IDS Using Machine Learning Techniques

COMP 290-40
Brian Begnoche
March 23, 2005

Overview

• What is ML?
• Why use ML with IDS?
• Host-based ML methods
 ♦ 3 examples
• Network-based ML methods
 ♦ 2 examples
• Using ML to improve existing NIDSs
 ♦ 2 examples

Why ML?

• Find patterns of malicious activity
 ♦ difficult and tedious
 ♦ attacks are complex, spatially and temporally
 ♦ stealthy “low and slow” attacks
 ♦ Behavior-based, rather than knowledge-based
• Automation
 ♦ automatically generate rules from training set
 ♦ complete automation not always desirable
 ♦ decision aids for the sys admin

What is Machine Learning?

• Allow computers to “learn”
• Supervised learning
 ♦ Program learns how to behave from predetermined data set
• Unsupervised learning
 ♦ Program learns as it receives input, improving over time
• Collaborative approach between human and machine

ML Techniques

• Host-based
 ♦ Time-based Inductive Learning (1990)
 ♦ ML anomaly detection (1997)
 ♦ Instance-Based Learning (1999)
• Network-based
 ♦ Network Exploitation Detection Analyst Assistant (1999)
 ♦ Genetic algorithms and decision trees
 ♦ Portscan Detection (2004)
 ♦ Threshold Random Walk
• Real-time anomaly detection
 ♦ Unusual or unrecognized activities
• Sequential rules based on user’s behavior over time
 ♦ UNIX commands
• Checked with rulebase
 ♦ Static approach: site security policy
 ♦ Dynamic approach: time-based inductive machine (TIM)
Time-based Inductive Machine (TIM)

- Discovers temporal patterns of highly repetitive activities
 - Patterns described by rules
- Rules generated/modified by inductive generalization
- Input to TIM is an *episode*
 - *Episode = sequence of events*

Example TIM rules

- **E1 - E2 - E3 --> (E4 = 95%; E5 = 5%)**
 - Sequence of events E1, E2, E3
 - Next event E4 95% of the time, E5 the other 5%
- **A-B-C-S-T-S-T-A-B-C-A-B-C**
 - R1: A-B --> (C, 100%)
 - R2: C --> (S, 50%; A 50%)
 - R3: S --> (T, 100%)
 - R4: T --> (A, 50%; S, 50%)
Similarity Measure

• Sim(Seq₁, Seq₂):
 ♦ Algorithm
 • Adjacency counter $c := 1$
 • Similarity measure $Sim := 0$
 • For each position i in sequence length
 - If Seq₁(i) = Seq₂(i) then $Sim := Sim + c$ and increment c
 - Otherwise, $c := 1$
 ♦ Bounded by $n(n+1)/2$, $n=$seq. Length
 ♦ Biased toward adjacent identical tokens
 ♦ Similarity to dictionary is similarity to most similar sequence in dictionary

Similarity Measure Example

```
cd <l> ls -lArF tar <2> less <2>
```

```
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

Final Similarity Score: 9

Smoothed Similarity

• Windowed mean-value filter

$$m_s(i, L) = \frac{1}{w} \sum_{j=i-w}^{i} Sim(Seq_j, L)$$

Testing Differentiation

• 4 users' UNIX command histories
 ♦ Seq. length = 12, dictionary size = 2000
 ♦ Each user tested against all user profiles
 ♦ Should result in high “sameness” when compared with itself
 ♦ Where are true positives? False?

<table>
<thead>
<tr>
<th>Profiled User</th>
<th>Tested User</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER₀</td>
<td>USER₁ USER₂ USER₃</td>
</tr>
<tr>
<td>USER₁</td>
<td>17.64 28.30 23.32 1.25</td>
</tr>
<tr>
<td>USER₂</td>
<td>3.52 54.66 72.10 8.29</td>
</tr>
<tr>
<td>USER₃</td>
<td>6.27 15.74 11.52 69.80</td>
</tr>
</tbody>
</table>

Unit = % of windows labeled as same user

ML Techniques

• Host-based
 ♦ Time-based Inductive Learning (1990)
 ♦ ML anomaly detection (1997)
 ♦ Instance-Based Learning (1999)

• Network-based
 ♦ Network Exploitation Detection Analyst Assistant (1999)
 ♦ Genetic algorithms and decision trees
 ♦ Portscan Detection (2004)
 ♦ Threshold Random Walk

Instance-Based Learning

• Cyclic process
 ♦ Compare sequences with user profile
 ♦ Filter out noise from similarity measure
 ♦ Classify sequence by threshold decision
 ♦ Feedback classification to adjust profile over time
IBL Flow

Fig. 1. Information flow in the instance-based anomaly-detection system.

IBL Accuracy

- Similar test as before
 - All users tested against user 6
 - % of sequences correctly identified
 - +: true negative
 - o: true positive

IBL Time-to-Alarm

- Time measured in token count
- +: true positive
 - Rapid detection
- o: false positive
 - Slower detection
 - Clustered

IBL Storage Reduction

- Instance selection
 - Prediction: Recent sequences will be used again
 - Limit profile size by selection
 - FI FO, LRU, LFU, random
 - FI FO worst
 - LRU and LFU performed best
 - Lose ~3.6% accuracy on true accept rate
 - Gain ~3.5% accuracy on true detect rate
 - False positives? Paper didn’t say...
 - All methods improved time-to-alarm

Selection Comparison

Instance-based accuracy vs normal accuracy
- +: true detect
- o: true accept

Selection Time-to-Alarm

Instance-based TTA vs normal TTA
- +: true alarms
- o: false alarms
IBL Storage Reduction

- Instance clustering
 - Use distance measure to cluster nearby points
 - \(\text{Dist}(X,Y) = \text{Sim}(X,X) - \text{Sim}(X,Y) \)
 - Two approaches:
 - \(K \)-centers: predetermined number of clusters \(K \)
 - Greedy clustering: add points to cluster until mean intercluster distance \(\text{val}(C) \) drops below a threshold \(C \)

Comparing Cluster Methods

- Use distance measure to cluster nearby points
- Two approaches:
 - \(K \)-centers: predetermined number of clusters \(K \)
 - Greedy clustering: add points to cluster until mean intercluster distance \(\text{val}(C) \) drops below a threshold \(C \)

ML Techniques

- Host-based
 - Time-based Inductive Learning (1990)
 - ML anomaly detection (1997)
 - Instance-Based Learning (1999)
- Network-based
 - Network Exploitation Detection Analyst Assistant (1999)
 - Genetic algorithms and decision trees
 - Portscan Detection (2004)
 - Threshold Random Walk

Network Exploitation Detection Analyst Assistant (NEDAA)

- Automatically generate rules for classifying network connections
 - Normal or anomalous
- Two independent, parallel ML methods to generate rules
 - Genetic algorithms
 - Decision trees
- Basically a proposal, paper has no results

Genetic Algorithms

- Based on evolution and natural selection
- Find optimal solutions
 - Potential solution = gene
 - Coded sequence of solution = chromosome
 - Set of genes = population
- “Fitness” of a gene
 - Rule used to filter marked dataset
 - Rewarded for full/partial matches of anomalies, penalized for normal matches
- Two ways that genes evolve
 - Reproduction: New gene created from existing genes
 - Mutation: Gene randomly changes
- Chromosome survival and recombination is biased toward fittest genes
- After certain number of generations, best rules selected
Example Chromosome

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP</td>
<td>42.22.a5.b.c (66.34.229.188)</td>
</tr>
<tr>
<td>Dest IP</td>
<td>15.6.e.76 (21.1.76 + 7.110.118)</td>
</tr>
<tr>
<td>Source port</td>
<td>047051</td>
</tr>
<tr>
<td>Dest port</td>
<td>912320</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
</tbody>
</table>

- **Chromosome:**
 - $(4,2,2,14,5,11,12,1,5,11, -1,6,14,7,6,0,4,7,0,5,1,9,1,2,3,2,0,17)$

Decision Trees

- Classify data with common attributes
 - Remember snort's decision tree?
- Each node specifies an attribute
 - Each leaf is a decision value
 - i.e. Normal or anomalous
- Paper uses ID3 algorithm
 - Use training set to construct tree
 - Prune tree to normal only

ML Techniques

- Host-based
 - Time-based Inductive Learning (1990)
 - ML anomaly detection (1997)
 - Instance-Based Learning (1999)
- Network-based
 - Network Exploitation Detection Analyst Assistant (1999)
 - Genetic algorithms and decision trees
 - Portscan Detection (2004)
 - Threshold Random Walk

Portscan detection

- Identify malicious portscanners
 - Hosts are either benign or a scanner
- Major goal: balance promptness and accuracy
- Threshold Random Walk (TRW)
 - Online detection algorithm to detect scanners
 - Uses Sequential Hypothesis Testing

Sequential Hypothesis Testing

- Uses idea that a successful connection attempt is more likely to come from a benign host
- Choose a hypothesis based on a series of events
 - H_0: host is benign
 - H_1: host is a scanner
 - Event $Y_1 = 0$ if a connection attempt by host is a success, 1 if a failure
Choosing a Hypothesis

- Observe events until one of two thresholds met
 - \(\Lambda(Y) = \frac{\Pr[Y|H_1]}{\Pr[Y|H_0]} \)
 - \(\frac{\Pr[Y|H_k]}{\Pr[Y|H_k]} = \frac{\Pr[Y|H_0]}{\Pr[Y|H_0]} \)

Figure 3. Flow diagram of the real-time detection algorithm

Evaluating TRW

- Three measures
 - Efficiency: ratio of true positives to total number of hosts flagged as scanners
 - Effectiveness: ratio of true positives to all scanners (detection rate)
 - Number of connections required to decide on a hypothesis

Pros of TRW

- Compared with snort and bro
- Improved effectiveness
- Faster detection (N)

<table>
<thead>
<tr>
<th>Measures</th>
<th>TRW</th>
<th>Bro</th>
<th>Snort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>0.960</td>
<td>1.000</td>
<td>0.615</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>0.960</td>
<td>0.150</td>
<td>0.126</td>
</tr>
<tr>
<td>N</td>
<td>6.08</td>
<td>21.40</td>
<td>14.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measures</th>
<th>TRW</th>
<th>Bro</th>
<th>Snort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>0.990</td>
<td>0.029</td>
<td>0.323</td>
</tr>
<tr>
<td>N</td>
<td>6.08</td>
<td>24.91</td>
<td>6.08</td>
</tr>
</tbody>
</table>

Cons of TRW

- Easy to camouflage a scan
 - Intermingle valid connection attempts with scan attempts
- Web spiders look like scanners
- Proxies can get flagged as scanner rather than source
- DoS as result of address spoofing
 - Act like a scanner, spoofing address, so that target’s real traffic also gets dropped

Improving NIDSs

- KDD 1999 CUP dataset
 - KDD Cup is the annual Data Mining and Knowledge Discovery competition
 - 1999 evaluated various NIDS methods
 - Contained four major attack categories
- Data mining NIDS alarms
 - Handle alarms more efficiently

KDD 1999 CUP dataset

- Tested nine ML methods for NIDS
- Two datasets
 - Labeled dataset: training
 - Unlabeled dataset: testing
- Covers four major attack categories
 - Probing: information gathering
 - DoS
 - User-to-root (U2R): unauthorized root access
 - Remote-to-local (R2L): unauthorized local access from remote machine
The nine KDD Cup methods

- Multilayer perceptron (MLP)
- Gaussian classifier (GAU)
- K-means clustering (K-M)
- Nearest cluster algorithm (NEA)
- Incremental radial basis function (IRBF)
- Leader algorithm (LEA)
- Hypersphere algorithm (HYP)
- Fuzzy ARTMAP (ART)
- C4.5 Decision tree (C4.5)

KDD Cup Results

- Probability of detection and false alarm rate
- No method won
- Some methods better for different attacks
- Conclusion? Use multiple methods!

Data mining NIDS alarms

- Learn how to handle future alarms more efficiently
 - Partial automation
 - Manual investigation of alarms is labor-intensive and error-prone
 - Up to 99% of alarms are false positives
- Two different techniques
 - Episode rules
 - Conceptual clustering

Episode Rules

- Predict the occurrence of certain alarms based on occurrence of other alarms
 - Ex.: 50% of “Auth. Failure” alarms followed within 30s by “Guest Login” alarm
- Episode rule form
 - \(<P_1, ..., P_k> = <P_1, ..., P_k, ..., P_n> [s, c, W]\)
 - RHS has minimum \(s\) occurrences in sequence \(S\)
 - RHS occur within time \(W\) after LHS with confidence \(c\)

Results from Episode Rules

- Characteristic episodes of attack tools
- RHS represented massive attack, LHS was early indicator of attack
- Some alarms almost always entail other alarms
 - Ex.: “TCP FIN Host Sweep” implies “Orphaned FIN Packet”
- Discovered legitimate episodes

Episode Rule Drawbacks

- Attainable degree of automation very low
 - <1% of alarms could be handled automatically based on previous episodes
- Tends to produce large number of irrelevant/redundant patterns
- Many patterns difficult to interpret
Conceptual Clustering

- Group events into categories
- Try to use abstract values
 - IP address => network
 - Timestamp => weekday
 - Port number => port range
- Generalization hierarchy
 - Is-a relationship
- Careful not to over-generalize from noise

Generalization Hierarchy

<table>
<thead>
<tr>
<th>SrcIP</th>
<th>DstIP</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip1</td>
<td>ip4</td>
<td>1000</td>
</tr>
<tr>
<td>ip1</td>
<td>ipA1</td>
<td>1</td>
</tr>
<tr>
<td>ip7</td>
<td>ipB1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>ipA1</td>
<td>ipZ1</td>
<td>1</td>
</tr>
<tr>
<td>ipB1</td>
<td>ip4</td>
<td>1</td>
</tr>
<tr>
<td>ipZ1</td>
<td>ip4</td>
<td>1</td>
</tr>
</tbody>
</table>

a) Generalization hierarchy for IP addresses.

b) Sample table.

Figure 3: A generalization hierarchy and sample table.

Summary

- **ML to improve IDS**
 - Automation
 - Efficiency
 - Ease of use
 - Make sense of alarms