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General Introduction

• Several drawbacks to signature-based

detection

– Human intervention

– Not adaptive; can't learn

– Can be evaded by small changes

– Fundamentally can't catch some attacks

(like what?)

General Introduction

• Signal Processing (SP)-based methods:

– Are more adaptive

– Require less human intervention

– Detect a broader range of attacks

– Are much harder to apply!

• A real-time solution is an even bigger
challenge
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Introduction to PCA
Motivation

• Many ID/networking problems are high
dimensional
– Many studies stick to single end-to-end pair to

keep dimensionality low

• The "curse of dimensionality": high
dimensional problems are harder

• Decomposition into "normal" and "anomalous"
components
– Theme of signal-processing-based methods

Introduction to PCA
High-Level Overview

• PCA is like rotation in k-dimensional space

• New axes are most appropriate for data

• Lower-order axes capture most variation in

data

– Why is this (or more precisely its inverse)

important?

• Throw out the high-order axes!

• Reduces dimensionality



Introduction to PCA
2-D example [1]

Introduction to PCA
Intuitive Examples

• Football - 1st axis along the length

• Piece of paper - "intrinsically" ~2D

• Faces - A 100x100 bitmap is 10,000D,

but how many dimensions would we

need optimally?

– Answer: 42

Introduction to PCA
Geometric Details

• 1st axis captures greatest variation

– In 2-D, what will the 1st axis be?

• 2nd axis captures greatest remaining variation

– Remove 1st axis by "collapsing" data points into

orthogonal (hyper) plane

• Rinse and repeat

• All axes must be orthogonal

– Last axis is easy

• End result: rotation in k-D space

Introduction to PCA
Demonstrations

• http://www.uwlax.edu/faculty/will/svd/pe

rpframes/index.html

• http://www.cac.sci.kun.nl/people/philipg/

nfo-6/

Setup (from [2])

• Abilene traffic data used

• 11 Points of Presence (PoPs)

• 11^2 = 121 Origin-Destination (OD)

flows

• Aggregation at 5 minutes for 1 week

(2,016 intervals)

Setup (from [2])

• Measurement is the number of flows

• Thus X is 2016x121 data matrix

– Column i is timeseries of i-th OD flow

– Row j is vector of measurements at j-th

interval

• Note the high dimensionality (121D)



Singular Value Decomposition

• Any matrix can be decomposed into 3
matrices: U*S*VT

• VT, 121x121, is PCA's rotation matrix (a
frame)

• S, 121x121, is diagonal and contains
ordered singular values k

• U, 2016x121, contains our eigenflows

Singular Value Decomposition

• An eigenflow, Ui, is a 2016-vector, and
there are 121 of them

• Each Ui is a component of the data

• Each OD-flow timeseries can be
completely represented with a
weighted sum of eigenflows

– The weights are given in VT

Singular Value Decomposition

• Recall: S, diagonal, contains 1 - 121

• i's are arranged in decreasing order

• They are sqrt(eigenvalues) of V*VT

• They represent amount of energy explained

by component i

– What does this say about our eigenflows?

• They are arranged in decreasing order of importance

SVD - Scree Plots

• A scree plot is a plot of i vs. i
2

• Useful for portraying relative

importance of each i

SVD - Scree Plots SVD - Recap

• X = U*S*VT

• Ui = column of U = eigenflow

• S, diagonal, is singular values i

• VT is PCA's rotation matrix

• Singular Value i represents amount of

energy captured by Ui



A Taxonomy of Eigenflows

• Deterministic (D-) eigenflows

– Large trends

– Periodic

– Defined heuristically as having maximum

frequency component at 12 or 24 hours

A Taxonomy of Eigenflows

D-eigenflow example

A Taxonomy of Eigenflows

• Spike (S-) eigenflows

– Major element is at least 1 large spike

– Defined heuristically as having at least 1

value more than 5 standard deviations

from the mean

A Taxonomy of Eigenflows

• Noise (N-) eigenflows

– Resembles Gaussian noise

– Think of these as making up the leftover

energy

– Defined heuristically with a qq-plot

A Taxonomy of Eigenflows A Taxonomy of Eigenflows

• Where are we going with this?
– We can now decompose each OD flow in terms of

how deterministic, spiky, or noisy it is

– Detrending

– Forecasting



A Brief Note on Stability

• Why would thresholding alone fail to

detect anomalies?

– We'd never detect an anomaly at 4 A.M.

– We'd detect lots of anomalies at noon

• The timeseries is not stable...yet

Discussion

• Detrending: remove D-eigenflows from an

OD flow

– Now the timeseries is stable, so we can use

simple thresholding to detect anomalies

• Forecasting: use most significant eigenflows

of one trace to predict, say, next week's traffic

– Identify anomalies this way

Discussion

Or, do both at the

same time!

Introduction to

the Subspace Method (from [3])

• Very similar to detrending

– Separation of "normal" from "anomalous"

• Mark first eigenflow with a value > 3 standard

deviations from the mean

• This is the beginning of the "anomalous

subspace"

• Everything prior is the "normal subspace"

Application of

Subspace Method

Introduction to

the Subspace Method

• Each OD-flow is completely

characterized by normal and

anomalous components

• So, we can remove the normal

components, and examine the residuals



Applying the

Subspace Method

• Let N be projection of data onto normal

subspace (the modeled part)

• Let A be projection onto anomalous

subspace (the residual part)

Applying the

Subspace Method

• Similar to detrending, we can now just

threshold on A to detect anomalies

– Project each 121-D point onto A

– How could we tell how anomalous this projection

is?

• Euclidean distance from origin

• Heavy on statistics, but confidence intervals

and such are involved

Discussion

• False positive rate and detection rate

– False positive rate estimated with EWMA

and other techniques

– Detection rate estimated by injecting

anomalies

• Feasibility of deployment onto actual

networks

Setup (from [4])

• Same setup as before

• Except, now perform subspace method

on byte, packet, and flow matrices

• Objective: after detection, characterize

(and quantify) anomalies

Setup (from [4])

• We've seen how to catch anomalies by

thresholding residuals

• This time, also catch anomalies in

normal subspace with use of the t2

statistic

Characterization of Anomalies

• By detecting coinciding anomalies in

bytes, packets, and flows, can crudely

classify the type of anomaly

– Coinciding spike in bytes & packets may

mean large transfer

– Coinciding spike in flows & packets might

be a network scan



Characterization of Anomalies

• By also checking for dominant sources

or destinations, we can do better

– DDoS is manifest as spike in F, P, or FP

counts with a dominant destination

– Most worms will manifest as spike in F

counts with a dominant port

Discussion

• How might we distinguish between

DDoS attack and flash crowd?

– Paper says flash crowds usually

dominated by a single OD-flow

• Even without bulletproof

characterization, this is still a big help

to network administrators

Concluding Remarks

• PCA and the subspace method are

better in many ways than signature-

based means of detection

– Adaptive

– No human intervention

• However, there are still plenty of

improvements to be made

Concluding Remarks

• PCA and the subspace method are not

the only signal-processing based

methods of intrusion detection

• Others include:

– Spectral analysis

– Wavelet decomposition

– Other SVD techniques

Questions?

1. http://www.mech.uq.edu.au/courses/mech4710/pca/s1.htm

2. "Structural Analysis of Network Traffic Flows" by A. Lakhina,

K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk, and N.

Taft

3. "Diagnosing Network-Wide Traffic Anomalies" by A. Lakhina,

M. Crovella, and C. Diot

4. "Characterization of Network-Wide Anomalies in Traffic

Flows" by A. Lakhina, M. Crovella, and C. Diot


