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Introduction: Types of attacks

Buffer overflow

Weak authentication/encryption
Inadequate argument checking
Configuration errors

Insecure program features
Kernel-level problems

Protocol attack

-

Popular Protocol attack

e Smurf Attack

e SYN attack

e UDP Attack, ICMP Attack

e CGI request attack

e Authentication server attack

e Attack using DNS systems.

e Attack using spoofed address in ping

Smurf Attack
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Outline ; Part 1

e Introduction

e What is a “protocol attack”?

e How does it work?

e Different types of protocol attack
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What is a protocol attack?

e Exploit a specific feature or
implementation bug of some
protocol installed at the victim in
order to consume excess amounts of
its resources
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UDP Attack, ICMP Attack, Ping attack
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CGlI request attack

e CGl script uses CPU cycles to satisfy a
request.

e Attacker send multiple CGI requests

e This consumes precious CPU cycle on
the server
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Attack using DNS systems.
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DNS request

TCP SYN

e Uses TCP’s 3 way hand shake

address

e Server is not able to complete the

network resources
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e Send a SYN packet with a spoofed IP

handshake and as a result wastes all its
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Authentication server attack

e Authentication server validates a
signature

e |t takes more resources to check a
bogus signature then to create it.

e Attacker send a bogus signature to the
server
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Feature of these attacks

All attacks need a lot of attackers
(zombies)

Mitigate by changing the protocol
features

Line between protocol and brute force
commands is very thin

Can these attacks be identified?
YES
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Conclusion : Part 1

e High-Rate Protocol attack
Very close to Brute force attack

Outline ; Part 2

e TCP mechanism
Congestion window modification
Congestion avoidance
e Design attack to make use of congestion
window update on acks
e Evaluate attack’s efficiency
e TCP modification to prevent the attack
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TCP Congestion Control )\
@rosta  Host @)

o If wx MSS/R <RTT, then
the maximum rate at which
a TCP connection can
transmit data is

w x MSS
RTT

bytes/sec

e wis the minimum of the
number of segments in the
receiver’'s window or the
congestion window
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Alternate Protocol attacks

e Use some feature of the protocol to
launch an attack without being
aggressive

e Can this be done?

Yes
» Misbehaving receiver attack
» Shrew attack
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Sender’s Congestion Window —»
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Sent and Sent and not Eligible to
ACKed ACKed be sent Ineligible

/
nextSegNum (= LastByteSent + 1)
sendBase (= LastByteACKed + 1)

Transmission rate is limited by the congestion
window size, congWin

LastByteSent - LastByteACKed = MIN(congWin,RcvWinddw)
I\R/I_Ia_l_)l(_lmum rate is W MSS byte segments sent every

throughput = —————bytes/sec
ghp RIT

TCP Congestion Control

Sender’s Congestion Window —»
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e TCP connections probe for available bandwidth
Increase the congestion window until loss occurs

When loss is detected decrease window, then begin probing
(increasing) again

e The congestion window grows in two phases:
Slow start — Ramp up transmission rate until loss occurs
Congestion avoidance — Keep connection close to sustainable
bandwidth

A window size threshold (bytes transmitted) distinguishes
etween slow start and congestion avoidance phases




TCP Congestion Control
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TCP Congestion Control

TCP Congestion Control

e thres
of a “safe”

d Is an estimate
vel of throughput
that is sustainable in the
network

The threshold specifies a

Congestion

[0]
le Avoidance

2l e Loss (at any time) reduces
L the “safe” throughput
estimate to 1/2 of the

current throughput

Slow Congestion
Start Avoidance
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Outline ; Part 2

TCP Congestion Control

Slow Congestion
Start Avoidance

e TCP Tahoe:
Loss signaled by timeout
threshold = congWin/2
congWin =1 MSS

e TCP Reno:
“Fast retransmit” — Recei
of 3 duplicate ACKs also
signals a packet loss
“Fast recovery” — Skips
slowstart and continue in

e Design attack to make use of congestion
window update on acks

e Evaluate attack’s efficiency
congestion avoidance new| R A A i .
slowstart threshold P e TCP modification to prevent the attack

e Others: TCP NewReno, Window transmissions ~/
e \_ )
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R
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Congestion window size (segments)
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TCP Mechanism

e Tcp work at two granularities
Acks received and processed at bytes
granularity
Updates to window performed at packet
granularity
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A clever receiver can use this to its benefit

Ack division

Sender

Receiver

Sender

Receiver

J

DupAck spoofing

Sender
Dﬂi’}
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Sender Receiver

Datg 4.
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RTT el
RTT
ACK 4461
t—Data 7461;2921
Dats 2927-'4381

Expected behavior

Misbehavior

Receiver

Outline ; Part 2

e Evaluate attack’s efficiency
e TCP modification to prevent the attack
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Misbehavior

Optimistic Acking

Sender

RTT ACK 1461
ACK 2921

Receiver

Data 1:1461

Data 1461_‘2921
Data 2921:4387
Data 4381:5547
Data 5841:7307

Evaluation: Ack division
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Evaluation : Ack spoofing
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e TCP modification to prevent the attack
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Conclusion Part 2

e Features of a Protocol can be used to
modify its behavior in a harmful way.
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Evaluation : Optimistic acking
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Solution

e Ack division

Increment congestion window only when
you get MSS bytes of data

e DupAck spoofing
Use a Nonce
e Optimistic Acking
Sum of Nonce in the acks
\
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Part 3 : Outline

congestion avoidance mechanism
(shrew attack)

e Evaluate detection mechanism
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e Design attack to take advantage of the

e Explore TCP’s response to shrew attack
Modeling, simulation, Internet experiments
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TCP mechanism- AIMD

Time

e Very small but aggressive mammal that
ferociously attacks and kills much larger e Operates at the RTT time-scale

\animals with a venomous bite j \
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e TCP operates at two time-scales
oo 88 RTT time-scales (~10-100 ms)
o AIMD control
RTO time-scales (RTO=SRTT+4*RTTVAR)
» Avoid congestion collapse
| minRTO e RTO must be lower bounded to avoid
spurious retransmissions

. . AllPax99] and RFC2988 recommends
e Operates at the RTO timer time-scale EninRTo l 1sec

seconds \

TCP mechanism- timeout TCP dual time scale operation

Time

-
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Outline ;: Part 3 Shrew Attack
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e Pulse induced outages
e Design attack to take advantage of the create along enough outage so that all flows
mechanism (shrew attack) experience a loss

e Explore TCP response to shrew attack
Modeling, simulation, Internet experiments
e Evaluate detection mechanism
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Short outages (~RTT)
force TCP to timeout

—

= All flows simultaneously
enter this state

minRTO
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Time



Shrew Attack Shrew Attack

e Induce an outage again after minRTO oo 88 8 2

minRTO ){ minRTO
IL C

Time

minRTO minRTO e Shrew periodically repeats pulse
C j \ RTT-time-scale outages inter-spaced on

minRTO periods can deny service to TCP

Fime

Principles of Shrew

Creating periodic outage

e Shrews exploit protocol and

DoS burst length 1
Protocols react in a pre-defined way ate

| | burst rate R
Tradeoff of vulnerability vs. predictability I urst rate

o Periodic outages TCP flow states and od T
deny their service perio
o Let
° protocol mechanisms enable low- 1=11+12
rate attacks .
11 = time to fill th
Outages at RTO scale, pulses at RTT scale imply low average ‘ elo © queue

\ rate j o 12 = RTT time-scale

T = minRTO time-scale
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e Average rate of the stream
0 [
R >=link capacity e Average rate

Avg=(1*R)/T e
| =10-100 ms |-L|
e Average rate is ~1/10" of the link (M*R +12*C ) /T
capacity

Aggressiveness of stream Optimized stream
T=1 second T




e Consider a periodic DOS stream. Let,
outage duration satisfy following two
conditions

L>RTT
minRTO >SRTT+4*RTTVAR

© Throughput is 'gllz/]%n by e Evaluate detection mechanism
ceil(mln )*T —min RTO
p(T) =

_ T ) U Y

Analytical model for shrew Outline : Part 3
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e Explore TCP response to shrew attack
Modeling, simulation, Internet experiments

e Analytical model predicts the outage at
minRTO

Shrew : DOS rate Shrew: model
. A

e Let C=R=1.5Mbps
oL =70ms
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Shrew :Simulation Challenge for shrew

. . . - — _ e Aggregation
® NS SImUIatlon Wlth I 15(.)m3, RTT 12 Vulnerable due to Shrew-induced flow synchronization
132ms, C= 1.5ms and minRTO =1s o RTT heterogeneity

Shrews are high-RTT pass filters
e DoS peak rate

Less-than-bottleneck bursts can damage short-RTT flows
mode! {1fiow and aggregates) —— e TCP Variants
1tk simulation (T flow] —s— | . .

For short burst length, TCP Reno is more fragile

e Short-lived TCP flows

Web browsing

Internet experiments
Can Shrews be successful on the Internet?

0 i 2 s s 5
DaoS Inter-burst Period (sec)

Throughput (normalized)
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Aggregation

e TCP flows with homogeneous RTT are vulnerable
Shrews induce flow synchronization

TCP Adgregate ——
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RTT heterogeneity

e 20 TCP flows; RTT ~ 20-460ms
e Cut off timescale ~180ms
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DoS peak rate

e Scenario: 4 TCP flows + DoS
1 short-RTT & 3 long-RTT flows
DoS outage ~ RTT of the short-RTT flow
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RTT heterogeneity

e Shrew acts as a high-RTT pass filter

cut-off time scale
flow no pass pass
,

-

outage length RTT

DoS peak rate

A

e Long flows collaborate in the attack

" bes TCP (long-RT}

TCP variants

e So far we have seen TCP reno
e What about newReno, SACK?
o Experiment

TCP variant

DoS stream
« Burst rate = bottleneck capacity.
\ « Burst length: 30ms, 50ms, 70ms, and 90ms

« Reno W
» New Reno

» Tahoe m
« SACK

/
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TCP variants

e Burst length = 30ms e Burst length = 50ms
TCP Reno is most fragile TCI.D is the most vulnerable in 1-1.2 sec time-scale
region due to slow start
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TCP variants

e Burst length = 70ms
Sufficient pulse width ensures timeout

e Burst length = 90ms
With large burst length all TCP are equally fragile
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Short-lived TCP flows

e Scenario: Web browsing (50% load)
Average damage to
» a mouse (<100pkts)
=400% delay increase
an elephant (>100pkts)
=24500% delay increase
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Internet experiments

Internet experiments

DoS-B

WAN LAN1 O TCP-R

e Scenario: victim on a lightly loaded 10 Mb/sec LAN
o Attacker on same LAN, nearby LAN, or over WAN
o WAN path:

\ EPFL—ETH, 8 hops (10/100/0C-12) j

Outline : Part 3

e Shrew average rate: 909 kb/sec
R =10 Mb/sec, | =100 msec, T = 1.1 sec
e TCP throughput

9.8 Mb/sec without Shrew
1.2 Mb/sec with Shrew, 87.8% degradation

Throughput (Mb/s)

LAN —
er-L AN ——
WAN ——
0.5 1 1.5 2 2.5 3, 3.5 4 4.5 SJ
DoS Inter-burst Period (sec)

Detecting Shrews

e Evaluate detection mechanism

N /

Router-Assisted Mechanisms

e Shrews have low average rate, yet send high-
rate bursts on short time-scales
o Key questions

Can algorithms intended to find high-rate attacks
detect Shrews?

Can we tune the algorithms to detect Shrews
without having too many false alarms?
e A number of schemes can detect malicious
flows
E.g., RED-PD:

« use the packet drop history to detect high-bandwidth flows
\ and preferentially drop packets from these flows

End-point minRTO Randomization

e Scenario: 9 TCP Sack flows with RED and RED-PD

o RED-PD only detects Shrews with unnecessarily high
rate

® Reducing RED-PD measurement time scale results in
excessive false positives
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o Observe
Shrews exploit protocol homogeneity and determinism

e Question
Can minRTO randomization alleviate threat of Shrews?

o TCP flows’ approach
Randomize the minRTO = uniform(a,b)

e Shrews’ counter approach

Given flows randomize minRTO, the optimal Shrew
pulses at time-scale T=b

\ » Wait for all flows to recover and then pulse again j




End-point minRTO Randomization

e TCP throughput for T=b time-scale of the Shrew attack

n b-a n - number of TCP flows
p(T = b) = ET a,b - param. of unif. dist,

» a small — spurious retransmissions [AllPax99]
» b large — bad for short-lived (HTTP) traffic

e Randomizing the minRTO parameter shifts and
smoothes TCP’s null time-scales

o Fundamental tradeoff between TCP performance and
\vulnerability to low-rate DoS attacks remains

Open Questions

e Can filters specific to Shrews be
designed without excessive false
positives?

e Can end-point algorithms be sufficiently
randomized, so that

attackers cannot exploit their known
reactions

\ performance is not sacrificed j

Conclusions : Part 3

e Shrew principles
Exploit slow-time-scale protocol homogeneity and
determinism

e Real-world vulnerability to Shrew attacks
Internet experiment: 87.8% throughput loss without detection

e Shrews are difficult to detect
Low average rate and “TCP friendly”
Cannot filter short bursts
Fundamental mismatch of attack/defense timescales
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