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Overview

• What is ML?

• Why use ML with IDS?

• Host-based ML methods
3 examples

• Network-based ML methods
2 examples

• Using ML to improve existing NIDSs
2 examples
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What is Machine Learning?

• Allow computers to “learn”

• Supervised learning
Program learns how to behave from
predetermined data set

• Unsupervised learning
Program learns as it receives input,
improving over time

• Collaborative approach between
human and machine
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Why ML?

• Find patterns of malicious activity
difficult and tedious

attacks are complex, spatially and temporally

stealthy "low and slow" attacks

Behavior-based, rather than knowledge-
based

• Automation
automatically generate rules from training set

complete automation not always desirable

decision aids for the sys admin
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ML Techniques

• Host-based
Time-based Inductive Learning (1990)

ML anomaly detection (1997)

Instance-Based Learning (1999)

• Network-based
Network Exploitation Detection Analyst Assistant

(1999)

• Genetic algorithms and decision trees

Portscan Detection (2004)

• Threshold Random Walk
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Time-based Inductive
Learning

• Real-time anomaly detection
Unusual or unrecognized activities

• Sequential rules based on user's
behavior over time

UNIX commands

• Checked with rulebase
Static approach: site security policy

Dynamic approach: time-based inductive
machine (TIM)
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Time-based Inductive
Machine (TIM)

• Discovers temporal patterns of
highly repetitive activities

Patterns described by rules

• Rules generated/modified by
inductive generalization

• Input to TIM is an episode
Episode = sequence of events
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Example TIM rules

• E1 – E2 – E3 --> (E4 = 95%; E5
= 5%)

Sequence of events E1, E2, E3

Next event E4 95% of the time, E5 the
other 5%

• A-B-C-S-T-S-T-A-B-C-A-B-C
R1: A-B --> (C, 100%)

R2: C --> (S, 50%; A 50%)

R3: S --> (T, 100%)

R4: T --> (A, 50%; S, 50%)
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Inductive Generalization

• Update rules until rulebase
consists of high quality
hypotheses

High accuracy in prediction

• Hypothesis is correct most of the time

• Described as entropy

• Entropy = 
i
(-p

i
log(p

i
))

High level of confidence

• Hypothesis confirmed by many observations
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ML Techniques

• Host-based
Time-based Inductive Learning (1990)

ML anomaly detection (1997)

Instance-Based Learning (1999)

• Network-based
Network Exploitation Detection Analyst Assistant

(1999)

• Genetic algorithms and decision trees

Portscan Detection (2004)

• Threshold Random Walk
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ML Anomaly Detection

• Compare command sequences w/
user profile

behavior, not content

HCI is causal

Empirically, best length 8-12 commands

• Based on positive examples of
valid user behavior

• Similarity measure
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Example command sequence

• Example command stream:
> ls -laF
> cd /tmp
> gunzip -c foo.tar.gz | (cd \ ; tar xf -)

• Translated into token stream:
ls -laF cd <1> gunzip -c <1> | ( cd <1> ;
tar - <1> )
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Similarity Measure

• Sim(Seq
1
, Seq

2
):

Algorithm

• Adjancy counter c := 1

• Similarity measure Sim := 0

• For each position i in sequence length

– If Seq1(i) = Seq2(i) then Sim := Sim + c and
increment c

– Otherwise, c := 1

Bounded by n(n+1)/2, n=seq. Length

Biased toward adjacent identical tokens

Similarity to dictionary is similarity to
most similar sequence in dictionary
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Similarity Measure Example
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Smoothed Similarity

• Windowed mean-value filter

Similarity

Episode #
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Testing Differentiation

P r o f i l e d  U s e r T e s t e d  U s e r

U S E R 0 U S E R 1 U S E R 2 U S E R 3

U S E R 0 9 9 . 1 9 3 5 . 3 5 6 . 1 1 0 . 0 0

U S E R 1 1 7 . 8 4 8 8 . 3 0 2 3 . 3 2 1 . 2 5

U S E R 2 3 . 5 2 5 4 . 8 6 7 2 . 1 0 8 . 2 9

U S E R 3 6 . 2 7 1 5 . 7 4 1 1 . 5 2 6 9 . 8 5

• 4 users' UNIX command histories
Seq. length = 12, dictionary size = 2000

Each user tested against all user profiles

Should result in high “sameness” when
compared with itself

• Where are true positives?  False?

Unit = %

of

windows

labeled as

same user
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ML Techniques

• Host-based
Time-based Inductive Learning (1990)

ML anomaly detection (1997)

Instance-Based Learning (1999)

• Network-based
Network Exploitation Detection Analyst Assistant

(1999)

• Genetic algorithms and decision trees

Portscan Detection (2004)

• Threshold Random Walk
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Instance-Based Learning

• Cyclic process
Compare sequences with user profile

Filter out noise from similarity measure

Classify sequence by threshold decision

Feedback classification to adust profile over
time
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IBL Flow
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IBL Accuracy

• Similar test as
before

All users tested
against user 6

% of sequences
correctly
identified

+: true negative

o: true positive

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

IBL Time-to-Alarm

• Time measured
in token count

• +: true positive
Rapid detection

• o: false positive
Slower detection

Clustered
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IBL Storage Reduction

• Instance selection
Prediction: Recent sequences will be used
again

Limit profile size by selection

• FIFO, LRU, LFU, random

FIFO worst

LRU and LFU performed best

• Lose ~3.6% accuracy on true accept rate

• Gain ~3.5% accuracy on true detect rate

False positives?  Paper didn't say...

All methods improved time-to-alarm
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Selection Comparison

Instance-based

accuracy vs

normal

accuracy

+: true detect

o: true accept
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Selection Time-to-Alarm

Instance-

based TTA

vs normal

TTA

+: true alarms

o: false

alarms



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

IBL Storage Reduction

• Instance clustering
Use distance measure to cluster nearby
points

Dist(X,Y) = Sim(X,X) – Sim(X,Y)

Two approaches:

• K-centers: predetermined number of clusters K

• Greedy clustering: add points to cluster until
mean intercluster distance val(C) drops below a
threshold C
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Comparing Cluster Methods

Insignificant difference in accuracy, but

greedy clustering has better TTA
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ML Techniques

• Host-based
Time-based Inductive Learning (1990)

ML anomaly detection (1997)

Instance-Based Learning (1999)

• Network-based
Network Exploitation Detection Analyst Assistant

(1999)

• Genetic algorithms and decision trees

Portscan Detection (2004)

• Threshold Random Walk
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Network Exploitation
Detection Analyst Assistant
(NEDAA)
• Automatically generate rules for

classifying network connections
Normal or anomalous

• Two independent, parallel ML
methods to generate rules

Genetic algorithms

Decision trees

• Basically a proposal, paper has no
results
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Genetic Algorithms

• Based on evolution and natural
selection

• Find optimal solutions
Potential solution = gene

Coded sequence of solution = chromosome

Set of genes = population

• “Fitness” of a gene
Rule used to filter marked dataset

Rewarded for full/partial matches of
anomalies, penalized for normal matches
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Genetic Algorithms

• Two ways that genes evolve
Reproduction: New gene created from
existing genes

Mutation: Gene randomly changes

• Chromosome survival and
recombination is biased toward
fittest genes

• After certain number of
generations, best rules selected



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Example Chromosome

• Chromosome:
(4,2,2,2,14,5,11,12,1,5,11,
-1,6,14,7,6,0,4,7,0,5,1,9,1,2,3,2,0,17)

A t t r i b u t e V a l u e

S o u r c e  I P 4 2 . 2 2 . e 5 . b c ( 6 6 . 3 4 . 2 2 9 . 1 8 8 )

D e s t  I P 1 5 . b * . 6 e . 7 6 ( 2 1 . 1 7 6 + ? . 1 1 0 . 1 1 8 )

S o u r c e  p o r t 0 4 7 0 5 1

D e s t  p o r t 9 1 2 3 2 0

P r o t o c o l T C P
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Decision Trees

• Classify data with common
attributes

Remember snort's decision tree?

• Each node specifies an attribute

• Each leaf is a decision value
i.e. Normal or anomalous

• Paper uses ID3 algorithm
Use training set to construct tree

Prune tree to normal only
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Decision Tree Example
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ML Techniques

• Host-based
Time-based Inductive Learning (1990)

ML anomaly detection (1997)

Instance-Based Learning (1999)

• Network-based
Network Exploitation Detection Analyst Assistant

(1999)

• Genetic algorithms and decision trees

Portscan Detection (2004)

• Threshold Random Walk
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Portscan detection

• Identify malicious portscanners
Hosts are either benign or a scanner

• Major goal: balance promptness
and accuracy

• Threshold Random Walk (TRW)
Online detection algorithm to detect scanners

Uses Sequential Hypothesis Testing
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Sequential Hypothesis
Testing

• Uses idea that a successful
connection attempt is more likely
to come from a benign host

• Choose a hypothesis based on a
series of events

H
0
: host is benign

H
1
: host is a scanner

Event Yi = 0 if a connection attempt by
host is a success, 1 if a failure
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Choosing a Hypothesis

• Observe events
until one of
two thresholds
met
♦ (Y) =

Pr[Y|H
1
]/Pr[Y|H

0
]

Pr[Y|H
k
]=

Pr[Y
i
|H

k
]
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Evaluating TRW

• Three measures
Efficiency: ratio of true positives to total
number of hosts flagged as scanners

Effectiveness: ratio of true positives to all
scanners (detection rate)

Number of connections required to decide
on a hypothesis
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Pros of TRW

• Compared with snort and bro

• Improved effectiveness

• Faster detection (N)

M e a s u r e s T R W B r o S n o r t

L B L E f f i c i e n c y 0 . 9 6 3 1 . 0 0 0 0 . 6 1 5

E f f e c t i v e n e s s 0 . 9 6 0 0 . 1 5 0 0 . 1 2 6

N 4 . 0 8 2 1 . 4 0 1 4 . 0 6

I C S I E f f i c i e n c y 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0

E f f e c t i v e n e s s 0 . 9 9 2 0 . 0 2 9 0 . 0 2 9

N 4 . 0 6 3 6 . 9 1 6 . 0 0
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Cons of TRW

• Easy to camouflage a scan
Intermingle valid connection attempts
with scan attempts

• Web spiders look like scanners

• Proxies can get flagged as
scanner rather than source

• DoS as result of address spoofing
Act like a scanner, spoofing address, so
that target's real traffic also gets dropped
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Improving NIDSs

• KDD 1999 CUP dataset
KDD Cup is the annual Data Mining and
Knowledge Discovery competition

1999 evaluated various NIDS methods

Contained four major attack categories

• Data mining NIDS alarms
Handle alarms more effeciently
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KDD 1999 CUP dataset

• Tested nine ML methods for NIDS

• Two datasets
Labeled dataset: training

Unlabeled dataset: testing

• Covers four major attack categories
Probing: information gathering

DoS

User-to-root (U2R): unauthorized root access

Remote-to-local (R2L): unauthorized local
access from remote machine
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The nine KDD Cup methods

• Multilayer perceptron (MLP)

• Gaussian classifier (GAU)

• K-means clustering (K-M)

• Nearest cluster algorithm (NEA)

• Incremental radial basis function (IRBF)

• Leader algorithm (LEA)

• Hypersphere algorithm (HYP)

• Fuzzy ARTMAP (ART)

• C4.5 Decision tree (C4.5)
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KDD Cup Results

• Probability of
detection and
false alarm rate

• No method won

• Some methods
better for
different attacks

• Conclusion?  Use
multiple methods!
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Data mining NIDS alarms

• Learn how to handle future alarms
more efficiently

Partial automation

Manual investigation of alarms is labor-
intensive and error-prone

Up to 99% of alarms are false positives

• Two different techniques
Episode rules

Conceptual clustering
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Episode Rules

• Predict the occurrence of certain
alarms based on occurrence of
other alarms

Ex.: 50% of “Auth. Failure” alarms
followed within 30s by “Guest Login” alarm

• Episode rule form
<P

1
,...,P

k
>=><P

1
,...,P

k
,...,P

n
> [s,c,W]

• RHS has minimum s occurences in sequence S

• RHS occur within time W after LHS with

confidence c
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Results from Episode Rules

• Characteristic episodes of attack
tools

• RHS represented massive attack,
LHS was early indicator of attack

• Some alarms almost always
entail other alarms

Ex.: “TCP FIN Host Sweep” implies
“Orphaned FIN Packet”

• Discovered legitimate episodes
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Episode Rule Drawbacks

• Attainable degree of automation
very low

<1% of alarms could be handled
automatically based on previous episodes

• Tends to produce large number of
irrelevant/redundant patterns

• Many patterns difficult to
interpret
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Conceptual Clustering

• Group events into categories

• Try to use abstract values
IP address => network

Timestamp => weekday

Port number => port range

• Generalization hierarchy
Is-a relationship

• Careful not to over-generalize
from noise
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Generalization Hierarchy
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Summary

• ML to improve IDS
Automation

Efficiency

Ease of use

Make sense of alarms


