

Agenda

Related Field	Ambiguity (Decision problem for NIDS)
TTL	Will the packet reach the end-system before TTL becomes 0?
Length, DF	Will all downstream links be able to transmit this big packet without fragmenting (DF bit set)?
IP Option(s)	Will the end-system/routers accept packet with this IP option(s)? E.g. (Strict) Source Route option
TCP option(s)	Will the end-system accept packet with this TCP option(s)?
Data	Will the end-system accept data in SYN packet?
ToS	Does the packet conform to all internal routers (DiffServ)?
IP Frag Offset	How will the end-system reassemble overlapping fragments?
TCP Seq No.	How will the end-system reassemble overlapping segments?

IP Fragment Reassembly Time-Out Different fragment time-out periods between NIDS and end-system

- Attacker can wait after sending some fragments
 To let them time-out either at NIDS or at end-system
- When should NIDS time-out stored fragments?
 - Storing fragments dropped by end-host (Insertion)
 - Storing fragments for too long (DoS attacks)
 - Dropping fragments stored by end-host (Evasion)

Evading/Attacking NIDS

4/25/2005

Transport Layer Ambiguities TCP Header Fields Allow invalid flag combinations? Accept data in SYN packets? TCP Options Accept/reject options in non-SYN packets? Only if sent and accepted in an earlier SYN MSS (Maximum Segment Size) option in SYN only PAWS (Protection Against Wrapped Sequence Nos.) End-systems implementing PAWS expect TS (TimeStamp) option in all segments

IP Fragment Reassembly [contd...] Overlapping Fragments How will the end-system handle the overlap?

- Whether to prefer old or new data?
- Different OSs handle overlap differently

Operating System	IP Fragment Overlap Behavior
Windows NT 4.0	Always favors old data
4.4 BSD	Favors new data for forward overlap
Linux	Favors new data for forward overlap
Solaris 2.6	Always favors old data
HP-UX 9.01	Favors new data for forward overlap
Irix 5.3	Favors new data for forward overlap

Transport Layer Ambiguities [contd]				
• TCF – F – S	 P 3-way Handshake (TCB creation) Require full handshake? Misses already active connections Sync sequence nos. in between? Attacker can easily desync NIDS Best to sync on outbound SYN-ACK packets 			
• TCF – V – F	 P Teardown Vhen to time-out inactive connections? • No implicit TCP connection time-out IN and RST to terminate the connection • FIN is acknowledged, RST not acknowledged 			
4/25/2005	Evading/Attacking NIDS	18		

TCP Segment Reassembly [contd...]

Overlapping Segments

Test Examples

- How will the end-system handle the overlap?
- Whether to prefer old or new data?
- Different OSs handle overlap differently

Operating System	TCP Segment Overlap Behavior	
Windows NT 4.0	Always favors old data	
FreeBSD 2.2	Favors new data for forward overlap	
Linux	Favors new data for forward overlap	
Solaris 2.6	Favors new data for forward overlap	
HP-UX 9.01	Favors new data for forward overlap	
AIX 3.25	Favors new data for forward overlap	
Irix 5.3	Favors new data for forward overlap	
05	Evading/Attacking NIDS	20

th one of ort IDS 1 ompletely dupli

plete a TCP handshake, send

ing/Autorning Mide

the ack to "GET" on the target host are the subject IDS correctly has in IP fragmen

replaced v

4/2

Tests

/25/2005

- Targeted several IP/TCP problems
- Mimicked PHF web-server attack
 - GET /cgi-bin/phf?
 - Possible execution of arbitrary code
 - Supposed to be detected by all NIDSs tested
 - · RealSecure
 - NetRanger
 - SessionWalli3
 - Network Flight Recorder (NFR)

Evading/Attacking NIDS

23

1/25/2005

Incompleteness of Normalization Application Level Protocols Cannot be normalized w/o detailed knowledge about them Even IP/TCP Level Normalization is Incomplete Handling of TCP urgent pointer depends on the application semantics Socket level options not known to normalizer/NIDS

Normalization Concerns • End-to-end Semantics – Must be preserved for well behaved traffic – Sometimes benign traffic may cause ambiguities • Impact on End-to-end Performance – Adversely affects the performance – Line-speed operations required • Normalization vs Protection vs Detection – Different from firewalls, NIDS but can share load 4/25/2005 Evading/Attacking NIDS 38

TCP RST Acceptance

- Ideally, accept iff it is within the receiver's window

Evading/Attacking NIDS

- Steps (Repeated with O = 0, 1, W+)
 - Send TCP SYN at Seq No. S
 - Recv SYN-ACK with window W
 - Send ACK to establish conn
 - Send RST at Seq No. S+O
 - Send FIN at Seq No. S
 - Recv one of

/25/2005

ACK of FIN --> RST not accepted

```
    RST or nothing --> RST accepted
```

4

