Protocol Attacks

By
Sushant Rewaskar

Introduction: Types of attacks

Buffer overflow

Weak authentication/encryption
Inadequate argument checking
Configuration errors

Insecure program features
Kernel-level problems

Protocol attack

-

Popular Protocol attack

e Smurf Attack

e SYN attack

e UDP Attack, ICMP Attack

e CGI request attack

e Authentication server attack

e Attack using DNS systems.

e Attack using spoofed address in ping

Smurf Attack

J

Outline ; Part 1

e Introduction

e What is a “protocol attack”?

e How does it work?

e Different types of protocol attack

-

=

What is a protocol attack?

e Exploit a specific feature or
implementation bug of some
protocol installed at the victim in
order to consume excess amounts of
its resources

f
N

ICMP echo
request

SRC:

ICMP echo
response

UDP Attack, ICMP Attack, Ping attack

I

l!MIIEI ME

echo response g

echo request
SRC:Y

Tl

v
i

CGlI request attack

e CGl script uses CPU cycles to satisfy a
request.

e Attacker send multiple CGI requests

e This consumes precious CPU cycle on
the server

] : B

\ Server X j

Attack using DNS systems.
m)

QA

p-4

X

DNS request

TCP SYN

e Uses TCP’s 3 way hand shake

address

e Server is not able to complete the

network resources

-

e Send a SYN packet with a spoofed IP

handshake and as a result wastes all its

=

Authentication server attack

e Authentication server validates a
signature

e |t takes more resources to check a
bogus signature then to create it.

e Attacker send a bogus signature to the
server

-

=

Feature of these attacks

All attacks need a lot of attackers
(zombies)

Mitigate by changing the protocol
features

Line between protocol and brute force
commands is very thin

Can these attacks be identified?
YES

-

/

Conclusion : Part 1

e High-Rate Protocol attack
Very close to Brute force attack

Outline ; Part 2

e TCP mechanism
Congestion window modification
Congestion avoidance
e Design attack to make use of congestion
window update on acks
e Evaluate attack’s efficiency
e TCP modification to prevent the attack

N /

TCP Congestion Control)\
@rosta Host @)

o If wx MSS/R <RTT, then
the maximum rate at which
a TCP connection can
transmit data is

w x MSS
RTT

bytes/sec

e wis the minimum of the
number of segments in the
receiver’'s window or the
congestion window

-

Alternate Protocol attacks

e Use some feature of the protocol to
launch an attack without being
aggressive

e Can this be done?

Yes
» Misbehaving receiver attack
» Shrew attack

_ v Time J

N /

Sender’s Congestion Window —»

seanence sl | {1/ LA NANNANAD ()1 NROAGE

Sent and Sent and not Eligible to
ACKed ACKed be sent Ineligible

/
nextSegNum (= LastByteSent + 1)
sendBase (= LastByteACKed + 1)

Transmission rate is limited by the congestion
window size, congWin

LastByteSent - LastByteACKed = MIN(congWin,RcvWinddw)
I\R/I_Ia_l_)l(_lmum rate is W MSS byte segments sent every

throughput = —————bytes/sec
ghp RIT

TCP Congestion Control

Sender’s Congestion Window —»

seasence il | I | E0MNNNARNR /10 (HNOARUEE:

e TCP connections probe for available bandwidth
Increase the congestion window until loss occurs

When loss is detected decrease window, then begin probing
(increasing) again

e The congestion window grows in two phases:
Slow start — Ramp up transmission rate until loss occurs
Congestion avoidance — Keep connection close to sustainable
bandwidth

A window size threshold (bytes transmitted) distinguishes
etween slow start and congestion avoidance phases

TCP Congestion Control

A
congWin = 1 MSS m”“” e Bm » Increase congestion window by 1 segment each RTT,
for (each original ACK received) congWin-++ t N Seqmen detireasg by a factor of 2. V\{hen packet Ios§ is detected
until (loss event OR congWin > threshold) E Additive Increase, Multiplicative Decrease” (AIMD)
= a
v / I* slowstart is over; 2
e Exponential increase in window two s slowstart Is over, il
size each RTT until: % , congWin > threshold 8 wf
w1 -
Loss occurs until (loss event) { 3 ?, |
congWin = threshold / whenever congWin segments| Sz 4l
(Not so slow!) ACKed: £5 6}
Wi) four g¢, . congWin++ z Eo 5t Threshold
‘ yotte:JCP I(Eir']frf)IemetlntatIOns % } 28 4
i * 27 3t
elec ?SS ! fre.n Yy /" loss event timeout */ E“ >
TCP “Tahoe™: Timeout threshold = congWin/2 g 1
TCP “ Reno”: Timeout or three / congWin =1 MSS O ol
\ duplicate ACKs / perform slowstart 01234567891011121314
v Time v J \ Window transmissions J

TCP Congestion Control

TCP Congestion Control

e thres
of a “safe”

d Is an estimate
vel of throughput
that is sustainable in the
network

The threshold specifies a

Congestion

[0]
le Avoidance

2l e Loss (at any time) reduces
L the “safe” throughput
estimate to 1/2 of the

current throughput

Slow Congestion
Start Avoidance

= 8
2% 8RR

Assume K/1 >

Assume K/1 >

g)
2z :
8 b
throughput that was ; 14l This is the throughput = 0T
sustainable in the recent 2 nf that resulted in loss z lap
paSt g 10 [o 12 [
S 2t o Slow-start begins anew S 0]
o |Slow-start quickly increases 2 6 whenever there is loss s 8f
throughput to this threshold 8 . s 6f
gt e Throughput at initial § af
e |Congestion avoidance slows | © ot M threshold = 1 MB/RTT S 2}
proqe?ﬁfo[)adgltl%r;ﬁlb q 0 24 6 8101214 16 18 20 At 15t threshold: 16 MSSIRTT 00‘ 2 ;‘ ‘6‘ ;‘1‘0‘1‘2‘1““1‘6‘1‘8‘2‘0‘
available bandwi eyon g fecf d .
s threshold y \ Window transmissions J \ At 2"d threshold: 10MSSIRT7\ Window transmissions
- A/IKLK/ - A/IS‘E‘
R

Outline ; Part 2

TCP Congestion Control

Slow Congestion
Start Avoidance

e TCP Tahoe:
Loss signaled by timeout
threshold = congWin/2
congWin =1 MSS

e TCP Reno:
“Fast retransmit” — Recei
of 3 duplicate ACKs also
signals a packet loss
“Fast recovery” — Skips
slowstart and continue in

e Design attack to make use of congestion
window update on acks

e Evaluate attack’s efficiency
congestion avoidance new| R A A i .
slowstart threshold P e TCP modification to prevent the attack

e Others: TCP NewReno, Window transmissions ~/
e _)
. Mu/
R

=
Congestion window size (segments)
= mm =)

/

Assume K/ >

TCP Mechanism

e Tcp work at two granularities
Acks received and processed at bytes
granularity
Updates to window performed at packet
granularity

-

A clever receiver can use this to its benefit

Ack division

Sender

Receiver

Sender

Receiver

J

DupAck spoofing

Sender
Dﬂi’}
‘/599/""
M
WS

ACK

Sender Receiver

Datg 4.
14y
RTT el
RTT
ACK 4461
t—Data 7461;2921
Dats 2927-'4381

Expected behavior

Misbehavior

Receiver

Outline ; Part 2

e Evaluate attack’s efficiency
e TCP modification to prevent the attack

-

J

Data 4.
114
RTT - RTT
ACK 1461
r Datg 1451:2921
Data 2921:43&1

Expected behavior

[)afji}
ACK 973
.'/p.c\}j“/m-/

Data 1461':292;

Data 2927543&1

Datg 4387:5841

N
25841730

Misbehavior

Optimistic Acking

Sender

RTT ACK 1461
ACK 2921

Receiver

Data 1:1461

Data 1461_‘2921
Data 2921:4387
Data 4381:5547
Data 5841:7307

Evaluation: Ack division

60000 4 g
i
@ 2
£ 50000 -]
s :
§ 40000 - H
£ A
E 5
= 20000 H
= H
£ opono 2"
(§— g Data Segments o
0000 4 L3 ACKs +
1 = k Data Segments (normal -
ACKs (normal El
0 —F - - - .
(] 0.1 0z 0.3 0.4 0.3 0.6 o7
\ Time (sec)

-

Evaluation : Ack spoofing

50000 - .2
‘.
% soooo 1
= 1 H
o
5 40000 i
£ K
S 20000 2
@ 3
2 -
2 20000 4 i:’
& i Data
10000 “ ACKs
X« ! Diata Segments (normal
o ACKs (normal
0 —F =
o 0.1 0z a3 0.4 0s o0& 07

Time (sec)

-

.

Outline ; Part 2

e TCP modification to prevent the attack

-

-

Conclusion Part 2

e Features of a Protocol can be used to
modify its behavior in a harmful way.

-

Evaluation : Optimistic acking

T

50000 ip i
- $ 3
% 50000 E g 5t

F
=] H
£ 40000 E
§ ¥ S
8 2
E 30000 4 Erj Eg
2
= r B
g 20000 T F8 P
-

o K3 H Diata Segments

10000 - Ao ACKs

el Data Segments (normal)
PR | ACKs (normal) =
0 —
o 0.1 0z 0.3 o4 0.5 0.6 o7
\ Time (sec)
-

Solution

e Ack division

Increment congestion window only when
you get MSS bytes of data

e DupAck spoofing
Use a Nonce
e Optimistic Acking
Sum of Nonce in the acks
\

=

Part 3 : Outline

congestion avoidance mechanism
(shrew attack)

e Evaluate detection mechanism

-

e Design attack to take advantage of the

e Explore TCP’s response to shrew attack
Modeling, simulation, Internet experiments

/

TCP mechanism- AIMD

Time

e Very small but aggressive mammal that
ferociously attacks and kills much larger e Operates at the RTT time-scale

\animals with a venomous bite j \

=

e TCP operates at two time-scales
oo 88 RTT time-scales (~10-100 ms)
o AIMD control
RTO time-scales (RTO=SRTT+4*RTTVAR)
» Avoid congestion collapse
| minRTO e RTO must be lower bounded to avoid
spurious retransmissions

. . AllPax99] and RFC2988 recommends
e Operates at the RTO timer time-scale EninRTo l 1sec

seconds \

TCP mechanism- timeout TCP dual time scale operation

Time

-
=

Outline ;: Part 3 Shrew Attack
(]

e Pulse induced outages
e Design attack to take advantage of the create along enough outage so that all flows
mechanism (shrew attack) experience a loss

e Explore TCP response to shrew attack
Modeling, simulation, Internet experiments
e Evaluate detection mechanism

- / \

Short outages (~RTT)
force TCP to timeout

—

= All flows simultaneously
enter this state

minRTO

/

Time

Shrew Attack Shrew Attack

e Induce an outage again after minRTO oo 88 8 2

minRTO){ minRTO
IL C

Time

minRTO minRTO e Shrew periodically repeats pulse
C j \ RTT-time-scale outages inter-spaced on

minRTO periods can deny service to TCP

Fime

Principles of Shrew

Creating periodic outage

e Shrews exploit protocol and

DoS burst length 1
Protocols react in a pre-defined way ate

| | burst rate R
Tradeoff of vulnerability vs. predictability I urst rate

o Periodic outages TCP flow states and od T
deny their service perio
o Let
° protocol mechanisms enable low- 1=11+12
rate attacks .
11 = time to fill th
Outages at RTO scale, pulses at RTT scale imply low average ‘ elo © queue

\ rate j o 12 = RTT time-scale

T = minRTO time-scale

=

e Average rate of the stream
0 [
R >=link capacity e Average rate

Avg=(1*R)/T e
| =10-100 ms |-L|
e Average rate is ~1/10" of the link (M*R +12*C) /T
capacity

Aggressiveness of stream Optimized stream
T=1 second T

e Consider a periodic DOS stream. Let,
outage duration satisfy following two
conditions

L>RTT
minRTO >SRTT+4*RTTVAR

© Throughput is 'gllz/]%n by e Evaluate detection mechanism
ceil(mln)*T —min RTO
p(T) =

_ T) U Y

Analytical model for shrew Outline : Part 3
[]
[]

e Explore TCP response to shrew attack
Modeling, simulation, Internet experiments

e Analytical model predicts the outage at
minRTO

Shrew : DOS rate Shrew: model
. A

e Let C=R=1.5Mbps
oL =70ms

H
b

.5 . Null TCP time-scales
minRTO/2; minRTO)

=
&

T
I

Shrew's Average Rate

/ Y

DoS Intér—burst Perixod (sec)

=)

o
=
T

=)
i
T

-

Throughput (normalized)

Throughput (normalized)

o

—/

=}

DoS Intér—burst Periaod (sec)

Shrew :Simulation Challenge for shrew

. . . - — _ e Aggregation
® NS SImUIatlon Wlth I 15(.)m3, RTT 12 Vulnerable due to Shrew-induced flow synchronization
132ms, C= 1.5ms and minRTO =1s o RTT heterogeneity

Shrews are high-RTT pass filters
e DoS peak rate

Less-than-bottleneck bursts can damage short-RTT flows
mode! {1fiow and aggregates) —— e TCP Variants
1tk simulation (T flow] —s— | . .

For short burst length, TCP Reno is more fragile

e Short-lived TCP flows

Web browsing

Internet experiments
Can Shrews be successful on the Internet?

0 i 2 s s 5
DaoS Inter-burst Period (sec)

Throughput (normalized)
[=]
o

Aggregation

e TCP flows with homogeneous RTT are vulnerable
Shrews induce flow synchronization

TCP Adgregate ——

H
T
I

Throughput (normalized)

DoS Intér—burst Periacwd (sec)

=

RTT heterogeneity

e 20 TCP flows; RTT ~ 20-460ms
e Cut off timescale ~180ms

°
s

=
N
]

T
1

o
-
T

Throughput (normalized)

/

0 1 L L 1 L h 1 I 1
50 100 150 200 250 300 350 400 450

RTT (ms)

DoS peak rate

e Scenario: 4 TCP flows + DoS
1 short-RTT & 3 long-RTT flows
DoS outage ~ RTT of the short-RTT flow

T
[
N
E 0.4 Bl
£ DosS flow:
S peak rate: c/3 1
5., average rate: C/30 (3.3%) |
2
g’ﬂ.l 4
_g —————
= , , , ,

0 0.2 0.4 0.6 0.8 1

K DoS Peak Rate / Link Capacity /

RTT heterogeneity

e Shrew acts as a high-RTT pass filter

cut-off time scale
flow no pass pass
,

-

outage length RTT

DoS peak rate

A

e Long flows collaborate in the attack

" bes TCP (long-RT}

TCP variants

e So far we have seen TCP reno
e What about newReno, SACK?
o Experiment

TCP variant

DoS stream
« Burst rate = bottleneck capacity.
\ « Burst length: 30ms, 50ms, 70ms, and 90ms

« Reno W
» New Reno

» Tahoe m
« SACK

/

-

TCP variants

e Burst length = 30ms e Burst length = 50ms
TCP Reno is most fragile TCI.D is the most vulnerable in 1-1.2 sec time-scale
region due to slow start

T 12 :

&0] g e . .

[N

E sl] = T i

g E 08

s BB B =)

5 =

é_ 04k i ; 08

3 el Mo B2 — | £ oap

o Tahoe —— [=1] Reno ——

l_E 5 ; y [pulse length —ISDmS] i Sack — \ g oz b NeanﬁnD |
o - 2 5 = [pulse length = 50ms] ga?:ﬁ —

DoS Inter-burst Period (sec) oo : : ! L 3

DoS Intér—burst Perisod (sec)

TCP variants

e Burst length = 70ms
Sufficient pulse width ensures timeout

e Burst length = 90ms
With large burst length all TCP are equally fragile

5 1.2
§ 12 . g :
ooy g % 1 q
[]
E o b E 0.8 +
8 Q
=08 Sl
a 5
2 o4 O g4
g e — =
lowW_Hono = |
o ¢ Tahos — =
= | [pulse length = 70ms] | Sack — o
= 0 . = i - = | [pulse longth = 90ms] ‘
i 0
DoS Inter-burst Period (sec) =% 1 2 5

2 a3
DoS Inter-burst Period (sec)

Short-lived TCP flows

e Scenario: Web browsing (50% load)
Average damage to
» a mouse (<100pkts)
=400% delay increase
an elephant (>100pkts)
=24500% delay increase

10000 T T

Short-lived TCP flows

o Scenario: Web browsing (50% load) serer oty
Larger files more N
vulnerable
« most suffer
» some benefit

Server Pool > " Client Bpol Client Bpol

10000

T \ T
1000 1000 L +

=

=)

S
T

+
+ R
ot T
RN i

=
=)
T

iy
+ + bty

3 R e T
T AN

+ 7 +
+]

Dog +
no DOS —
1000 10000 0.901 ! ! ;

File Size (pkts) : " o S8 (i)
lie size (pKis

+ + +

Resp. Time
Resp. Time

o
-
T

2 o
o -
s =
SR
T
+
=]
o
o0
fets]
wn
|+
o
=
2
T
+
+
L

10

1000 10000

Internet experiments

Internet experiments

DoS-B

WAN LAN1 O TCP-R

e Scenario: victim on a lightly loaded 10 Mb/sec LAN
o Attacker on same LAN, nearby LAN, or over WAN
o WAN path:

\ EPFL—ETH, 8 hops (10/100/0C-12) j

Outline : Part 3

e Shrew average rate: 909 kb/sec
R =10 Mb/sec, | =100 msec, T = 1.1 sec
e TCP throughput

9.8 Mb/sec without Shrew
1.2 Mb/sec with Shrew, 87.8% degradation

Throughput (Mb/s)

LAN —
er-L AN ——
WAN ——
0.5 1 1.5 2 2.5 3, 3.5 4 4.5 SJ
DoS Inter-burst Period (sec)

Detecting Shrews

e Evaluate detection mechanism

N /

Router-Assisted Mechanisms

e Shrews have low average rate, yet send high-
rate bursts on short time-scales
o Key questions

Can algorithms intended to find high-rate attacks
detect Shrews?

Can we tune the algorithms to detect Shrews
without having too many false alarms?
e A number of schemes can detect malicious
flows
E.g., RED-PD:

« use the packet drop history to detect high-bandwidth flows
\ and preferentially drop packets from these flows

End-point minRTO Randomization

e Scenario: 9 TCP Sack flows with RED and RED-PD

o RED-PD only detects Shrews with unnecessarily high
rate

® Reducing RED-PD measurement time scale results in
excessive false positives

-
i

-
T

=
T

Throughput (normalized)

o

o

= T

-

B3

| Do >
i)

mm
Y3¥5

DoS Int-zer—burst perijod (sec)

o Observe
Shrews exploit protocol homogeneity and determinism

e Question
Can minRTO randomization alleviate threat of Shrews?

o TCP flows’ approach
Randomize the minRTO = uniform(a,b)

e Shrews’ counter approach

Given flows randomize minRTO, the optimal Shrew
pulses at time-scale T=b

\ » Wait for all flows to recover and then pulse again j

End-point minRTO Randomization

e TCP throughput for T=b time-scale of the Shrew attack

n b-a n - number of TCP flows
p(T = b) = ET a,b - param. of unif. dist,

» a small — spurious retransmissions [AllPax99]
» b large — bad for short-lived (HTTP) traffic

e Randomizing the minRTO parameter shifts and
smoothes TCP’s null time-scales

o Fundamental tradeoff between TCP performance and
\vulnerability to low-rate DoS attacks remains

Open Questions

e Can filters specific to Shrews be
designed without excessive false
positives?

e Can end-point algorithms be sufficiently
randomized, so that

attackers cannot exploit their known
reactions

\ performance is not sacrificed j

Conclusions : Part 3

e Shrew principles
Exploit slow-time-scale protocol homogeneity and
determinism

e Real-world vulnerability to Shrew attacks
Internet experiment: 87.8% throughput loss without detection

e Shrews are difficult to detect
Low average rate and “TCP friendly”
Cannot filter short bursts
Fundamental mismatch of attack/defense timescales

N /

