

IDS Using Machine Learning Techniques

COMP 290-40 Brian Begnoche March 23, 2005

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- · What is ML?
- Why use ML with IDS?
- Host-based ML methods
 - ♦ 3 examples
- Network-based ML methods
 - ♦ 2 examples
- Using ML to improve existing NIDSs
 - ♦ 2 examples

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

What is Machine Learning?

- Allow computers to "learn"
- Supervised learning
 - Program learns how to behave from predetermined data set
- Unsupervised learning
 - ◆ Program learns as it receives input, improving over time
- Collaborative approach between human and machine

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Find patterns of malicious activity

- difficult and tedious
- attacks are complex, spatially and temporally
- ♦ stealthy "low and slow" attacks
- Behavior-based, rather than knowledgebased
- Automation
 - automatically generate rules from training set
 - ◆ complete automation not always desirable
 - decision aids for the sys admin

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ML Techniques

- · Host-based
 - ♦ Time-based Inductive Learning (1990)
 - ♦ ML anomaly detection (1997)
 - ◆ Instance-Based Learning (1999)
- Network-based
 - Network Exploitation Detection Analyst Assistant (1999)
 - · Genetic algorithms and decision trees
 - ◆ Portscan Detection (2004)
 - Threshold Random Walk

Time-based Inductive Learning

Real-time anomaly detection

- Unusual or unrecognized activities
- Sequential rules based on user's behavior over time
 - **♦ UNIX commands**
- Checked with rulebase
 - ♦ Static approach: site security policy
 - Dynamic approach: time-based inductive machine (TIM)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Time-based Inductive Machine (TIM)

- Discovers temporal patterns of highly repetitive activities
 - ♦ Patterns described by rules
- Rules generated/modified by inductive generalization
- Input to TIM is an episode
 - ♦ Episode = sequence of events

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

WExample TIM rules

- E1 E2 E3 --> (E4 = 95%; E5 = 5%)
 - ♦ Sequence of events E1, E2, E3
 - Next event E4 95% of the time, E5 the other 5%
- A-B-C-S-T-S-T-A-B-C-A-B-C
 - ♦ R1: A-B --> (C, 100%)
 - ♦ R2: C --> (S, 50%; A 50%)
 - ♦ R3: S --> (T, 100%)
 - ♦ R4: T --> (A, 50%; S, 50%)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Inductive Generalization

- Update rules until rulebase consists of high quality hypotheses
 - ♦ High accuracy in prediction
 - · Hypothesis is correct most of the time
 - · Described as entropy
 - Entropy = $\Sigma_i(-p_i\log(p_i))$
 - ♦ High level of confidence
 - · Hypothesis confirmed by many observations

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ML Techniques

- Host-based
 - ◆ Time-based Inductive Learning (1990)
 - ♦ ML anomaly detection (1997)
 - ♦ Instance-Based Learning (1999)
- Network-based
 - Network Exploitation Detection Analyst Assistant (1999)
 - · Genetic algorithms and decision trees
 - ◆ Portscan Detection (2004)
 - Threshold Random Walk

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ML Anomaly Detection

- Compare command sequences w/ user profile
 - ♦ behavior, not content
 - ♦ HCI is causal
 - ♦ Empirically, best length 8-12 commands
- Based on positive examples of valid user behavior
- Similarity measure

S Example command sequence

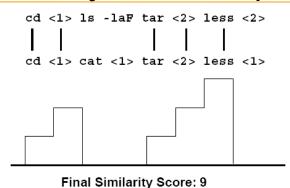
- Example command stream:
 - ♦ > Is -laF
 - > cd /tmp
 - > gunzip -c foo.tar.gz | (cd \ ; tar xf -)
- · Translated into token stream:
 - + Is -IaF cd <1> gunzip -c <1> | (cd <1> ;
 tar <1>)

Similarity Measure

- Sim(Seq₁, Seq₂):
 - **♦** Algorithm
 - Adjancy counter c := 1
 - Similarity measure Sim := 0
 - · For each position i in sequence length
 - If Seq₁(i) = Seq₂(i) then Sim := Sim + c and increment c
 - Otherwise, c := 1
 - ♦ Bounded by n(n+1)/2, n=seq. Length
 - ♦ Biased toward adjacent identical tokens
 - Similarity to dictionary is similarity to most similar sequence in dictionary

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Similarity Measure Example



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Smoothed Similarity

Windowed mean-value filter

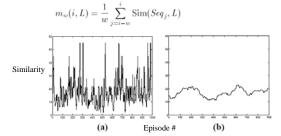


Figure 1: Similarity measure stream. (a) Raw. (b) Smoothed.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Testing Differentiation

- 4 users' UNIX command histories
 - ♦ Seq. length = 12, dictionary size = 2000
 - ◆ Each user tested against all user profiles
 - Should result in high "sameness" when compared with itself
 - · Where are true positives? False?

Profiled User		Tested	User		
	USERO	USER1	USER2	J S E R 3	
USERO	99.19	35.35	6.11	0.00	Unit = %
USER1	17.84	88.30	23.32	1.25	of
USER2	3 . 5 2	5 4 . 8 6	7 2 .1 0	8.29	windows
USER3	6 .2 7	15.74	1 1 . 5 2	69.85	labeled as same user

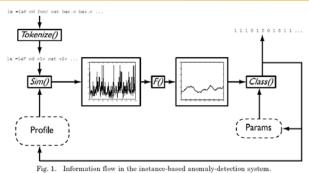
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ML Techniques

- · Host-based
 - ◆ Time-based Inductive Learning (1990)
 - ♦ ML anomaly detection (1997)
 - ◆ Instance-Based Learning (1999)
- Network-based
 - Network Exploitation Detection Analyst Assistant (1999)
 - · Genetic algorithms and decision trees
 - ◆ Portscan Detection (2004)
 - · Threshold Random Walk

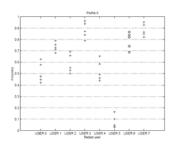
🜃 Instance-Based Learning

- Cyclic process
 - ♦ Compare sequences with user profile
 - ♦ Filter out noise from similarity measure
 - ◆ Classify sequence by threshold decision
 - Feedback classification to adust profile over time



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

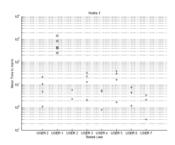
IBL Accuracy



- Similar test as before
 - All users tested against user 6
 - ♦ % of sequences correctly identified
 - +: true negative
 - ♦ o: true positive

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

IBL Time-to-Alarm



- Time measured in token count
- +: true positive
 - ◆ Rapid detection
- · o: false positive
 - **♦ Slower detection**
 - **♦ Clustered**

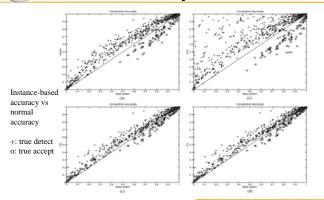
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

IBL Storage Reduction

- Instance selection
 - Prediction: Recent sequences will be used again
 - ♦ Limit profile size by selection
 - FIFO, LRU, LFU, random
 - **♦ FIFO worst**
 - ◆ LRU and LFU performed best
 - · Lose ~3.6% accuracy on true accept rate
 - Gain ~3.5% accuracy on true detect rate
 - ♦ False positives? Paper didn't say...
 - ♦ All methods improved time-to-alarm

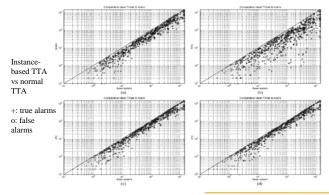
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Selection Comparison



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Selection Time-to-Alarm



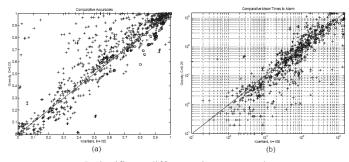
IBL Storage Reduction

- Instance clustering
 - Use distance measure to cluster nearby points
 - ♦ Dist(X,Y) = Sim(X,X) Sim(X,Y)
 - ♦ Two approaches:
 - K-centers: predetermined number of clusters K
 - Greedy clustering: add points to cluster until mean intercluster distance val(C) drops below a threshold C

 $val(\mathbf{C}) = \frac{\sum_{x \in \mathbf{C}} \sum_{y \in \mathbf{C}} \mathrm{Dist}(x, y)}{|\mathbf{C}|^2}$

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

National Cluster Methods



Insignificant difference in accuracy, but greedy clustering has better TTA

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ML Techniques

- Host-based
 - ◆ Time-based Inductive Learning (1990)
 - ♦ ML anomaly detection (1997)
 - ♦ Instance-Based Learning (1999)
- · Network-based
 - Network Exploitation Detection Analyst Assistant (1999)
 - · Genetic algorithms and decision trees
 - ◆ Portscan Detection (2004)
 - · Threshold Random Walk

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Network Exploitation Detection Analyst Assistant (NEDAA)

- Automatically generate rules for classifying network connections
 - ♦ Normal or anomalous
- Two independent, parallel ML methods to generate rules
 - ♦ Genetic algorithms
 - ◆ Decision trees
- Basically a proposal, paper has no results

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Genetic Algorithms

- Based on evolution and natural selection
- Find optimal solutions
 - ♦ Potential solution = gene
 - ◆ Coded sequence of solution = chromosome
 - ♦ Set of genes = population
- "Fitness" of a gene
 - ◆ Rule used to filter marked dataset
 - ♦ Rewarded for full/partial matches of anomalies, penalized for normal matches

 The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Senetic Algorithms

- Two ways that genes evolve
 - Reproduction: New gene created from existing genes
 - ♦ Mutation: Gene randomly changes
- Chromosome survival and recombination is biased toward fittest genes
- After certain number of generations, best rules selected

Example Chromosome

Attribute Value

Source IP 4 2 . 2 2 . e 5 . b c (6 6 . 3 4 . 2 2 9 . 1 8 8)

D e st IP 1 5 . b * . 6 e . 7 6 (2 1 . 1 7 6 + ? . 1 1 0 . 1 1 8)

Source port 047051
Dest port 912320
Protocol TCP

· Chromosome:

♦ (4,2,2,2,14,5,11,12,1,5,11, -1,6,14,7,6,0,4,7,0,5,1,9,1,2,3,2,0,17)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Dec

M Decision Trees

- Classify data with common attributes
 - Remember snort's decision tree?
- · Each node specifies an attribute
- Each leaf is a decision value
 - ♦ i.e. Normal or anomalous
- Paper uses ID3 algorithm
 - ♦ Use training set to construct tree
 - ◆ Prune tree to normal only

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Decision Tree Example

Table 1. Example Intrusion Data

IP Port	System Name	category
004020	Artemis	normal
004020	Apollo	intrusion
002210	Artemis	normal
002210	Apollo	intrusion
000010	Artemis	normal
0000010	Analla	normal

Figure 1. Example Intrusion Decision Tree

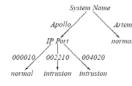
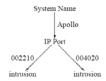


Figure 2. Pruned Decision Tree



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ML Techniques

- Host-based
 - ◆ Time-based Inductive Learning (1990)
 - ♦ ML anomaly detection (1997)
 - ♦ Instance-Based Learning (1999)
- Network-based
 - Network Exploitation Detection Analyst Assistant (1999)
 - · Genetic algorithms and decision trees
 - ◆ Portscan Detection (2004)
 - Threshold Random Walk

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Portscan detection

- Identify malicious portscanners
 - ♦ Hosts are either benign or a scanner
- Major goal: balance promptness and accuracy
- Threshold Random Walk (TRW)
 - Online detection algorithm to detect scanners
 - ♦ Uses Sequential Hypothesis Testing

Sequential Hypothesis Testing

- Uses idea that a successful connection attempt is more likely to come from a benign host
- Choose a hypothesis based on a series of events
 - ♦ H_o: host is benign
 - ♦ H₁: host is a scanner
 - Event Y_i = 0 if a connection attempt by host is a success, 1 if a failure

Choosing a Hypothesis

- Observe events until one of two thresholds met
 - $\oint \Lambda(Y) = \Pr[Y | H_1] / \Pr[Y | H_0]$
 - ♦ Pr[Y|H_k]=Π Pr[Y_i|H_k]

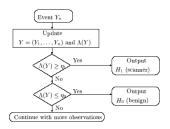


Figure 3. Flow diagram of the real-time detection algorithm

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Evaluating TRW

- Three measures
 - Efficiency: ratio of true positives to total number of hosts flagged as scanners
 - Effectiveness: ratio of true positives to all scanners (detection rate)
 - Number of connections required to decide on a hypothesis

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Pros of TRW

- Compared with snort and bro
- Improved effectiveness
- Faster detection (N)

	Measures TRW	Bro	Snort
LBL	E fficie n c y	0.963	1.000 0.615
	E ffectiveness	0.960	0 .1 5 0 0 .1 2 6
	N	4.08	2 1 . 4 0 1 4 . 0 6
ICSI	E fficiency	1.000	1.000 1.000
	Effectiveness	0.992	0.029 0.029
	N	4.06	36.91 6.00

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cons of TRW

- Easy to camouflage a scan
 - Intermingle valid connection attempts with scan attempts
- · Web spiders look like scanners
- Proxies can get flagged as scanner rather than source
- DoS as result of address spoofing
 - Act like a scanner, spoofing address, so that target's real traffic also gets dropped

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Improving NIDSs

- KDD 1999 CUP dataset
 - ♦ KDD Cup is the annual Data Mining and Knowledge Discovery competition
 - ♦ 1999 evaluated various NIDS methods
 - ♦ Contained four major attack categories
- Data mining NIDS alarms
 - ♦ Handle alarms more effeciently

KDD 1999 CUP dataset

- Tested nine ML methods for NIDS
- Two datasets
 - ♦ Labeled dataset: training
 - ◆ Unlabeled dataset: testing
- Covers four major attack categories
 - ♦ Probing: information gathering
 - ♦ DoS
 - ◆ User-to-root (U2R): unauthorized root access
 - ◆ Remote-to-local (R2L): unauthorized local access from remote machine

The nine KDD Cup methods

- · Multilayer perceptron (MLP)
- · Gaussian classifier (GAU)
- · K-means clustering (K-M)
- Nearest cluster algorithm (NEA)
- · Incremental radial basis function (IRBF)
- · Leader algorithm (LEA)
- · Hypersphere algorithm (HYP)
- Fuzzy ARTMAP (ART)
- C4.5 Decision tree (C4.5)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ALL.

KDD Cup Results

- Probability of detection and false alarm rate
- No method won
- Some methods better for different attacks
- Conclusion? Use multiple methods!

		Probe	DoS	U2R	R2L
MLP	PD	0.887	0.972	0.132	0.056
MLP	FAR	0.004	0.003	5E-4	1E-4
GAU	PD	0.902	0.824	0.228	0.096
GAU	FAR	0.113	0.009	0.005	0.001
К-М	PD	0.876	0.973	0.298	0.064
K-M	FAR	0.026	0.004	0.004	0.001
NEA	PD	0.888	0.971	0.022	0.034
NEA	FAR	0.005	0.003	6E-6	1E-4
RBF	PD	0.932	0.730	0.061	0.059
KBF	FAR	0.188	0.002	4E-4	0.003
LEA	PD	0.838	0.972	0.066	0.001
LEA	FAR	0.003	0.003	3E-4	3E-5
HYP	PD	0.848	0.972	0.083	0.010
ни	FAR	0.004	0.003	9E-5	5E-5
ART	PD	0.772	0.970	0.061	0.037
AKI	FAR	0.002	0.003	1E-5	4E-5
C4.5	PD	0.808	0.970	0.018	0.046
C4.5	FAR	0.007	0.003	2E-5	5E-5

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Nata mining NIDS alarms

- Learn how to handle future alarms more efficiently
 - ♦ Partial automation
 - Manual investigation of alarms is laborintensive and error-prone
 - ♦ Up to 99% of alarms are false positives
- Two different techniques
 - **♦ Episode rules**
 - ◆ Conceptual clustering

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Episode Rules

- Predict the occurrence of certain alarms based on occurrence of other alarms
 - ◆ Ex.: 50% of "Auth. Failure" alarms followed within 30s by "Guest Login" alarm
- Episode rule form
 - $\bullet < P_1, ..., P_k > = > < P_1, ..., P_k, ..., P_n > [s, c, W]$
 - RHS has minimum s occurences in sequence S
 - RHS occur within time W after LHS with confidence c

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Results from Episode Rules

- Characteristic episodes of attack tools
- RHS represented massive attack, LHS was early indicator of attack
- Some alarms almost always entail other alarms
 - ◆ Ex.: "TCP FIN Host Sweep" implies "Orphaned FIN Packet"
- Discovered legitimate episodes

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Episode Rule Drawbacks

- Attainable degree of automation very low
 - <1% of alarms could be handled automatically based on previous episodes
- Tends to produce large number of irrelevant/redundant patterns
- Many patterns difficult to interpret

Conceptual Clustering

- · Group events into categories
- Try to use abstract values
 - ♦ IP address => network
 - ♦ Timestamp => weekday
 - ♦ Port number => port range
- Generalization hierarchy
 - ♦ Is-a relationship
- Careful not to over-generalize from noise

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- ML to improve IDS
 - ♦ Automation
 - ♦ Efficiency
 - ♦ Ease of use
 - ♦ Make sense of alarms

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

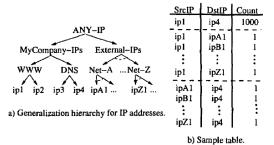


Figure 3: A generalization hierarchy and sample table.