
Protocol Attacks

By

Sushant Rewaskar

Outline : Part 1

! Introduction

! What is a “protocol attack”?

! How does it work?

! Different types of protocol attack

Introduction: Types of attacks

! Buffer overflow

! Weak authentication/encryption

! Inadequate argument checking

! Configuration errors

! Insecure program features

! Kernel-level problems

! Protocol attack

What is a protocol attack?

! Exploit a specific feature or

implementation bug of some

protocol installed at the victim in

order to consume excess amounts of

its resources

Popular Protocol attack

! Smurf Attack

! SYN attack

! UDP Attack, ICMP Attack

! CGI request attack

! Authentication server attack

! Attack using DNS systems.

! Attack using spoofed address in ping

Smurf Attack

ICMP echo

request

SRC :X

Y X

ICMP echo

response

SRC :X

UDP Attack, ICMP Attack, Ping attack

echo request

SRC:Y

echo response

Y

TCP SYN

! Uses TCP’s 3 way hand shake

! Send a SYN packet with a spoofed IP

address

! Server is not able to complete the

handshake and as a result wastes all its

network resources

CGI request attack

! CGI script uses CPU cycles to satisfy a

request.

! Attacker send multiple CGI requests

! This consumes precious CPU cycle on

the server

XServer

Authentication server attack

! Authentication server validates a

signature

! It takes more resources to check a

bogus signature then to create it.

! Attacker send a bogus signature to the

server

Attack using DNS systems.

DNS request

SRC X

DNS response

X

Feature of these attacks

! All attacks need a lot of attackers

(zombies)

! Mitigate by changing the protocol

features

! Line between protocol and brute force

commands is very thin

! Can these attacks be identified?

! YES

Conclusion : Part 1

! High-Rate Protocol attack

! Very close to Brute force attack

Alternate Protocol attacks

! Use some feature of the protocol to

launch an attack without being

aggressive

! Can this be done?

! Yes

! Misbehaving receiver attack

! Shrew attack

Outline : Part 2

! TCP mechanism

! Congestion window modification

! Congestion avoidance

! Design attack to make use of congestion

window update on acks

! Evaluate attack’s efficiency

! TCP modification to prevent the attack

 TCP Congestion Control

! Transmission rate is limited by the congestion
window size, congWin

Byte
sequence

Sender’s Congestion Window

Sent and
ACKed

Eligible to
be sent

Sent and not
ACKed Ineligible

sendBase (= LastByteACKed + 1)

nextSeqNum (= LastByteSent + 1)

throughput =
w x MSS

RTT
bytes/sec

LastByteSent - LastByteACKed ! MIN(congWin,RcvWindow)

1st

Byte

Last

Byte

! Maximum rate is w MSS byte segments sent every
RTT

TCP Congestion Control
Host A Host B

Time

ACK

data
data
data
data

! If w ! MSS/R < RTT, then
the maximum rate at which
a TCP connection can
transmit data is

! w is the minimum of the
number of segments in the
receiver’s window or the
congestion window

w x MSS

RTT
bytes/sec

wMSS
bytes

RTT
secs

data
data
data
data

ACK

TCP Congestion Control

! TCP connections probe for available bandwidth
! Increase the congestion window until loss occurs

! When loss is detected decrease window, then begin probing
(increasing) again

! The congestion window grows in two phases:
! Slow start — Ramp up transmission rate until loss occurs

! Congestion avoidance — Keep connection close to sustainable
bandwidth

! A window size threshold (bytes transmitted) distinguishes
between slow start and congestion avoidance phases

Byte
sequence

Sender’s Congestion Window

1st

Byte

Last

Byte

TCP Congestion Control

! Exponential increase in window
size each RTT until:
! Loss occurs
! congWin = threshold

(Not so slow!)

congWin = 1 MSS

for (each original ACK received) congWin++

 until (loss event OR congWin > threshold)

Host A

one segment

Host B

Time

two segments

four segments

R
T

T

! Note: TCP implementations
detect loss differently
! TCP “Tahoe”: Timeout

! TCP “ Reno”: Timeout or three
duplicate ACKs

TCP Congestion Control

/* slowstart is over;

 congWin > threshold

*/

until (loss event) {

 whenever congWin segments

 ACKed:

 congWin++

 }

/* loss event timeout */

threshold = congWin/2

congWin = 1 MSS

perform slowstart

! Increase congestion window by 1 segment each RTT,
decrease by a factor of 2 when packet loss is detected
! “Additive Increase, Multiplicative Decrease” (AIMD)

Window transmissions

C
o

n
g

es
ti

o
n

 w
in

d
o

w
 s

iz
e

(s
eg

m
en

ts
)

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

1 3 5 7 9 11 13

1

3

5

7

9

11

Threshold

Threshold
Loss
event

TCP Congestion Control
! The threshold is an estimate

of a “safe” level of throughput
that is sustainable in the
network
! The threshold specifies a

throughput that was
sustainable in the recent
past

Window transmissions

C
o

n
g

es
ti

o
n

 w
in

d
o

w
 s

iz
e

(s
eg

m
en

ts
)

Assume RTT >
w x MSS

R

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

22

24
Congestion
Avoidance

Slow
Start

! Slow-start quickly increases
throughput to this threshold

! Congestion avoidance slows
probes for additional
available bandwidth beyond
the threshold

TCP Congestion Control

! Loss (at any time) reduces
the “safe” throughput
estimate to 1/2 of the
current throughput
! This is the throughput

that resulted in loss

! Slow-start begins anew
whenever there is loss

Assume RTT >
w x MSS

R

! Throughput at initial
threshold = 1 MB/RTT
! At 1st threshold: 16MSS/RTT

! At 2nd threshold: 10MSS/RTT
Window transmissions

C
o

n
g

es
ti

o
n

 w
in

d
o

w
 s

iz
e

(s
eg

m
en

ts
)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

22

24
Congestion
Avoidance

Slow
Start

TCP Congestion Control

! TCP Tahoe:
! Loss signaled by timeout

! threshold = congWin/2

! congWin = 1 MSS

Assume RTT >
w x MSS

R

Window transmissions

C
o

n
g

es
ti

o
n

 w
in

d
o

w
 s

iz
e

(s
eg

m
en

ts
)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

22

24
Congestion
Avoidance

Slow
Start

3 duplicate ACKs

! TCP Reno:
! “Fast retransmit” — Receipt

of 3 duplicate ACKs also
signals a packet loss

! “Fast recovery” — Skips
slowstart and continue in
congestion avoidance new
slowstart threshold

Window transmissions

C
o

n
g

es
ti

o
n

 w
in

d
o

w
 s

iz
e

(s
eg

m
en

ts
)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

22

24
Congestion
Avoidance

Slow
Start

! Others: TCP NewReno,
SACK, …

Outline : Part 2

! TCP mechanism

! Congestion window modification

! Congestion avoidance

! Design attack to make use of congestion

window update on acks

! Evaluate attack’s efficiency

! TCP modification to prevent the attack

TCP Mechanism

! Tcp work at two granularities

! Acks received and processed at bytes

granularity

! Updates to window performed at packet

granularity

A clever receiver can use this to its benefit

Ack division

Expected behavior

Misbehavior

DupAck spoofing

Expected behavior

Misbehavior

Optimistic Acking

Outline : Part 2

! TCP mechanism

! Congestion window modification

! Congestion avoidance

! Design attack to make use of congestion

window update on acks

! Evaluate attack’s efficiency

! TCP modification to prevent the attack

Evaluation: Ack division

Evaluation : Ack spoofing Evaluation : Optimistic acking

Outline : Part 2

! TCP mechanism

! Congestion window modification

! Congestion avoidance

! Design attack to make use of congestion

window update on acks

! Evaluate attack’s efficiency

! TCP modification to prevent the attack

Solution

! Ack division

! Increment congestion window only when

you get MSS bytes of data

! DupAck spoofing

! Use a Nonce

! Optimistic Acking

! Sum of Nonce in the acks

Conclusion Part 2

! Features of a Protocol can be used to

modify its behavior in a harmful way.

Part 3 : Outline

! Design attack to take advantage of the

congestion avoidance mechanism

(shrew attack)

! Explore TCP’s response to shrew attack

! Modeling, simulation, Internet experiments

! Evaluate detection mechanism

Shrew

! Very small but aggressive mammal that

ferociously attacks and kills much larger

animals with a venomous bite

TCP mechanism- AIMD

C

o

n

g

e

s

t

i

o

n

W

i

n

d

o

w

 Time

! Operates at the RTT time-scale

TCP mechanism- timeout

C

o

n

g

e

s

t

i

o

n

W

i

n

d

o

w

 Time

minRTO

! Operates at the RTO timer time-scale

! seconds

TCP dual time scale operation

! TCP operates at two time-scales

! RTT time-scales (~10-100 ms)
! AIMD control

! RTO time-scales (RTO=SRTT+4*RTTVAR)
! Avoid congestion collapse

! RTO must be lower bounded to avoid
spurious retransmissions

! [AllPax99] and RFC2988 recommends
minRTO = 1 sec

Outline : Part 3

! Analyze TCP congestion avoidance

! Design attack to take advantage of the

mechanism (shrew attack)

! Explore TCP response to shrew attack

! Modeling, simulation, Internet experiments

! Evaluate detection mechanism

Shrew Attack

! Pulse induced outages
! create along enough outage so that all flows

experience a loss

C

o

n

g

e

s

t

i

o

n

W

i

n

d

o

w

 Time

minRTO

Short outages (~RTT)
force TCP to timeout

All flows simultaneously
enter this state

Shrew Attack

! Induce an outage again after minRTO

C

o

n

g

e

s

t

i

o

n

W

i

n

d

o

w

 Time

minRTO minRTO

Shrew Attack

C

o

n

g

e

s

t

i

o

n

W

i

n

d

o

w

 Time

minRTO minRTO

! Shrew periodically repeats pulse
! RTT-time-scale outages inter-spaced on

minRTO periods can deny service to TCP

Principles of Shrew

! Shrews exploit protocol homogeneity and
determinism
! Protocols react in a pre-defined way

! Tradeoff of vulnerability vs. predictability

! Periodic outages synchronize TCP flow states and
deny their service

! Slow time scale protocol mechanisms enable low-
rate attacks
! Outages at RTO scale, pulses at RTT scale imply low average

rate

Creating periodic outage

DoS
rate

burst rate R

period T

burst length l

! Let

! l = l1+l2
! l1 = time to fill the queue

! l2 = RTT time-scale

! T = minRTO time-scale

Aggressiveness of stream

! Average rate of the stream

! Avg = (l * R) /T

! l = 10-100 ms

! T= 1 second

! R >=link capacity

! Average rate is ~1/10th of the link

capacity

Optimized stream

! Average rate

! (l1*R + l2*C) /T

Analytical model for shrew

! Consider a periodic DOS stream. Let,

outage duration satisfy following two

conditions

! L>RTT

! minRTO >SRTT+4*RTTVAR

! Throughput is given by

!

T

RTOT
T

RTO
ceil

T

min*)
min
(

)(

!
="

Outline : Part 3

! Analyze TCP congestion avoidance

! Design attack to take advantage of the

mechanism (shrew attack)

! Explore TCP response to shrew attack

! Modeling, simulation, Internet experiments

! Evaluate detection mechanism

Shrew : DOS rate

 C= 1.5M

TCP

DoS

! Let C=R=1.5Mbps

! L = 70ms

Shrew's Average Rate

Shrew: model

! Analytical model predicts the outage at

minRTO

Null TCP time-scales
(minRTO/2; minRTO)

Shrew :Simulation

! Ns simulation with l = 150ms, RTT = 12-

132ms, C= 1.5ms and minRTO =1 s

Challenge for shrew

! Aggregation
! Vulnerable due to Shrew-induced flow synchronization

! RTT heterogeneity
! Shrews are high-RTT pass filters

! DoS peak rate
! Less-than-bottleneck bursts can damage short-RTT flows

! TCP Variants
! For short burst length, TCP Reno is more fragile

! Short-lived TCP flows
! Web browsing

! Internet experiments
! Can Shrews be successful on the Internet?

Aggregation

! TCP flows with homogeneous RTT are vulnerable

! Shrews induce flow synchronization

RTT heterogeneity

! Shrew acts as a high-RTT pass filter

RTT heterogeneity

! 20 TCP flows; RTT ~ 20-460ms

! Cut off timescale ~180ms

DoS peak rate

! Long flows collaborate in the attack

C

TCP (short- RTT)

TCP (long-RTT)

DoS

C

TCP (short- RTT)

DoS TCP (long-RTT)

DoS peak rate

! Scenario: 4 TCP flows + DoS

! 1 short-RTT & 3 long-RTT flows

! DoS outage ~ RTT of the short-RTT flow

DoS flow:

peak rate: C/3

average rate: C/30 (3.3%)

TCP variants

! So far we have seen TCP reno

! What about newReno, SACK?

! Experiment

! TCP variant

! Reno

! New Reno

! Tahoe

! SACK

! DoS stream

! Burst rate = bottleneck capacity.

! Burst length: 30ms, 50ms, 70ms, and 90ms

TCP

DoS

TCP variants

! Burst length = 30ms

! TCP Reno is most fragile

TCP variants

! Burst length = 50ms

! TCP is the most vulnerable in 1-1.2 sec time-scale

region due to slow start

TCP variants

! Burst length = 70ms

! Sufficient pulse width ensures timeout

TCP variants

! Burst length = 90ms

! With large burst length all TCP are equally fragile

Short-lived TCP flows

! Scenario: Web browsing (50% load)

! Average damage to

! a mouse (<100pkts)

 =400% delay increase

! an elephant (>100pkts)

 =24500% delay increase

R1 R2.
.
.

.

.

.

.

.

.

.

.

.

 DoS

Client Pool
Server Pool

request

response

Short-lived TCP flows

! Scenario: Web browsing (50% load)

! Larger files more

 vulnerable

! most suffer

! some benefit

R1 R2.
.
.

.

.

.

.

.

.

.

.

.

 DoS

Client Pool
Server Pool

request

response

Internet experiments

! Scenario: victim on a lightly loaded 10 Mb/sec LAN

! Attacker on same LAN, nearby LAN, or over WAN

! WAN path:
! EPFL"ETH, 8 hops (10/100/OC-12)

WAN LAN1

LAN2

LAN3

TCP-S

DoS-A

DoS-B

DoS-C

TCP-R

Internet experiments

! Shrew average rate: 909 kb/sec
! R = 10 Mb/sec, l = 100 msec, T = 1.1 sec

! TCP throughput
! 9.8 Mb/sec without Shrew

! 1.2 Mb/sec with Shrew, 87.8% degradation

Outline : Part 3

! Analyze TCP congestion avoidance

! Design attack to take advantage of the

mechanism (shrew attack)

! Explore TCP response to shrew attack

! Modeling, simulation, Internet experiments

! Evaluate detection mechanism

Detecting Shrews

! Shrews have low average rate, yet send high-
rate bursts on short time-scales

! Key questions
! Can algorithms intended to find high-rate attacks

detect Shrews?

! Can we tune the algorithms to detect Shrews
without having too many false alarms?

! A number of schemes can detect malicious
flows
! E.g., RED-PD:

! use the packet drop history to detect high-bandwidth flows
and preferentially drop packets from these flows

Router-Assisted Mechanisms

! Scenario: 9 TCP Sack flows with RED and RED-PD

! RED-PD only detects Shrews with unnecessarily high
rate

! Reducing RED-PD measurement time scale results in
excessive false positives

End-point minRTO Randomization

! Observe
! Shrews exploit protocol homogeneity and determinism

! Question
! Can minRTO randomization alleviate threat of Shrews?

! TCP flows’ approach
! Randomize the minRTO = uniform(a,b)

! Shrews’ counter approach
! Given flows randomize minRTO, the optimal Shrew

pulses at time-scale T=b
! Wait for all flows to recover and then pulse again

End-point minRTO Randomization

! TCP throughput for T=b time-scale of the Shrew attack

! a small " spurious retransmissions [AllPax99]

! b large " bad for short-lived (HTTP) traffic

! Randomizing the minRTO parameter shifts and
smoothes TCP’s null time-scales

! Fundamental tradeoff between TCP performance and
vulnerability to low-rate DoS attacks remains

n - number of TCP flows
a,b - param. of unif. dist.

b

ab

n

n
bT

!

+
==

1
)("

Conclusions : Part 3

! Shrew principles
! Exploit slow-time-scale protocol homogeneity and

determinism

! Real-world vulnerability to Shrew attacks
! Internet experiment: 87.8% throughput loss without detection

! Shrews are difficult to detect
! Low average rate and “TCP friendly”

! Cannot filter short bursts

! Fundamental mismatch of attack/defense timescales

Open Questions

! Can filters specific to Shrews be
designed without excessive false
positives?

! Can end-point algorithms be sufficiently
randomized, so that

! attackers cannot exploit their known
reactions

! performance is not sacrificed

