
1

Signature-based

Intrusion Detection

Boriana Ditcheva and Lisa Fowler
University of North Carolina at Chapel Hill

February 16 & 22, 2005

2

Detecting Attacks

• Anomaly-based Detection

• Signature-based (Misuse) Detection

• Host-based

• Network-based

– Active/Passive

3

Anomaly-based detection

• Central idea: “abnormal” = “suspicious”

• Automatically learns

• Detects novel attacks (and its variations)

• Can be left to run unattended

• Requires a notion and definition of “normal”

• Susceptible to false negatives
– Unusual is not necessarily illicit/malicious

– Usual is not necessarily benign

• e.g. attacks that manifest slowly

• Computation intensive

4

Signature-based Detection

• Looks for specific and explicit indications of attacks
– Identified by raw byte sequences (strings), protocol type,

port numbers, etc.

• Low false positives
– “Knows for a fact” what is suspicious, what is normal

• Detects only behavior that was previously defined to be
suspicious

– Can have tight signatures (high confidence)

• Simple and efficient process

• Easy to share
– Repositories of signatures

5

Problems

• System must be trained
– Requires time-consuming manual identification and specification of

each new attack

– Often requires ‘expert’ knowledge

– Cannot detect novel attacks on its own

• False negatives
– May not detect simple variations

– Unless previously detected and identified…

• False positives
– May detect failed attacks

– Loose signatures (low confidence)

– Poorly configured systems

6

Signature-based Detection

• Goal:

– Find a pattern or signature that can allow for the
detection of a specific attack

• Think about virus detection…

– Be narrow to be more precise (reduce false

negatives)

– Be flexible to cover as many of the variants as

possible while minimizing false positives

7

IDS Placement

• Outside firewall

– Detects all attacks directed at your network

– Detects more events

– Generates more logs

• Inside firewall

– Only detects what the firewall lets in

– Less state information

8

IDS Placement

Typical placement of an IDS system (in this example, Bro
For more info, see http://www.netoptics.com/products/pdf/Taps-and-IDSs.pdf

http://bro-ids.org/Bro-quick-start/Network-Tap.html

9

Making a Signature

• DIY (Manual)

– Become a “security officer”

– Know detailed information regarding the exploit

– Generate the signature by manual inspection

– Can generate false positives or false negatives

10

Making a Signature++

• Automated

– If we can extract or isolate suspicious network
data, can conceive of a system that can

aggregate the data and generate signatures

11

Example Signature

alert udp $EXTERNAL_NET any -> $HOME_NET 31335

(msg:"DDOS Trin00 Daemon to Master PONG message

detected"; content:"PONG"; reference:arachnids,187;

classtype:attempted-recon; sid:223; rev:3;)

Rule

DDOS Trin00 Daemon to Master PONG message

detected

Message

1:223GEN:SID

Trin00

http://www.snort.org/snort-db/sid.html?sid=223

All Snort signature examples from http://snort.org

12

SNORT

• Lightweight signature-based intrusion detection
system

• Only 100 kilobytes in compressed source
distribution

• Don’t need sophisticated training to use like with
other commercial NIDSs

• Configurable (Easy rules language, many
logging/alerting options)

• Free

13

Snort’s architecture

• Packet Decoder

• Detection Engine

• Logging/Alerting Subsystem

– These subsystems ride on top of the libpcap promiscuous

packet sniffing library.

14

Snort’s architecture

15

Packet Decoder

• Organized around the layers of the protocol

stack present in the supported data-link and

TCP/IP protocol definitions.

• Sets pointers into the packet data for later

access and analysis by the detection engine.

16

Detection Engine

• Uses comparison to predetermined rules (to

be discussed in a minute) to decide whether

a packet should be flagged or not.

• Maintains detection rules in a two

dimensional linked list of Chain Headers and

Chain Options.

• First rule that matches a decoded packet

triggers the specified action and returns.

17

Rule Chain Structure

Chain Header

Source IP Address

Destination IP Address

Source Port

Destination Port

Chain Header

Source IP Address

Destination IP Address

Source Port

Destination Port

Chain Option

Content

TCP Flags

ICMP Codes/Types

Payload Size

Etc.

Chain Option

Content

TCP Flags
ICMP Codes/Types

Payload Size

Etc.

Chain Option

Content

TCP Flags
ICMP Codes/Types

Payload Size

Etc.

Figure 3. Rule Chain logical structure (From [4])
18

Logging/Alerting Subsystem

• Logging options:

– Log packets in their decoded human readable
format to an IP-based directory structure

– Log packets in tcpdump binary format to single

log file (much faster)

– Do not log

19

Logging/Alerting Subsystem

• Alert options:

– Alerts sent to syslog

– Alerts logged to specified alert text file

• Full alerting: write the alert message and packet

header info through the transport layer protocol

• Fast alerting: write condensed subset of the header

info

– Alerts sent as WinPopup messages

– Disable alerting

20

Snort Rules

• Snort can take three base actions when it

finds a matching packet:

– Pass (drop the packet)

– Log (write full packet to logging routine)

– Alert (generates notification as specified by user)

21

Snort Rules

• Header Features:

• Look at uni- or bi-directional traffic

• IP addresses

– negation, CIDR ranges

• TCP/UDP ports

– Negation, ranges, greater than/less than

22

Option Fields

1. content – search packet payload for
specified item

2. flags – test TCP flags

3. ttl – check IP ttl field

4. itype – match on ICMP type field

5. icode – match on ICMP code field

6. minfrag – set threshold for IP fragment size

7. id – test IP header for specified value

23

Option Fields

8. ack – TCP ack number

9. seq – TCP seq number

10. logto – log packets matching this rule to this

specified filename

11. dsize – packet payload

12. offset – begin content search at this offset

13. depth – search content to this byte depth in file

14. msg – message to be sent when packet
generates event

24

Example Signature

alert udp $EXTERNAL_NET any -> $HOME_NET 31335

(msg:"DDOS Trin00 Daemon to Master PONG message

detected"; content:"PONG"; reference:arachnids,187;

classtype:attempted-recon; sid:223; rev:3;)

Rule

DDOS Trin00 Daemon to Master PONG message

detected

Message

1:223GEN:SID

Trin00

http://www.snort.org/snort-db/sid.html?sid=223

All Snort signature examples from http://snort.org

25

Stacheldraht

• One attack may have many different

signatures

All Snort signature examples from http://snort.org

26

Ping of Death

27

SQL Slammer

28

SQL Slammer

All Snort signature examples from http://snort.org

29

Nimda

All Snort signature examples from http://snort.org

30

Trying for high performance

• Content matching is most expensive process

– Performed after all other rules are tested

– Can use offset and depth keywords to limit
amount of data to be searched

31

Trying for high performance

• Deep packet inspection attempts to solve

the problem of expensive content matching

• DPI engines scrutinize each packet

(including the data payload) as it traverses

the firewall, and rejects or allows the packet

based upon a ruleset that is implemented by

the firewall administrator.

32

Uses of Snort

1) To fill holes in commercial vendor’s network-based
intrusion detection tools:
– When new attack comes out and signature updates from

vendor are slow

– Run Snort locally on test network to determine signature

– Write a Snort rule

– Use BPF command line filtering to watch only service or
protocol of interest

– Snort can be used as a specialized detector for a single
attack or family of attacks in this mode

33

Uses of Snort

2) As a Honeypot monitor

– Problem with honeypots is that the services they run

have to be started before they will record anything, thus

miss events such as stealth port scans or binary data

streams (unless they perform packet level monitoring)

– The data coming out of a honeypot requires a skilled

analyst to properly interpret results.

– Snort can be of great help to the analyst/administrator

with its packet classification and alerting functionality.

34

Uses of Snort

3) Used as a “passive trap”

– Administrators know which services are NOT
available on their networks

– By default, packets looking for those services

are malicious traffic (port scanning,

backdoors,…)

– Write Snort rules to watch for traffic headed to

these non-existent services

35

Uses of Snort

4) In focused monitoring:

– Watch a single critical node or service on the network.

– Example: the Sendmail SMTP server has a well-known

(and extensive) list of vulnerabilities.

– Single Snort sensor can be deployed with a rule set

covering all known Sendmail attacks.

– This concept can be extended to any network

technology that is under-represented by commercial

NIDS.

36

Challenges Snort faces as a

stand-alone NIDS

• The constant increase in network speed and

throughput – processors cannot keep up

• Sensors cannot maintain information about

attacks in progress (e.g., in the case of multi-

step attacks)

• Novel approaches to NID necessary to

manage ever-increasing data volume

37

Stateful Intrusion Detection

• Divide the traffic volume into smaller portions

• Have many sensors, each processing a sub-

section of the traffic volume

• Each sensor can be configured to detect a

specific subset/family of attacks

38

Stateful Intrusion Detection

• Problems:

– Must ensure that the traffic division is such that
all parts of an attack are sent to the appropriate

sensor.

– If random division is used and different parts of

the attack are assigned to different sensors, the

sensors may not receive sufficient data to detect

the intrusion.

39

Proposed Architecture

40

Proposed Architecture

• The systems implements signature-based
intrusion detection

• Detection is performed by a set of sensors,
each responsible for a subset of signatures

• Each sensor is autonomous and does not
interact with other sensors

• Components can be added to the system to
achieve higher throughput as needed

41

Scatterer

• Receives frames from network tap

• Partitions them into m

subsequences to pass onto the

slicers

• Can use any algorithm (assume it

simply cycles over the m sub-

sequences in a round-about

fashion)

• Scatterer has to keep up with high

traffic throughput, so it does

limited processing per frame

42

Slicers

• Their task is to route the frames
to the sensors that should be
processing them

• The look at fewer packets, so can
perform more complex frame
routing.

• Connected to a switch which
allows slicer to send frames to
one or more of n outgoing
channels

• Configuration of the slicers is
static

43

Reassemblers

• The original order of two

packets could be lost if they
take different paths (over

distinct slicers).

• Reassemblers make sure

that the packets appear on

the channel in the same

order they appeared on the

high-speed link

44

Sensors

• Each sensor is associated with a subset of attack

scenarios

• Each attack scenario is associated with an event

space

• The event space specifies which frames are

candidates to be part of the manifestation of the

attack

• The clauses of an event space can be derived

automatically from attack signatures

45

Performance Issues

46

Performance Issues

47

Improving the Method

• More information = More better

– Think about the bigger picture…

• Analysis on per-connection basis vs. per-packet

• Aggregation

– Regular Expression vs. String matching

– Consider how the victim responded to the attack

– Exact activity

– Semantics

48

Bro

• Not an anomaly-based system, nor signature-
based system, instead event-driven

• Two major components
– Event engine (Protocol analysis)

– Policy script interpreter

• Allows regular expressions

• Can analyze traffic in both directions

• Can detect multiple-stage attacks

• Fewer false positives than Snort

• FreeBSD (also Linux/Solaris)

49

Bro Architecture

Network

libpcap

Event Engine

Policy Script Interpreter

Packet stream

Filtered packet stream

Event stream

Real-time notification

Record to disk
Policy script

Event control

Tcpdump filter

Structure of the Bro System (from [3])

•Rules apply to:

– Source/Destination
Addresses & Ports

– TCP/UDP

– Payload

– Application headers

(finger, ftp,

portmapper, identd,

telnet, rlogin)

50

Paxson’s Suggested

Improvements

• Enhance Bro by giving it a contextual

signature engine where a signature match is

just the starting state

• Use vulnerability profiles

• Detect failed attack attempts

• Count alerts to detect exploit scans

51

Contextual Signature Engine

From [5]

52

What traffic is important to Bro

• Supports several internet applications, and
captures all packets destined for them:
– e.g. FTP, Finger, Portmapper, Ident, Telnet, Rlogin, …

• Captures any TCP packet with the SYN, FIN or
RST flag set
– Gets valuable information about ALL connections

regardless of service with just a few packets

– Stores start time, duration, participating hosts and ports,
number of bytes in each direction, etc. for all connections

53

Event Engine

• Performs integrity check on packet headers

• Reassembles IP fragments to analyze

complete IP datagrams

• Checks connection state, creating new

state if none already exists

54

TCP Header Analysis

• With initial SYN packet, event engine schedules a

timer (currently, 5 minutes)

– If timer expires and connection hasn’t changed state,

engine generates connection_attempt event

– If other endpoint replies with correct SYN ACK packet,

engine generates connection_established event

– If endpoint replies with RST packet, connection has

been rejected. Engine generates connection_rejected.

• When connection finishes with normal FIN
exchange, generate connection_finished event

55

UDP Header Analysis

• Simply generate udp_request and udp_reply

events

– Host A sends packets first initiated a

“request” and messages are flagged as

udp_requests

– Packets from Host B are designated as the

“replies” (udp_reply)

56

Other Analyzers

• Conn
– Generic connection analysis (start time, duration, sizes, hosts, etc.)

– new_connection (new TCP connection)

– connection_established

– Can store info if partially connected
• TCP_INACTIVE, TCP_SYN_ACK_SENT, TCP_CLOSED, etc.

• HTTP
– Uses a capture filter targeting TCP destination port 80, 8080, & 8000

– Can specify pattern in URL (sensitive_URIs)

• e.g. URIs containing /etc/passwd

• Scan
– Can detect port scans, address scanning, and password guessing

57

Final Event Engine Functions

• After processing each event, the event

engine checks for new events

– Kept in a FIFO queue

• If so, it processes the new events

• Checks for expired timers

58

Policy Script Interpreter

• For each event passed to the interpreter:

– Retrieves compiled code for the corresponding
handler

– Binds values of the events to the arguments of

the handler and interprets the code

• That code can in turn generate new events,

log notifications, record data to disk, or

modify the current state

59

Signature Language

• Conditions

– Header

– Content

• Incl. http-request or ftp followed by regexp

– Dependency conditions

– Context

• Actions

– Currently only “event”

60

Signatures

Fixed String

alert tcp any any -> a.b.0.0/16 80 (
msg:"WEB-CGI formmail access";
uricontent:"/formmail";
flow:to_server,established;
nocase; sid:884; [...]
)

Regular Expression

signature formmail-cve-1999-0172 {
ip-proto == tcp
dst-ip == 1.2.0.0/16
dst-port = 80
http /.*formmail.*\?.*recipient=[^&]*[;|]/
event "formmail shell command"
}

61

Signatures

As of Feb 2005, Snort.org offers 3,124 rules

62

Signature Conversion

From [5]

63

Reporting

• Two cron jobs are installed by default that

generate and send email reports of alarms

and alerts
•Reports consist of:

– Individual incidents

– Incident type (“likely successful”, “unknown”,

“likely unsuccessful”)

– Local host

– Remote host

– Alarms

– Successful/Unsuccessful/Unknown connections

– Connections history 64

Future work

• Addition of new functionality to Bro

– Additional protocol analyzers for the event
engine

– Additional event handlers for generated events

• Communication between Bro & routers

– e.g. If a scan attack is detected, Bro instructs

router to drop packets

65

Signature Based NIDS:

The Present

The process:

• New attack is released in the wild

• Manual attack detection

• Manual generation of an attack signature

• Manual update of NIDS’s database with
the new signature

• Automated attack detection

66

Signature Based NIDS:

The Future

• Take the costly manual human-based process out

of the loop

– Automated signature generation?

• Killer combination of an IDS:

– The ability to learn (like anomaly-based IDSs)

– The low false-positive rates (like signature-based IDSs)

 A signature-based system that can automatically

generate signatures!

67

Attacks on IDSs

• Overload attacks

– IDS incapable of keeping up with incoming data
stream

• Crash attacks

– IDS crashes or runs out of resources

• Subterfuge attacks

– IDS is mislead as to true significance of the

traffic

68

References

1. Kreibich, C and Crowcrowft, J. 2004. Honeycomb: creating intrusion detection signatures

using honeypots. ACM SIGCOMM Computer Communication Review. 34 (1). pp. 51-56.
http://portal.acm.org/citation.cfm?id=972384

2. Kreugel, C. et al. 2002. Stateful intrusion detection for high-speed networks. In:

Proceedings of the 2002 IEEE Symposium on Security and Privacy. May 2002. pp. 285-
294. http://www.cs.unc.edu/~jeffay/courses/nidsS05/signatures/kemerer-slicing-SP02.pdf

3. Paxson, V. 1999. Bro: a system for detecting network intruders in real-time. Computer

Networks. 31(23-24). December 1999. pp. 2435-2463.

http://www.cs.unc.edu/~jeffay/courses/nidsS05/signatures/paxson-bro-cn99.pdf

4. Roesch, M. 1999. Snort—lightweight intrusion detection for networks. In: Proceedings of

LISA ’99. 7-12 November 1999. USENIX. pp. 229-238.
http://portal.acm.org/citation.cfm?id=1039864

5. Sommer, R and Paxson, V. 2003. Enhancing byte-level network intrusion detection

signatures with context. In: Proceedings of the 10th ACM conference on Computer and

Communications Security. October 2003. ACM. pp. 262-271.
http://www.cs.unc.edu/~jeffay/courses/nidsS05/signatures/sommer-context-ccs03.pdf

6. Totsuka, A et al. 2000. Network-based intrusion detection—modeling for a larger picture.

Proceedings of LISA 2000. 3- 8 November 2000. USENIX. pp. 227-232.
http://www.usenix.org/events/lisa02/tech/full_papers/totsuka/totsuka.pdf

