COMP 290-040 Network Intrusion Detection

Denial of Service

Classes of Attacks & Attack Methods

Kevin Jeffay
Department of Computer Science
University of North Carolina at Chapel Hill
jeffay@cs.unc.edu
January 24, 2005

http://www.cs.unc.edu/~jeffay/courses/nidsS05

©2005 by Kevin Jeffay

Denial of Service

Classes of attacks

- Vulnerability attacks
 - » Send a small number of specially constructed messages to exploit a bug/feature of a system
 - » E.g., 802.11 "Hang-up" messages
 - » Exploits can be found in the OS, the network, a middleware layer, the application...
 - » The battle against vulnerability attacks is maybe winnable
- ◆ Flooding attacks
 - » Send a huge number of (seemingly) legitimate messages to overwhelm a resource
 - » Key is volume of messages not necessarily content

Denial of Service

The basics...

- Historically, attacks were aimed at access to information or services
 - » Steal credit card numbers
 - » Deface web pages, create/erase records, ...
- Denial of service seek to... deny services to others!
 - » No data is stolen/altered
 - » No unauthorized access of the service provider occurs!
 - ❖ Unauthorized access occurs in creating the attack (zombie creation)
- ◆ DoS is bad because...
 - » Companies lose money
 - Direct sales, advertising revenue, loss of future revenue due to tarnished image, ...
 - » End users and non-computer users can be effected
 - * DNS attacks, airline operations systems, ...

©2005 by Kevin Jeffay

Denial of Service

Flooding attacks

- Flooding leads to distributed DoS
 - » To achieve required volumes, zombie armies are required
 - » Zombie creation typically relies on vulnerability exploits
 - * Solve the vulnerability problem and...
- Simple attacks: Saturate a bottleneck resource
 - » Flood a victim's network interface with bogus packets
 - ❖ Legitimate, well-formed packets for non-existent services
 - » Flood a victim's protocol stack with bogus packets
 - Corrupted or mal-formed packets
 - ❖ Incomplete protocol control sequences
 - » Flood a victim's machine with bogus requests for service
 - * Legitimate, well-formed packets for offered services

evin Jeffay 3 ©200

4

Flooding Attacks

Orchestration

- An attacker first must gain control of a set of machines
 - » An automated process
 - » (More on this later)
- Hiding the identity of the attacker is key
 - » Hierarchical "handler/agent" schemes are common
 - » "Stepping stones" may be used to increase the levels of indirection between attacker and handler

©2005 by Kevin Jeffay

Orchestration

Flooding Attacks

- Handler/agent traffic can be used as an identifier of DDoS activity
 - » Use of encryption is becoming more common
- Use of more covert channels
 - » IRC (Internet Relay Chat) channels now dominant
 - » Difficult to detect without violating user's privacy

©2005 by Kevin Jeffay

Flooding Attacks

What to do with your zombie army?

- Misusing legitimate services
- IP-spoofing-based "reflection" and "amplification" attacks
 - » ping of death
 - » friends and neighbors broadcast ping of death ("smurf attack")
 - » DNS response flood attacks
- ◆ TCP SYN-flood attacks
- What volume of traffic is needed to be effective?
 - » TCP SYN flood: 50K pps (20 Mbps)

Flooding Attacks

What's wrong with the Internet that DDoS is so easy?

- (Remember that ultimately it comes down to finding a vulnerability!)
- Network-layer connection-less protocols
 - » No virtual circuits
 - » No true traffic management
- No authentication
 - » Probably just a minor issue give that one can amass a zombie army
 - » Also required for lots of important applications!
- Packets can travel on any route between sender and receiver
- Different links have different data rates

Distributed Denial-of-Service

Timeline [McHugh 01]

Distributed Denial-of-Service

Taxonomy of attacks (1)

©2005 by Kevin Jeffay

Distributed Denial-of-Service

Taxonomy of attacks (2)

Distributed Denial-of-Service

Taxonomy of detection schemes

©2005 by Kevin Jeffay 11 ©2005 by Kevin Jeffay