

Authenticated Marking Scheme	Real Authentication with a MAC
One problem with all of these schemes is that a compromised router on the attack path could change the packet markings to create a false path and disguise the real path	 Marked packets can be authenticated using a Message Authentication Code (MAC) The MAC a secret key shared between a marking router and victim By using this key in the hash, each router
Digitally signing the packet markings is expensive both in terms of space and computation	 produces a unique marking that cannot be forged by a compromised router For this to work some secure method of key exchange is needed
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL	The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Using Time-Released Chains	Reacket Marking Schemes
 The problem of key exchange can be overcome by each router using a hash chain of MAC keys Each of these keys is associated with a time interval and packets marked during that interval are marked using that interval's key 	Could be incorporated into most existing infrastructure with only changes to the routers' OS
 After a long enough time for all the packets marked during an interval to have arrived, the MAC key for that interval is publicly released, allowing attack victims trying to reconstruct an attack path to authenticate packets marked by that router 	Only effective again attacking involving large numbers of packets (DoS attacks)
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL	The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
	Source Path Identification Engine
Single Packet IP Traceback	 A method for the traceback of a single packet Useful against non-DoS attacks (Ping of Death, LAND) or individualized attacks Must work against hostile opponents and networks Must respect user privacy Must not require to many system resources (storage, processor)
	 Must be able to trace packets that undergo transformations (encapsulation, generation or duplication)
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL	The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Transformation Processing	Transformation Processing
The system must be able to trace packets that undergo transformations in route	The SPIE maintains a transformation lookup table along with each digest it stores
The SPIE must store enough information to be able to recover any changes that occurred to the fields it hashes into the digest	The TLT stores 29 bits of the digest, the type of transformation and any irrecoverable data, either in the 32 bit packet data section or in an external data structure
These can include: fragmentation, network address translation, ICMP messages, IP-in-IP tunneling and IP security	The rarity of transformations allows for the partial digest storage
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL	The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Transformation Processing	Transformation Processing
Digest Type I Packet Data 29 bits 3 bits 32 bits Fig. 5. A Transform Lookup Table (TLT) stores sufficient information to invert packet transformations at SPIE routers. The table is indexed by packet digest, specifies the type of transformation, and stores any irrecoverable packet data.	The SPIE maintains a transformation lookup table along with each digest it stores
	The TLT stores 29 bits of the digest, the type of transformation and any irrecoverable data, either in the 32 bit packet data section or in an external data structure
	The rarity of transformations allows for the partial digest storage
	Packets not found in the digest are then checked against the TLT
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL	The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Source Path Identification Engine	Conclusions
Allows for the origin of individual packets to be traced	Both schemes have their advantages
Has time constraints that packet marking	No real world implementation of either
 schemes do not Would require a much larger investment in infrastructure changes than packet marking 	Implementation of Fragment Marking seems more likely, but not without the enthusiastic support of a major vendor and/or major ISPs
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL	The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

References

Network Support for IP Traceback Stefan Savage, David Wetherall, Member, IEEE, Anna Karlin, and Tom Anderson

Advanced and Authenticated Marking Schemes for IP Traceback Dawn Xiaodong Song and Adrian Perrig fdawnsong, perrigg@cs.berkeley.edu Computer Science Department University of California, Berkeley

Single-Packet IP Traceback Alex C. Snoeren, *Student Member, IEEE*, Craig Partridge, *Fellow, IEEE*, Luis A. Sanchez, Christine E. Jones, Fabrice Tchakountio, *Member, IEEE*, Beverly Schwartz, Stephen T. Kent, and W. Timothy Strayer, *Senior Member, IEEE*

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL