background radiation”)
 - Data mining
 - Automatic extraction of features
 - Internet signal processing
 - Component analysis
 - Machine learning
 - Other AI techniques…
 - Honeypots and tarpits
 - IDS evasion & attacks on IDS
 - State of practice

Network Intrusion Detection
Course pseudo-outline

- Mitigation — practice
 - Filtering
 - Traffic normalization

- Mitigation — theory
 - Fingerprinting — Finding the sources of attacks
 - DoS-free protocol design