Signature-based
Intrusion Detection

Boriana Ditcheva and Lisa Fowler
University of North Carolina at Chapel Hill
February 16 & 22, 2005

Anomaly-based detection

Detecting Attacks

» Central idea: “abnormal” = “suspicious”
» Automatically learns

» Detects novel attacks (and its variations)
» Can be left to run unattended

» Requires a notion and definition of “normal”

» Susceptible to false negatives
— Unusual is not necessarily illicit/malicious
— Usual is not necessarily benign
* e.g. attacks that manifest slowly

« Computation intensive

Problems

Anomaly-based Detection
* Signature-based (Misuse) Detection

Host-based

Network-based
— Active/Passive

Signhature-based Detection

» System must be trained

— Requires time-consuming manual identification and specification of

each new attack

— Often requires ‘expert’ knowledge

— Cannot detect novel attacks on its own
» False negatives

— May not detect simple variations

— Unless previously detected and identified...
» False positives

— May detect failed attacks

— Loose signatures (low confidence)

— Poorly configured systems

Looks for specific and explicit indications of attacks

— Identified by raw byte sequences (strings), protocol type,
port numbers, etc.

» Low false positives

— “Knows for a fact” what is suspicious, what is normal

» Detects only behavior that was previously defined to be
suspicious

— Can have tight signatures (high confidence)
» Simple and efficient process

» Easy to share
— Repositories of signatures

Sighature-based Detection

» Goal:

— Find a pattern or signature that can allow for the

detection of a specific attack
 Think about virus detection...

— Be narrow to be more precise (reduce false
negatives)

— Be flexible to cover as many of the variants as
possible while minimizing false positives

IDS Placement IDS Placement

1

« Qutside firewall
— Detects all attacks directed at your network i B y
— Detects more events .) . '"""Sis"y"s?.ﬁ““°" Comfuter A omputer

Network Tap

— Generates more logs Extornalfirewall = |l irewal
* Inside firewall .
. . Internal server Computer
— Only detects what the firewall lets in et o PP o ’
— Less state information Typical placement of an IDS system (in this example, Brc

For more info, see http://www.netoptics.com/products/pdf/Taps-and-IDSs.pdf

http://bro-ids .org/Bro-quick-start/Network-Tap.htm|

Making a Signature Making a Signhature++

» DIY (Manual) » Automated
— Become a “security officer” — If we can extract or isolate suspicious network
— Know detailed information regarding the exploit data, can conceive of a system that can

— Generate the signature by manual inspection aggregate the data and generate signatures

— Can generate false positives or false negatives

9 10
)
Example Signature \ @m - SNORT
Trin0O0 « Lightweight signature-based intrusion detection
http://www.snort.org/snort-db/sid.html?sid=223 system
GEN:SID | 1:223 . O_nly 100 kilobytes in compressed source
distribution
Message | DDOS Trin00 Daemon to Master PONG message « Don't need sophisticated training to use like with
detected other commercial NIDSs
Rule alert udp $EXTERNAL_NET any -> $HOME_NET 31335 + Configurable (Easy rules language, many
(msg:"DDOS Trin00 Daemon to Master PONG message logging/alerting options)
detected"; content:"PONG"; reference:arachnids,187; . F
classtype:attempted-recon; sid:223; rev:3;) ree
11 12

All Snort signature examples from http:/snort.org

Snort’s architecture

» Packet Decoder
» Detection Engine
» Logging/Alerting Subsystem

— These subsystems ride on top of the libpcap promiscuous
packet sniffing library.

13

Packet Decoder

» Organized around the layers of the protocol
stack present in the supported data-link and
TCP/IP protocol definitions.

 Sets pointers into the packet data for later
access and analysis by the detection engine.

15

Rule Chain Structure

Snort’s architecture

>

nr - J Packet Decoder
[][_Sniffing
Pre-Processor

Plug-Ins

Detection Engine
Detection Plug-Ing

weans 19yded

Post-Processor
& Output Stagen
Plug-Ins

<

Detection Engine

» Uses comparison to predetermined rules (to
be discussed in a minute) to decide whether
a packet should be flagged or not.

» Maintains detection rules in a two
dimensional linked list of Chain Headers and
Chain Options.

* First rule that matches a decoded packet
triggers the specified action and returns.

16

Logging/Alerting Subsystem

Chain Header

Source IP Address
Destination IP Address
Source Port
Destination Port

Chain Header

Source IP Address
Destination IP Address
Source Port
Destination Port

Chain Option

Content

TCP Flags

ICMP Codes/Types
Payload Size
Etc.

Chain Option
Content

TCP Flags

ICMP Codes/Types

Etc.

Chain Option

Content

TCP Flags

ICMP Codes/Types
Payload Size
Etc.

Payload Size

Figure 3. Rule Chain logical structure (From [4]) 17

* Logging options:
— Log packets in their decoded human readable
format to an IP-based directory structure

— Log packets in tcpdump binary format to single
log file (much faster)

— Do not log

18

Logging/Alerting Subsystem

 Alert options:
— Alerts sent to syslog

— Alerts logged to specified alert text file

« Full alerting: write the alert message and packet
header info through the transport layer protocol

« Fast alerting: write condensed subset of the header
info

— Alerts sent as WinPopup messages
— Disable alerting

19

Snort Rules

alert tecp !10.1.1.0/24 any -> 10.1.1.0/24 6000:6010 (msg: "X traffic";)

* Header Features:

» Look at uni- or bi-directional traffic

» |P addresses

— negation, CIDR ranges

TCP/UDP ports

— Negation, ranges, greater than/less than

21

Option Fields

8. ack — TCP ack number
9. seq-— TCP seq humber

10. logto — log packets matching this rule to this
specified filename

11. dsize — packet payload
12. offset — begin content search at this offset
13. depth — search content to this byte depth in file

14. msg — message to be sent when packet

generates event
23

Snort Rules

» Snort can take three base actions when it
finds a matching packet:
— Pass (drop the packet)
— Log (write full packet to logging routine)
— Alert (generates notification as specified by user)

20

Option Fields

1. content — search packet payload for
specified item

flags — test TCP flags

ttl — check IP ttl field

itype — match on ICMP type field

icode — match on ICMP code field

minfrag — set threshold for IP fragment size
id — test IP header for specified value

No akowbd

22

Example Signature

Trin00
http://www.snort.org/snort-db/sid.html?sid=223

GEN:SID | 1:223

Message | DDOS Trin00 Daemon to Master PONG message
detected

Rule alert udp $EXTERNAL_NET any -> $HOME_NET 31335
(msg:"DDOS Trin00 Daemon to Master PONG message
detected"; content:"PONG"; reference:arachnids,187;
classtype:attempted-recon; sid:223; rev:3;)

24

All Snort signature examples from http://snort.org

Stacheldraht

» One attack may have many different
signatures

SID Name CVE I
224 DDOS Stacheldraht server spoof
225 DDOS Stacheldraht gag server response
226 DDOS Stacheldraht server response
227 DDOS Stacheldraht client spoofworks
229 DDOS Stacheldraht client check skillz
236 DDOS Stacheldraht client check gag
1854 DDOS ‘handl (itch)
1855 DDOS agent->handler (skillz)
1856 DDOS handler->agent (ficken)

All Snort

25

from http: org

SQL Slammer

GEN:SID
Message
Rule

Tmpact

122003

MS-SQL Worm propagation attempt

alert udp SEXTERNAL_NET any -> SHOME_NET 1434 (msg"MS-SQL Worm propagation
amempt”; content 04", dépth'l; content ™81 F1 03 01 04 9B 81 F1 01)"; content™sock”;
content:"send”; referencedugtraq, $310; s rcve,2002-0049;
referencenessus, 11214, referencenalvil o com il/content'v_99992 htm,
classtypemisc-anack; $:82003; revs:)

This event is generated when an artempt is made by the *Shammer” worm to compromse 3
Mscrosoft SQL Server

A worm trgetng 3 vulnerabity = the MS SQL Server 2000 Resolution

Service was released on January 25th, 2003, The worm attempts to

expiont 2 buffer overfiow m the Resolution Service. Because of the

mature of the vulnerabity, the worm 13 abie o tempt to compromise

other machines very rapidly

' Detailed Information The Monitor Service provided by MS SQL and MSDE uses unchecked cBent

Affected Systems This

Nimda

jprovided data m an SQL version check function.

The worm attempts to explois 2 buffer overflow in this version request
1f the worm sends too mmy bytes m the request that triggers the
version check, then a buffer overflow condition is triggered resulting
in 2 posential compromise of the SQL Server

vunerabiity 15 present in unpatched MS SQL Servers. The folowing umpatchied services
contaming MS SQL or Microsoft Desktop Engae (MSDE) may potentialy be compromssed by
this worm

* SQL Server 2000 (Developer, Standard, and Enterprise Editions)
* Visual Stadio NET (Architect, Developer, and Professional Ediions)

* ASP.NET Web Matrix Tool

* Office XP Developer Edition 27
* MSDN Usiversal and Enterprise subscriptions

GEN:SID (1203
Message NETBIOS nimda .eml
Rule |alert tcp SEXTERNAL_NET any - SHOME_NET 139 (msg NETBIOS nimda .eml";
flow:to_server,established; content™|00]. 00[E|00MIO0L";
referenceurl www. £ secure. com v-descs nanda. shiml, classtypebad vaknown, 5141203, rev.10,)
Summary Thas event 15 generated when traffic mdicating Nimda worm actvity 15
(detected.
Impact [Possible infection by the Nimda virus,
Detailed Information Nimda spreads by file infection, mass emailer, file share, or IIS unicode exploit
to artack unpatched systems.
| Affected Systems Wmdows 95
Wmndows 98
Windows ME
Windows 2000
Attack An server s 0 the mternet and 15 mfected or
|an mfected emal s opened. Once mfectad the worm spreads itself.
Ease of Attack ‘Simyk
False Positives ~ Noae known
|1f you think this rule has a false positives, piease belp fill it out.
False Negatives None known
1 you think thes rule has a false negatives, please help fill it out
Corrective Action Check the suspact host for signs of mfecton. Apply patches

or upgrade the operating system
29

All Snort signature examples from http://snort.org

Ping of Death

GEN:SID
Message
Rale

1499
ICMP Large ICMP Packet
alet sconp SEXTERNAL _NET amy -> SHOME_NET any (msg "ICMP Large ICMP Packet”,

dsize>800, 246 dknown, 4499, rev4,)
This eveat is gemsrated when 3 harge ICMP packet is detectsd. Also known,
23 the *Ping of Death”.

Denial of Service (DoS) by system crash or bandwidth utiisanon.

mpact
Detailed Information Soms implementations of the IP stack may result i 2 system crash

Affected Systems
Attack Scemarios

Ease of Attack

— Filse Positives

False Negatives

Corrective Action

jor may hang when 2 large ICMP packet i sent 10 them. Alternatively
a large number of these packets may result = Enk sanration,
lespectally where bandwasth is limited.

This attack was prevalent 2 muember of years 3o when the TCP/IP stack of
‘a maznber of eperating systems could not bandle large packet payicads.
Mulnple older svstemns.

A makcious d&vidual may $40d 3 senes of large ICMP packets

10 2 host with the intention of either crashing or hanging the bost,

of 1o sanarate the avaiabie bandwidth

fSanple.

A nurmber of load balincing spplicaions use 1500 byte ICAP packets to
\determane the most efficent route to a bost by measunng the latency

‘of multiple paths.

HP-UX systems configured with PMTU discovery wil send echo requests
= respease to several types of network connectioms. PATU Discovery
s caabled in HP-UX 10.30 and 11.0x by defauk

Windows 2000 uses targe ICMP payloads to determine the speed of a Enk

‘Whea utiinng 2 Windows doemam controller

11f you think this rule has a false positves, please help il it oue

Neas Kaowa 26
I you think thés rule has 3 faise neganives, piease heip fil £ out

SQL Slammer

Artack Scenarios
Ease of Attack

False Positives

False Negatives

m—p Corrective Action

Centributers

Additional References
Rule Refereaces

Thes 15 worm actvity,
Fxploits for this vulnerabisty have been publicly published

A worm has been written that automatically exploas this vulnerabilty.
None known.

Tf you think this rule has 3 false positives, please help fill it out

None known.

If you think this rule has a false negatives, piease help fill & out.

Block external access to the MS SQL sexvices on port 1433 and 1434 4f
possible.

Patches from Microsoft are avaiabie that fix this vumerabity. The
patches are avadable from

‘www.microsoft. com techaet/security bulletn MS02-030.asp
Sourcefire Research Team

Brian Caswell <bme @ sourcefire. com>

‘Nigel Houghton <nigel houghton@sourcefire. com>

bugtraq: 5310
bugiraq 3311
cve: 20020640
neIsus.
wrt: v nai comilicontent'v 99992 htm

28

Al Snort signature examples from http://snort.org

Trying for high performance

» Content matching is most expensive process

— Perform

ed after all other rules are tested

— Can use offset and depth keywords to limit

amount

of data to be searched

30

Trying for high performance

» Deep packet inspection attempts to solve
the problem of expensive content matching

* DPI engines scrutinize each packet
(including the data payload) as it traverses
the firewall, and rejects or allows the packet
based upon a ruleset that is implemented by
the firewall administrator.

31

Uses of Snort

2) As a Honeypot monitor

— Problem with honeypots is that the services they run
have to be started before they will record anything, thus
miss events such as stealth port scans or binary data
streams (unless they perform packet level monitoring)

— The data coming out of a honeypot requires a skilled
analyst to properly interpret results.

— Snort can be of great help to the analyst/administrator
with its packet classification and alerting functionality.

33

Uses of Snort

4) In focused monitoring:

— Watch a single critical node or service on the network.

— Example: the Sendmail SMTP server has a well-known
(and extensive) list of vulnerabilities.

— Single Snort sensor can be deployed with a rule set
covering all known Sendmail attacks.

— This concept can be extended to any network
technology that is under-represented by commercial
NIDS.

35

Uses of Snort

1) To fill holes in commercial vendor’s network-based
intrusion detection tools:

— When new attack comes out and signature updates from
vendor are slow

— Run Snort locally on test network to determine signature
— Write a Snort rule

— Use BPF command line filtering to watch only service or
protocol of interest

— Snort can be used as a specialized detector for a single
attack or family of attacks in this mode

32

Uses of Snort

3) Used as a “passive trap”
— Administrators know which services are NOT
available on their networks

— By default, packets looking for those services
are malicious traffic (port scanning,
backdoors,...)

— Write Snort rules to watch for traffic headed to
these non-existent services

34

Challenges Snort faces as a
stand-alone NIDS

» The constant increase in network speed and
throughput — processors cannot keep up

» Sensors cannot maintain information about
attacks in progress (e.g., in the case of multi-
step attacks)

* Novel approaches to NID necessary to
manage ever-increasing data volume

36

Stateful Intrusion Detection

* Divide the traffic volume into smaller portions

* Have many sensors, each processing a sub-
section of the traffic volume

» Each sensor can be configured to detect a
specific subset/family of attacks

Proposed Architecture

Scatterer

Receives frames from network tap

Partitions them into m
subsequences to pass onto the
slicers

Can use any algorithm (assume it
simply cycles over the m sub-
sequences in a round-about
fashion)

Scatterer has to keep up with high
traffic throughput, so it does
limited processing per frame

41

Stateful Intrusion Detection

* Problems:

— Must ensure that the traffic division is such that
all parts of an attack are sent to the appropriate
sensor.

— If random division is used and different parts of
the attack are assigned to different sensors, the
sensors may not receive sufficient data to detect
the intrusion.

38

Proposed Architecture

* The systems implements signature-based
intrusion detection

» Detection is performed by a set of sensors,
each responsible for a subset of signatures

» Each sensor is autonomous and does not
interact with other sensors

» Components can be added to the system to
achieve higher throughput as needed

40

Slicers

¢ Their task is to route the frames
to the sensors that should be
processing them

« The look at fewer packets, so can
perform more complex frame
routing.

¢ Connected to a switch which
allows slicer to send frames to
one or more of n outgoing
channels

« Configuration of the slicers is
static

42

Reassemblers Sensors

Dt » The original order of two » Each sensor is associated with a subset of attack
packets could be lost if they scenarios
take different paths (over « Each attack scenario is associated with an event
distinct SlicerS). space

* Reassemblers make sure » The event space specifies which frames are
that the packets appear on candidates to be part of the manifestation of the
the channel in the same attack
E_rdﬁr theydzﬁppkeared on the » The clauses of an event space can be derived
Igh-speed fin automatically from attack signatures

43 44
Performance Issues Performance Issues
12000 T T T T T T T T T 12000
10000 — 10000 —
8000 — 8000 —
§ 6000 — § 6000 —
4000 — 4000 m
2000 — 2000 m
single-node sensor —+—)))) , o single-node sensor —+— L L L L
o (o] 20 40 60 80 100 120 140 160 180 200 o 100 200 300 400 500 600 700 800 9S00 1000
Mbps rules
Figure 3. Single-host monitor detection rate for increasing traffic levels. Figure 4. Single-host monitor detection rate for increasing number of signatures.
45 46
- Bro
Improving the Method Bro
+ More information = More better » Not an anomaly-based system, nor signature-

based system, instead event-driven
« Two major components

— Event engine (Protocol analysis)

— Policy script interpreter
 Allows regular expressions

— Think about the bigger picture...
« Analysis on per-connection basis vs. per-packet
« Aggregation

— Regular Expression vs. String matching

— Consider how the victim responded to the attack « Can analyze traffic in both directions
— Exact activity « Can detect multiple-stage attacks
— Semantics » Fewer false positives than Snort

» FreeBSD (also Linux/Solaris)
47

Bro Architecture

iPahc scrint Real-time notification
! yserp Record to disk

*Rules apply to:

Policy Script Interpreter — Source/Destination
Eventcontol Tgvemsueam Addresses & Ports
‘ Event Engine — TCP/UDP
1 _ T , — Payload
{ Tepdump filter [Filtered packet stream
\ . .
‘ ibpeap - A.ppllcatlon headers
(finger, ftp,
fpmmm portmapper, identd,
‘ Network ‘ telnet, rlogin)

Structure of the Bro System (from [3]) 49

Contextual Signhature Engine

Figure 1: Integrating the signature engine (adapted from |25])

Policy Layer

W Event Engine

J S
Engra

R S

P [e et s

Packet capture

! 1‘(-» -
+

(Network) From [5]

51

Event Engine

» Performs integrity check on packet headers

» Reassembles IP fragments to analyze
complete IP datagrams

» Checks connection state, creating new
state if none already exists

53

Paxson’s Suggested
Improvements

* Enhance Bro by giving it a contextual
signature engine where a signature match is
just the starting state

 Use vulnerability profiles
 Detect failed attack attempts
» Count alerts to detect exploit scans

50

What traffic is important to Bro

» Supports several internet applications, and
captures all packets destined for them:
— e.g. FTP, Finger, Portmapper, Ident, Telnet, Rlogin, ...
» Captures any TCP packet with the SYN, FIN or
RST flag set

— Gets valuable information about ALL connections
regardless of service with just a few packets

— Stores start time, duration, participating hosts and ports,
number of bytes in each direction, etc. for all connections

52

TCP Header Analysis

« With initial SYN packet, event engine schedules a
timer (currently, 5 minutes)

— If timer expires and connection hasn’t changed state,
engine generates connection_attempt event

— If other endpoint replies with correct SYN ACK packet,
engine generates connection_established event

— If endpoint replies with RST packet, connection has
been rejected. Engine generates connection_rejected.
* When connection finishes with normal FIN
exchange, generate connection_finished event

54

UDP Header Analysis

» Simply generate udp_request and udp_reply
events
— Host A sends packets first - initiated a
“request” and messages are flagged as

udp_requests
— Packets from Host B are designated as the

“replies” (udp_reply)

55

Final Event Engine Functions

« After processing each event, the event
engine checks for new events
— Keptin a FIFO queue

* If so, it processes the new events
» Checks for expired timers

57

Signature Language

« Conditions
— Header

— Content
« Incl. http-request or ftp followed by regexp

— Dependency conditions
— Context

» Actions
— Currently only “event”

59

Other Analyzers

* Conn
— Generic connection analysis (start time, duration, sizes, hosts, etc.)
— new_connection (new TCP connection)
— connection_established
— Can store info if partially connected
« TCP_INACTIVE, TCP_SYN_ACK_SENT, TCP_CLOSED, etc.
« HTTP
— Uses a capture filter targeting TCP destination port 80, 8080, & 8000
— Can specify pattern in URL (sensitive_URIs)
* e.g. URIs containing Zetc/passwd
* Scan
— Can detect port scans, address scanning, and password guessing

56

Policy Script Interpreter

» For each event passed to the interpreter:

— Retrieves compiled code for the corresponding
handler

— Binds values of the events to the arguments of
the handler and interprets the code

» That code can in turn generate new events,
log notifications, record data to disk, or
modify the current state

58

Signhatures

Fixed String

alert tcp any any -> a.b.0.0/16 80 (
msg:"WEB-CGI formmail access";
uricontent:"/formmail*;
flow:to_server,established;
nocase; sid:884; [...]

D)

Regular Expression

signature formmail-cve-1999-0172 {
ip-proto == tcp
dst-ip == 1.2.0.0/16
dst-port = 80
http /.*formmail .*\?_.*recipient=["&]*[; |1/
event "formmail shell command"

}

60

Signhatures

As of Feb 2005, Snort.org offers 3,124 rules

Bro Intrusion Detection Bro {wl
System I i

61

Reporting

» Two cron jobs are installed by default that
generate and send email reports of alarms

and alerts

*Reports consist of:
—Individual incidents
—Incident type (“likely successful”, “unknown”,
“likely unsuccessful”)
—Local host
—Remote host
—Alarms
— Successful/Unsuccessful/Unknown connections

—Connections history 63

Signature Based NIDS:
The Present

The process:

* New attack is released in the wild
* Manual attack detection
* Manual generation of an attack signature

* Manual update of NIDS’s database with
the new signature

* Automated attack detection

65

Signature Conversion

Figure 2: Example of signature conversion

aler

(b) Bro From [5] ¢,

Future work

 Addition of new functionality to Bro
— Additional protocol analyzers for the event
engine
— Additional event handlers for generated events
« Communication between Bro & routers

—e.g. If a scan attack is detected, Bro instructs
router to drop packets

64

Signature Based NIDS:
The Future

» Take the costly manual human-based process out
of the loop
— Automated signature generation?

+ Killer combination of an IDS:
— The ability to learn (like anomaly-based IDSs)
— The low false-positive rates (like signature-based IDSs)

=> A signature-based system that can automatically

generate signatures!
66

Attacks on IDSs

* QOverload attacks

— IDS incapable of keeping up with incoming data

stream
» Crash attacks
— IDS crashes or runs out of resources
» Subterfuge attacks

—IDS is mislead as to true significance of the
traffic

67

References

1. Kreibich, C and Crowcrowft, J. 2004. Honeycomb: creating intrusion detection signatures
using honeypots. ACM SIGCOMM Computer Communication Review. 34 (1). pp. 51-56.
http://portal.acm.org/citation.cfm?id=972384

2. Kreugel, C. etal. 2002. Stateful intrusion detection for high-speed networks. In:
Proceedings of the 2002 IEEE Symposium on Security and Privacy. May 2002. pp. 285-
294. http://www.cs.unc.edu/~jeffay/courses/nidsS05/signatures/kemerer-slicing-SP02.pdf

3. Paxson, V. 1999. Bro: a system for detecting network intruders in real-time. Computer
Networks. 31(23-24). December 1999. pp. 2435-2463.
http://www.cs.unc.edu/~jeffay/courses/nidsS05/signatures/paxson-bro-cn99.pdf

4. Roesch, M. 1999. Snort—lightweight intrusion detection for networks. In: Proceedings of
LISA'99. 7-12 November 1999. USENIX. pp. 229-238.
http://portal.acm.org/citation.cfm?id=1039864

5. Sommer, R and Paxson, V. 2003. Enhancing byte-level network intrusion detection
signatures with context. In: Proceedings of the 10t" ACM conference on Computer and
Communications Security. October 2003. ACM. pp. 262-271.
http://www.cs.unc.edu/~jeffay/courses/nidsS05/signatures/sommer-context-ccs03.pdf

6. Totsuka, A et al. 2000. Network-based intrusion detection—modeling for a larger picture.
Proceedings of LISA 2000. 3- 8 November 2000. USENIX. pp. 227-232. 68
http://www.usenix.org/events/lisa02/tech/full_papers/totsuka/totsuka.pdf

